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a b s t r a c t 

Angle closure glaucoma (ACG) is a more aggressive disease than open-angle glaucoma, where the ab- 

normal anatomical structures of the anterior chamber angle (ACA) may cause an elevated intraocular 

pressure and gradually lead to glaucomatous optic neuropathy and eventually to visual impairment and 

blindness. Anterior Segment Optical Coherence Tomography (AS-OCT) imaging provides a fast and con- 

tactless way to discriminate angle closure from open angle. Although many medical image analysis algo- 

rithms have been developed for glaucoma diagnosis, only a few studies have focused on AS-OCT imaging. 

In particular, there is no public AS-OCT dataset available for evaluating the existing methods in a uni- 

form way, which limits progress in the development of automated techniques for angle closure detection 

and assessment. To address this, we organized the Angle closure Glaucoma Evaluation challenge (AGE), 

held in conjunction with MICCAI 2019. The AGE challenge consisted of two tasks: scleral spur localization 
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and angle closure classification.  

images from 199 patients, and  

ferent models. During the AGE  

were submitted for online evalu  

per, we summarize these eight  

two tasks. We further discuss l  

approach had an average Eucli  

the task of angle closure classi  

best obtaining an accuracy rate  

mote new developments in AS-  

in particular. 
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Fig. 1. AGE challenge tasks: scleral spur localization and angle closure classification 

from AS-OCT images. 
1. Introduction 

As one of the world’s main ocular diseases causing irreversible

blindness, glaucoma involves both anterior and posterior segments

of the eye. Primary angle closure glaucoma (PACG) is the main

type of glaucoma in Asia ( Quigley and Broman, 2006; Foster, 2001;

Chansangpetch et al., 2018 ), where the abnormal anatomical struc-

ture of the anterior chamber angle (ACA) may cause elevated in-

traocular pressure and gradually lead to glaucomatous optic neu-

ropathy. PACG patients have several characteristic structural dif-

ferences from open-angle subjects ( Nongpiur et al., 2013; 2017 ),

including narrow chamber angles, short axial length, thick lens,

greater iris thickness, etc. There are several ways to assess the

angle structures for clinical diagnosis, e.g. , gonioscopy, or ante-

rior segment optical coherence tomography (AS-OCT). Gonioscopy

is the current gold standard for the assessment and diagnosis of

angle closure. Ophthalmologists grade the angle width into differ-

ent levels according to the ACA structures seen under gonioscopy.

However, being a contact examination, it may be uncomfortable

for the patient, and it is also technically challenging, relying on the

experience of the ophthalmologist in using this technique. By con-

trast, AS-OCT examination is a fast and contactless method for cap-

turing the morphology of the ACA ( Sharma et al., 2014; Ang et al.,

2018 ), which is easily used to identify open and narrow/closed an-

gles. Moreover, AS-OCT imaging can obtain measurements of var-

ious angle parameters to assess the anterior chamber angle in a

clinical setting ( Sakata et al., 2008; Nongpiur et al., 2017 ), including

angle open distance (AOD), anterior chamber width (ACW), trabec-

ular iris space area (TISA), etc . Quantification of these parameters

relies on the localization of a specific mark, i.e. , the scleral spur

(SS), which appears as a wedge projecting from the inner aspect

of the anterior sclera in cross-sectional images ( Sakata, 2008 ), as

shown in Fig. 1 . Thus, SS localization is also a key task for identi-

fying open and narrow/closed angles in AS-OCT imaging. However,

one limitation of AS-OCT imaging is that ACA assessment is time-

consuming and subjective. For instance, the ophthalmologists have

to manually identify specific anatomical structures, e.g., SS points,

for detecting angle closure. 

Recently, automated medical image analysis algorithms have

achieved promising performances in medicine and particularly

ophthalmology ( Schmidt-Erfurth et al., 2018; Ting et al., 2019; Ra-

jkomar et al., 2019; Bi et al., 2019 ). The availability of deep learn-

ing techniques has sparked tremendous global interest in ma-

jor ophthalmic disease screening, including diabetic retinopathy

(DR) ( Gulshan et al., 2016; Ting et al., 2017; Gargeya and Leng,

2017; Krause et al., 2018; Abràmoff et al., 2018 ), glaucoma ( Asaoka

et al., 2016; Li et al., 2018; Fu et al., 2018a; 2018b; Orlando et al.,

2020 ), and age-related macular degeneration (AMD) ( Grassmann

et al., 2018; Kermany et al., 2018; De Fauw et al., 2018; Liu

et al., 2019; Peng et al., 2019 ). However, most works focus on
 For this challenge, we released a large dataset of 4800 annotated AS-OCT

 also proposed an evaluation framework to benchmark and compare dif-

 challenge, over 200 teams registered online, and more than 1100 results

ation. Finally, eight teams participated in the onsite challenge. In this pa-

 onsite challenge methods and analyze their corresponding results for the

imitations and future directions. In the AGE challenge, the top-performing

dean Distance of 10 pixels (10 μm) in scleral spur localization, while in

fication, all the algorithms achieved satisfactory performances, with two

 of 100%. These artificial intelligence techniques have the potential to pro-

OCT image analysis and image-based angle closure glaucoma assessment

© 2020 Elsevier B.V. All rights reserved.

etinal fundus photographs, with only a few dealing with AS-

CT images ( Niwas et al., 2016; Fu et al., 2019; Xu et al., 2019;

ao et al., 2020a; 2020b ). Zhongshan Ophthalmic Center has

rovided a semi-automated angle assessment program to calcu-

ate various ACA parameters, but users are required to input the

S positions ( Console et al., 2008 ). For fully automated systems,

ian et al. (2011) provided a parameter calculation method for

igh-definition OCT (HD-OCT) based on the Schwalbe’s line detec-

ion. In Fu et al. (2016, 2017) , a label transfer system was proposed

o combine segmentation, measurement and detection of AS-OCT

tructures. The major ACA parameters are recovered based on the

egmented structure and serve as features for detecting anterior

ngle closure. Besides clinical parameter calculation, the visual fea-

ures directly extracted from AS-OCT images using computer vision

echniques are also utilized to classify angle-closure glaucoma. For

nstance, Xu et al. (2012, 2013) localized the ACA region and then

xtracted visual features to detect the glaucoma subtype. With

he development of deep learning, Convolutional Neural Networks

CNNs) have been introduced to improve the performance of angle-

losure detection in AS-OCT images ( Fu et al., 2019; Xu et al., 2019;

ao et al., 2019 ). In Fu et al. (2018c, 2020) , a multi-path deep net-

ork was designed to extract multi-scale AS-OCT representations

or both the global image and clinically relevant local regions. Nev-

rtheless, these approaches cannot currently be properly compared

ue to the lack of a unified evaluation dataset. Moreover, the ab-

ence of a large-scale AS-OCT dataset also limits the rapid devel-

pment and eventual deployment of deep learning techniques for

ngle closure detection. 
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Fig. 2. (A) Euclidean Distance ( ED ) measures the distance between the estimated 

point and ground truth of the scleral spur. (B) Angle Opening Distance (AOD) is the 

distance between the cornea and iris along a line perpendicular to the cornea at a 

specified distance ( e.g. , 500 μm). 
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To address these limitations, we introduced the Angle closure

laucoma Evaluation (AGE) Challenge, a competition that was held

s part of the Ophthalmic Medical Image Analysis (OMIA) work-

hop at the International Conference on Medical Image Computing

nd Computer Assisted Intervention (MICCAI) 2019. Our challenge

ollowed on the success of the REFUGE challenge ( Orlando et al.,

020 ), which was introduced for glaucoma detection in fundus

mage as part of iChallenge. The challenge proposal was compli-

nt with good MICCAI practices for biomedical challenges ( Maier-

ein et al., 2018 ). 

The key contributions of the AGE challenge were: (1) The re-

ease of a large database of 4200 AS-OCT images with reliable ref-

rence standard annotations for SS localization and angle closure

dentification. To the best of our knowledge, AGE was the first

hallenge to provide a public AS-OCT dataset for angle closure

laucoma. (2) The construction of a unified evaluation framework

hat enables a standardized, fair comparison of different algorithms

n scleral spur localization and angle closure classification , as

hown in Fig. 1 . During the AGE challenge, more than 200 teams

egistered online, and more than 1100 results were submitted for

nline evaluation. Eight teams participated in the final onsite chal-

enge that took place in Shenzhen, China, during MICCAI 2019. In

his paper, we analyze the outcomes and methodological contri-

utions made as part of the AGE Challenge. We present and de-

cribe the competition and the released dataset, report the per-

ormance of the algorithms that participated in the onsite com-

etition, and identify successful common practices for solving the

asks of the challenge. Finally, we take advantage of all this empir-

cal evidence to discuss the clinical implications of the results and

o propose further improvements to this evaluation framework. To

ncourage further developments and to ensure a proper and fair

omparison of new proposals, AGE data and its associated evalua-

ion platform remain open through the Grand Challenges website

t https://age.grand-challenge.org . 

. AGE challenge data 

The AS-OCT images used in the AGE Challenge were acquired

ith a CASIA SS-10 0 0 OCT (Tomey, Nagoya, Japan) by the Zhong-

han Ophthalmic Center, Sun Yat-sen University, China. The ex-

minations were performed in a standardized darkroom with a

ight intensity lower than 0.4 lux. Both left and right eyes of

ach patient were included if the images were eligible. Each AS-

CT volume contained 128 two-dimensional cross-sectional AS-

CT images (B-scans), which divided the anterior chamber into

28 meridians. We extracted 16 images from each volume equidis-

antly. Eyes with corrupt images or images with significant eyelid

rtifacts precluding visualization of the ACA were excluded from

he analysis. Angle structures were classified into open and clo-

ure. Gonioscopy was used as the gold standard. It was performed

y a glaucoma expert (Zhang XL) with a four-mirror Sussman go-

ioscope (Ocular Instruments, Inc., Bellevue, WA) under standard

ark illumination. The angle was graded in each quadrant (inferior,

uperior, nasal, and temporal) according to the modified Scheie

lassification system ( Scheie, 1957 ) based on the identification of

natomical landmarks: grade 0, no structures visible; grade 1, non-

igmented trabecular meshwork (TM) visible; grade 2, pigmented

M visible; grade 3, SS visible; grade 4, ciliary body visible. A

losed angle was diagnosed if the posterior TM was not seen for

t least 180 degrees during static gonioscopy. 

Each AS-OCT image was divided in two chamber angle images

long the vertical middle-line. No adjustments were made to im-

ge brightness or contrast. For each chamber angle image, the SS

as marked by four ophthalmologists (average experience: 8 years,

ange: 5–10 years) independently. The final standard reference SS

ocalization was determined by the mean of these four indepen-
ent annotations, followed by a fine adjustment by a senior glau-

oma specialist (F. Li). The study included 300 eyes from 199 sub-

ects (female: 38.7%, mean age: 47.2 ± 15.4). Each volume was

omposed of 128 radial images (B-scans). Adjacent images were

imilar to each other in chamber angle morphology. Therefore, we

xtracted only 16 images from each volume to avoid the influence

f this similarity. Thus, a total of 4800 images were extracted. Each

mage was composed of two chamber angle images, e.g. , left and

ight. Finally, the dataset was split into a training set (1600 im-

ges with 640 angle closure and 2560 open angle), a validation set

1600 images with 640 angle closures and 2560 open angles), and

 testing set (1600 images with 640 angle closures and 2560 open

ngles). Images from the same patient were assigned to the same

et. The training set was used to learn the algorithm parameters

offline training), the validation set was used to choose a model

online evaluation), and the testing set was used to evaluate the

odel performance (onsite evaluation). 

. Challenge evaluation 

The performance of each proposed algorithm for each of the

hallenge tasks was assessed using different standard evaluation

etrics. Each of them is described as follows. 

.1. Task 1: scleral Spur Localization 

Participants were asked to provide the estimated ( x, y ) co-

rdinates of the SS point. Submitted results were compared to

he reference standard by means of two metrics. The first one

as the Euclidean Distance ( ED ), which measures the distance be-

ween the estimated and ground truth SS locations, as shown in

ig. 2 (A). The second criterion was the difference in the angle

pening distance (AOD) ( �AOD ). AOD is defined as the distance be-

ween the cornea and iris along a line perpendicular to the cornea

t a specified distance (in AGE, we used 500 μm) from the SS

oint ( Chansangpetch et al., 2018 ), as shown in Fig. 2 (B). As an im-

ortant indicator for angle closure assessment, we compared the

ODs calculated using the prediction and ground truth. In general,

he AOD of an open angle case is larger than that of angle closure.

hus, for an open angle image, we set a higher penalty for small

https://age.grand-challenge.org
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Fig. 3. (A) Scleral spur localization aims to estimate the position of the scleral spur 

point from an AS-OCT image. (B) The binary mask based on the scleral spur region. 

(C, D) The heat maps generated based on scleral spur with different radii. 
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calculated AODs, while for an angle closure image, we set a higher

penalty for larger calculated AODs, as shown below: 

• For open angle images: 

�AOD = 

{
0 . 2 × | z − z ∗| , if z > z ∗, 
0 . 8 × | z − z ∗| , otherwise , 

(1)

where z and z ∗ denote the AODs calculated using the estimated

SS point and ground truth, respectively. 
• For angle closure images: 

�AOD = 

{
0 . 8 × | z − z ∗| , if z > z ∗, 
0 . 2 × | z − z ∗| , otherwise . 

(2)

Based on the mean ED and �AOD values, each team received

two ranks: R ED and R AOD (1 = best). The final ranking score for the

scleral spur localization task was calculated as: 

S loc = 0 . 4 × R ED + 0 . 6 × R AOD , (3)

which was then used to determine the ranking of the SS local-

ization leaderboard. We set a higher weight for R AOD because it

could be used as an indicator for angle closure identification di-

rectly. Teams with lower ranking scores were ranked higher. 

3.2. Task 2: angle closure classification 

Submissions for the classification challenge had to provide the

corresponding estimated angle closure results (positive value for

angle closure and non-positive value otherwise). Sensitivity and

Specificity were utilized as the criteria of the challenge: 

Sensitivity = 

T P 

T P + F N 

, Specificity = 

T N 

T N + F P 
, (4)

where TP and TN denote the number of true positives and true

negatives, respectively, and FP and FN denote the number of false

positives and false negatives, respectively. In addition, we also

reported the area under receiver operating characteristic curve

(AUC). Based on the Sensitivity, Specificity and AUC values, each

team received three ranks: R sen , R spe and R AUC (1 = best). The final

ranking score for the angle closure classification task was calcu-

lated as: 

S cls = 0 . 5 × R AUC + 0 . 25 × R sen + 0 . 25 × R spe . (5)

3.3. Final ranking 

The overall score of the onsite challenge was calculated as: 

S onsite = 0 . 7 × R loc + 0 . 3 × R cls , (6)

where R loc and R cls denote the ranking scores of the SS localization

and angle closure classification tasks, respectively. A larger weight

was set for the ranking of SS localization because the clinical mea-

surements, e.g. , AOD, derived from SS localization can be used as a

primary score for angle closure classification. 

Eight teams attended the final onsite challenge, which was held

in Shenzhen, China, during MICCAI 2019. The test set (only the im-

ages) was released during the workshop, and the eight teams had

to submit their results within a time limit (three hours). The fi-

nal submission of each team was taken into account for evaluation.

Both online and onsite ranks were assigned to each team. The final

rank of the challenge was based on a score S final , calculated as the

weighted average of the online and onsite rank positions: 

S f inal = 0 . 3 × S online + 0 . 7 × S onsite . (7)

Note that a higher weight was assigned to the onsite results. In this

paper we only analyze the results from the onsite challenge, as it

better reflects the generalization ability of the proposed solutions. 
. Summary of challenge solutions 

In the AGE challenge, we provided a unified evaluation frame-

ork for the standardized and fair comparison of different algo-

ithms on two clinically relevant tasks: scleral spur localization and

ngle closure classification, as shown in Fig. 1 . 

Scleral spur localization task The aim is to estimate the posi-

ion of the SS point from an AS-OCT image, as shown in Fig. 3 (A),

hich requires the algorithm to output the ( x, y ) coordinates of

he SS point in image coordinates. Participants in the challenge

roposed localization algorithms based on supervised learning, fol-

owing one of three different approaches. The first one was to di-

ectly predict the coordinates of the SS point, as a value regression

roblem. The second one was to extend the single pixel label to

 small region, as shown in Fig. 3 (B). In this way, the SS localiza-

ion task was transferred to a binary segmentation problem, where

he segmented mask center was used as the SS position. The third

pproach was to generate a two-dimensional heat map based on

he SS position, e.g., a Gaussian map, and then employ a regres-

ion method to estimate the SS point. With the heat map, the peak

alue was used as the SS position. Given the coordinates ( u 0 , v 0 ) of

he SS point, the heat map G ( u, v ) could be calculated as: 

 (u, v ) = exp 

{
(u − u 0 ) 

2 + (v − v 0 ) 2 

δ2 

}
, (8)

here δ denotes the variance, a hyperparameter which controls

he heat map radius. Fig. 3 (C, D) shows two generated Gaussian

aps obtained with different values of δ. Compared with the co-

rdinate regression and binary segmentation approaches, the heat

ap solution reduces the complexity of the task, facilitating con-

ergence during training. In addition, the method based on heat

ap regression can make use of a fully convolutional network for

raining and prediction. 

Angle closure classification task The aim is to predict the prob-

bility of a given AS-OCT image having a closed angle. Hence, the

ajority of participating teams built binary classification frame-

orks that would be suitable for the identification of angle closure.

In this section, we summarize these methods and analyze their

orresponding results for the angle closure classification and scleral

pur localization tasks. A brief summary of the methods are pro-

ided in Tables 1 and 2 , respectively. 

.1. Cerostar team 

Scleral spur localization task The Cerostar team utilized a

ulti-scale Res-UNet with an attention network as the backbone.

s shown in Fig. 4 , their proposed Res-UNet was based on a modi-

ed deep network ResNeXt34 ( Xie et al., 2017 ) to extract semantic
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Table 1 

A brief summary of the challenge methods on angle closure classification. CE = cross-entropy. 

Team Member Architecture ROI Ensemble Loss 

Cerostar Yan Kong, Yongyong Ren ResNet34 No Single model CE loss 

CUEye Xiaomeng Li, Jing Wang SE-Net Yes Three-scale ROIs CE loss 

Dream Sun Chenglang Yuan, Cheng Bian ResNet152 No Three trained model Focal loss, F-beta loss 

EFFUNET Xing Tao, Yuexiang Li EfficientNet No EfficientNet B3, and B5 CE loss 

iMed Huaying Hao, Jiang Liu ResNet50 Yes Three-scale ROIs CE loss 

MIPAV Le Geng, Panming Li SE-ResNet18 Yes Single model Focal loss 

Redscarf Shihao Zhang, Mingkui Tan Res2Net Yes Global and ROIs CE loss 

VistaLab Ruitao Xie, Jiongcheng Li ResNet18 Yes Four-fold models CE loss 

Table 2 

A brief summary of the challenge methods on scleral spur localization. MSE = mean squared error, CE = cross-entropy, ED = Euclidean 

Distance. 

Team Architecture ROI Output Ensemble Loss 

Cerostar U-Net with ResNeXt34 No Binary mask Four-scale CE loss 

CUEye Zoom-in SE-Net Yes Value regression Three-scale ROIs MSE loss 

Dream Sun U-Net with EfficientNet Yes Heat map EfficientNet B2, B3, B5, and B6 MSE loss, Dice loss 

EFFUNET U-Net with EfficientNet B5 Yes Heat map Single model MSE loss 

iMed GlobalNet, ResNet34 Yes Value regression Single model MSE loss 

MIPAV LinkNet with ResNet18 No Heat map Single model MSE loss 

Redscarf YOLO-V3, AG-Net Yes Heat map Single model MSE loss 

VistaLab U-Net, VGG19 Yes Value regression Single model ED loss 

Fig. 4. The framework of the Cerostar team for scleral spur localization, where an 

attention generation module was added into the backbone network. 
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Fig. 5. The network of the CUEye team for scleral spur localization, where a multi- 

scale pipeline was utilized to combine different ROIs. The SE-Net was used to pre- 

dict the coordinates of the SS point. 
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nformation from the input image. The Res-UNet contained a series

f convolutional blocks composed of a convolutional layer, batch

ormalization layer, and ReLU activation. The last down-sampling

ayer in Res-UNet represented the semantic features of the im-

ge. The Cerostar team used four parallel Res-UNet with differ-

nt sized images as inputs (i.e., 1.25 x, 1.0 x, 0.75 x, 0.5 x). Then,

our semantic feature maps of the different sized Res-UNets were

xtracted and fed into the attention generation module, which

ontained eight CNN layers belonging to the first two blocks of

esNet34 ( He et al., 2016 ) together with one ReLU layer. Finally,

 weight matrix for each pixel was returned and used to combine

he predictions of each Res-UNet and improve results. 

Angle closure classification task The Cerostar team used a stan-

ard ResNet34 model ( He et al., 2016 ) pre-trained on ImageNet and

ne-tuned using AGE training data to predict angle-closure glau-

oma on the whole images. 

.2. CUEye team 

Scleral spur localization task The CUEye team em-

loyed a Zoom-in Squeeze-and-Excitation Network (SE-Net)
 Hu et al., 2018 ). Each AS-OCT image from the given dataset was

plit into two different parts according to the centerline, which

implified the problem to finding only one SS location in each

iven input. The AS-OCT images were captured with the specific

osition and direction ( Fu et al., 2019 ), so the CUEye team only

sed random shifting with a 0.2 scale, random rotation with 15

egrees, and random zooming with a 0.2 scale for image aug-

entation. Fig. 5 shows the framework of the CUEye team. An

nitial model A was trained to make an initial prediction of the

nput based on SE-Net. Then, local regions of interest (ROIs) were

andomly cropped from the original image into three regions of

ifferent sizes that covered approximately one-third to one-quarter

f the original one around the initial prediction. Three parallel

odels B 1, B 2, and B 3 with different input sizes were trained

o make precise predictions based on a simple SE-Net module.

inally, the three parallel results were averaged together with the

nitial prediction to give the final results. 

Angle closure classification task The CUEye team employed a

imilar architecture as used for SS localization. An initial model

 was introduced to make the initial prediction of the scleral
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Fig. 6. (A) The framework of the Dream Sun team for the scleral spur localization task, where the coarse and refined localization networks share the same model structure. 

(B) The framework of the Dream Sun team for angle closure classification. (C) The Revised ResNet structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The framework of the EFFUNET team for the two tasks. 
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localization. Then, local ROIs were randomly cropped around the

initial prediction into three regions of different sizes, and fed into

three parallel SE-Net models to predict the classification results.

Finally, their corresponding results were averaged to provide the

final classification predictions. 

4.3. Dream sun team 

Scleral spur localization task The Dream Sun team introduced

a coarse-to-fine strategy with progressive tuning, where the coarse

and refined localization networks share the same model structure,

as shown in Fig. 6 (A). The point annotation of each SS was con-

verted to a 2D Gaussian distribution map centered at the anno-

tation position. EfficientNet ( Tan and Le, 2019 ) was chosen as the

network encoder to learn and extract hierarchical features. After

that, a skip connection module and a pyramid pooling module

were utilized to capture the global and local semantic features

from multiple dimensions and scales. Finally, the corresponding

features were merged together to infer the final response regions.

Considering the intensity and shape of SS regions, a combination

of mean squared error (MSE) loss and Dice loss was used to re-

duce the error between prediction and ground truth. Specifically,

the split images were resized to 4 99 × 4 99 pixels for the coarse lo-

calization stage. Then, the candidate regions from the coarse stage

were cropped to 360 × 360 pixels for the precise localization stage.

Considering efficiency and accuracy, the team selected EfficientNet-

B2, B3, B5 and B6 to construct multiple models and then averaged

these results to obtain the final prediction. 

Angle closure classification task The Dream Sun team uti-

lized ResNet152 ( He et al., 2016 ) as the backbone architecture

to perform accurate identification of angle closure. Two ResNet

tweaks ( He et al., 2019 ) were tailored to enhance the classification

accuracy. To reduce the contextual information loss due to down-

sampling in the first convolution with a stride of 2, they switched

the strides of the first two convolutions, as shown in Fig. 6 (C). Sim-

ilarly, the residual connection mechanism in the down-sampling

module also ignored 3/4 of the input feature maps. Empirically, a

3 × 3 average pooling layer with a stride of 2 was inserted be-

fore the convolutional layer. To tackle the class imbalance prob-

lem between angle closure and non-closure samples, a hybrid

loss combining the Focal loss ( Lin et al., 2017 ) and F-beta loss
 Eban et al., 2017 ) was adopted. Each OCT image was symmet-

ically split into two sub-images (left and right) and resized to

56 × 256 pixels for identifying the angle status. In addition, the

raining dataset was further augmented with random re-scaling,

ipping and rotation. The Adam optimizer and cosine learning rate

ecay strategy were adopted to update the network weights. The

nal result was decided by the majority vote of three models es-

ablished with different training iterations. 

.4. EFFUNET team 

Scleral spur localization task The EFFUNET team proposed a

oarse-to-fine localization framework ( Wang et al., 2019 ), which

onsisted of two networks with the same architecture, as shown

n Fig. 7 . These models were trained using heat map regression,

here each network was first regressed against the ground truth

eat map at a pixel level and then the predicted heat maps were

sed to infer landmark locations. The coarse network was trained

o delineate the coarse localization heat maps and to generate the

OI of the key-points, while the fine network was trained for accu-

ate localization using the cropped ROI from the whole OCT slices.

 U-Net structure ( Falk et al., 2019 ) was adopted as the backbone
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Fig. 8. (A) The framework of the iMed team for scleral spur localization, where GlobalNet was adopted as the backbone. (B) The framework of the iMed team for angle 

closure classification, where a multi-scale network was employed to fuse multi-scale ROIs. 
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rchitecture for each of these two components. Their encoders

ere based on EfficientNet-B5 ( Tan and Le, 2019 ), as its scaling

ethod allows networks to focus on more relevant regions with

bject details. The MSE loss was used to supervise the regression

f the heat maps. 

Angle closure classification task The EFFUNET team employed

fficientNet ( Tan and Le, 2019 ) as their backbone. Using a sim-

le and highly effective compound scaling method, EfficientNet

chieved state-of-the-art accuracy on the ImageNet dataset. As the

esolution of the original images is 2030 × 998, each image was

ropped into left and right images (998 × 998) along the corre-

ponding vertical center line. The cropped images were resized to

84 × 384 for the classification network. The final classification re-

ult was assigned by averaging the outputs of EfficientNet-b3 and

fficientNet-b5. 

.5. iMed team 

Scleral spur localization task The iMed team also em-

loyed a coarse-to-fine framework, as shown in Fig. 8 (A). In or-

er to improve the performance, an image denoising method,

M4D ( Maggioni et al., 2012 ), was first employed to suppress

he background noise. GlobalNet, with a cascaded pyramid net-

ork ( Chen et al., 2018 ), was used for coarse position localiza-

ion. Next, a random cropping processing was applied, in which the

eam randomly chose a point in a square region with sides of 30

ixels and then, keeping its relative position, cut out a 224 × 224

atch from the image. These ROIs were then input to the CNN

egression network to obtain the SS localization results. The pre-

rained ResNet-34 ( He et al., 2016 ) was employed as the backbone

rchitecture. First, ACA regions of 224 × 224 were fed into the

etwork to extract a finer feature representation. Then, since the

round truth of the localization was normalized between 0 and 1,

 Sigmoid activation function was appended to the fully connected

ayer to normalize the coordinate values of the output. The MSE

oss was chosen to supervise the training process. 

Angle closure classification task The iMed team used a multi-

cale network with ResNet-50 ( He et al., 2016 ) as the backbone,

ith three-scale inputs in addition to the original scale, and

ropped ROIs of sizes 448 × 448 and 224 × 224, as shown in

ig. 8 (B). In clinical practice, the ACA region is the most impor-

ant sign for diagnosis of glaucoma type. The global image ( Scale 1)

ith complete AS-OCT structure could provide more global infor-

ation. Meanwhile, the local images, Scale 2 and Scale 3, preserve

ocal details with higher resolutions and were thus used to learn a

ne representation. Three regions with different sizes were scaled

o 224 × 224 and used to learn different f eature representations

utput from the last convolutional layers in ResNet-50 ( He et al.,
016 ). The 7 × 7 feature maps from the parallel network modules

ere fed into a global max pooling layer. A set of different descrip-

ors from each stream was obtained, where each 2 × 1 descriptor

as generated by the fully connected layers in the classification

etwork. To obtain the best prediction result, the descriptors were

oncatenated to create a new descriptor with size 2 × 3. A con-

olution operation with 32 kernels of size 1 × 3 was applied to

he new descriptor, and then the results were fed to the fully con-

ected layer for final classification. The 1 × 3 kernels weighted the

redictions of the three models and output them to the next layer.

his feature ensemble strategy enabled the models to automati-

ally learn the importance of different basic predictions. Finally

n objective function following a multi-scale loss L m 

was used, as

iven by: 

 m 

= 

3 ∑ 

s =1 

{
L cls 

(
y (s ) , y ∗

)}
+ L cls (y f , y 

∗) , (9)

here s denotes each scale, and y ( s ) and y ∗ denote the predicted

abel vector from a specific scale and the ground truth label vector,

espectively. y f denotes the final predicted vector from the three-

cale feature ensemble. L cls represents the classification loss, e.g.,

E loss, which predominantly optimizes the parameters from the

onvolutional and classification layers. 

.6. MIPAV team 

Scleral spur localization task The MIPAV team employed

inkNet ( Chaurasia and Culurciello, 2017 ), a typical light U-shaped

rchitecture, to learn the transformation from an AS-OCT image to

 probability map, as shown in Fig. 9 . The encoder part was based

n a pre-trained model of ResNet18 ( He et al., 2016 ), which re-

ained the first four extraction blocks without the average pool-

ng or fully connected layers. Compared with U-Net ( Falk et al.,

019 ), LinkNet uses an addition operation rather than a concatena-

ion for the skip connection, which can reduce the computational

ost and accelerate the training process. To learn the pixel-wise re-

ression network, the MSE loss was utilized to calculate the differ-

nce between the ground truth and predictions. Random data aug-

entation was applied before training, including adjusting bright-

ess, contrast and sharpness. All enhancement factors followed a

og-normal distribution. Moreover, the MIPAV team considered the

ixel value of the generated heat map as an ideal 2D Gaussian

robability density. A method based on maximum likelihood esti-

ation (MLE) theory was developed to obtain the coordinates from

his output heat map, which is defined as follows: 

 c = 

∑ 

i ∈ C u i p i ∑ 

p i 
, v c = 

∑ 

i ∈ C v i p i ∑ 

p i 
, (10)
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Fig. 9. Schematic representation of the MIPAV team’s method for scleral spur lo- 

calization and angle closure classification. LinkNet was first trained to generate the 

heat map to localize the scleral spur. The information contained in the heat map 

was extracted through a method developed from maximum likelihood estimation 

(MLE) to obtain the scleral spur coordinates. Then, the ACA patches were cropped 

with the scleral spur centered, and fed into the classification model (i.e., SE-ResNet) 

to classify angle closure. 
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where C indicates the set containing pixels whose values are

higher than half of the maximum in the heat map. ( u i , v i ) are the

corresponding coordinates, and p i is the value of the pixel in the

set. Basing the results on the weighted average operation produces

less error than finding the peak directly. 

Angle closure classification task The MIPAV team used a mod-

ified SE-ResNet18 ( Hu et al., 2018 ) as the backbone. The SS co-

ordinates were utilized to localize the ACA region. A 128 × 128

patch with the SS centered was cropped as the input of the clas-

sification network. To reduce the localization error, noise follow-

ing a Gaussian distribution was added to the real coordinates

when cropping patches. The operation also served as a form of

data augmentation to make the model more generalizable. A SE-

ResNet18 ( Hu et al., 2018 ) was modified as the backbone. Experi-

ments in Hu et al. (2018) showed that integrating the SE block in

different positions of the residual blocks achieves similar results.

As shown in Fig. 9 , the SE block was inserted between each resid-

ual layer of a pre-trained ResNet18 ( He et al., 2016 ), without de-

stroying the original residual architecture. Data imbalance was an-

other difficulty for achieving accurate classification. To overcome

this problem, the Focal loss ( Lin et al., 2017 ) was employed as the

cost function during training, given by: 

L f ocal = −α(1 − ˆ y ) γ log ( ̂  y ) − (1 − y ∗) ̂  y γ log (1 − ˆ y ) , (11)

where ˆ y and y ∗ denote the predicted label and ground truth, re-

spectively. α and γ are weighted parameters ( α = 6 and γ = 2 ).

After analyzing the labels, the MIPAV team found that the closure

status of both the left and right angle in the same AS-OCT image

were directly correlated. As such, a voting mechanism was intro-

duced in the final test, which efficiently increased the accuracy of

classification. 

4.7. RedScarf team 

Scleral spur localization task The Redscarf team proposed a

two-stream framework combining ROI detection and heat map re-

gression, as shown in Fig. 10 (A). The ROI detection was sensitive to

the ACA structure, but the localization accuracy was not adequate.

In contrast, the heat map regression had a high localization accu-

racy, but it was easily affected by noise, misdetecting noisy points

located far away from the true scleral spur pixel. As such, the team

first exploited YOLO-V3 ( Redmon and Farhadi, 2018 ) as the detec-

tion network to identify the ROI region. Then, AG-Net ( Zhang et al.,

2019 ) was used as a regression network to produce accurate coor-

dinate values. Compared with U-Net ( Falk et al., 2019 ), AG-Net re-
laces the concatenation with an attention guided filter to enhance

he skip connection, which can reduce the influence of noise and

ccelerate the testing process. The detection network may identify

everal ACA candidates, so the team proposed to average them to

roduce the final prediction of the true ACA structure center. Cen-

ered on the ACA structure center, a 64 × 64 patch was cropped

s the ROI region. To train the heat map regression network, the

SE loss was utilized to calculate the difference between ground

ruth and prediction. In order to improve the generalization capa-

ilities of the model, random rotations of [ −10 , 10] degrees were

pplied before training. To convert the output heat map to the fi-

al scleral spur localization result, they averaged the position of

alues greater than a threshold in the map. 

Angle closure classification task The RedScarf team employed

 three-branch network based on Res2Net ( Gao et al., 2020 ) as the

ackbone, as shown in Fig. 10 (B). Compared with ResNet ( He et al.,

016 ), Res2Net further constructs hierarchical residual-like connec-

ions within a single residual block, which enables multi-scale fea-

ures to be better captured. First, the image was cropped into two

ections, which were fed to an auxiliary model to obtain an early

rediction. The auxiliary model contained four bottlenecks with

hree extra auxiliary losses. Since the auxiliary losses were not

qually important, they imposed different confidences over them

0.2, 0.3, 0.5). Training models with the auxiliary loss has three ad-

antages: 1) It encourages features in the lower level to be more

iscriminative. 2) It alleviates the gradient vanishing problem in

he lower level of the model. 3) It provides additional regulariza-

ion. In order to model the relationship between two angles, the

lassification of the whole image was also treated as a multi-label

ask using Res2Net. Finally, the classification result was obtained

y combining the three outputs above. 

.8. VistaLab team 

Scleral spur localization task The VistaLab team employed a

oarse-to-fine framework, as shown in Fig. 11 (A). The localization

etwork was based on a pre-trained VGG19 ( Simonyan and Zis-

erman, 2014 ). In deep neural networks, large-scale feature maps

ften contain more details and contour information, which may

e helpful for position detection. Therefore, they extracted more

eature maps from the fourth block of VGG19, which were twice

s large as those from the fifth block. The outputs of both blocks

ere fused to obtain more effective features. Based on a 1 × 1

onvolutional layer, the dimensions of the fused features were re-

uced for more compactness with less parameters. Then the fea-

ure maps of the fourth block were down-sampled and combined

ith the feature maps of the fifth block. At the same time, they

lso up-sampled the feature maps of the fifth block to combine

hem with the feature maps of the fourth block. Based on this, the

eature maps of the fourth block contained more semantic infor-

ation, while the fused feature maps of the fifth block contained

ore details and contour information. Finally, the feature maps of

hese two blocks were passed through the fully connected layer

n sequence to produce two sets of coordinates. The coarsely po-

itioned coordinates (Output1) were obtained by averaging these

wo sets of coordinates, as shown in Fig. 11 (B). Output1 was then

sed to crop the feature maps of the first block and the second

lock of VGG19, with ROIs of 16 × 16 and 8 × 8, respectively. The

ropped feature maps were then further fused by a sub-network,

hich consisted of three convolutional blocks and a fully con-

ected layer, generating another position result (Output2). Finally,

utput1 and Output2 were averaged to get the final coarse po-

ition result (Output3). Based on the coarse positioning network,

he random 224 × 224 ROIs with a Gaussian distribution were

ropped. These ROIs and labels were used to train the fine posi-

ioning network, which had the same architecture as the coarse
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Fig. 10. (A) The framework of the Redscarf team for scleral spur localization. The ACA detection network was used to predict the initial ROI, while a regression network was 

employed to produce accurate scleral spur coordinates. (B) The framework of the Redscarf team for angle closure classification, where a multi-scale network was employed 

to fuse three different scales of ROIs. 

Fig. 11. (A) The framework of the VistaLab team for scleral spur localization, where a coarse-to-fine framework was used to detect the scleral spur points. (B) The localization 

sub-network of the VistaLab team used in this framework. 
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Fig. 12. Box-plots illustrating the scleral spur localization performances on the on- 

site dataset. Left: Euclidean Distance. Right: Differences of Angle Opening Distance 

(AOD). 
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ositioning network. The ED loss was chosen to train the coarse-

o-fine framework. 

Angle closure classification task The VistaLab team utilized

esNet18 ( He et al., 2016 ) as the backbone, and changed the output

f the last linear layer to 2. The model was trained using the Adam

ptimizer and CE loss function. Considering that the classified data

s not balanced, four-fold training was used to objectively evalu-

te the model. The dataset was proportionally divided into four

arts, one of which was used as test data, while the remaining

ata was used for training. According to different divisions, four

ifferent models were trained respectively. Then, the models that

erformed best on both the training set and test set, in terms of

ighest accuracy and lowest loss, were selected. Finally, the four

esults were averaged to get the final classification result. 

. Results and discussion 

In this section, we report the evaluation metrics of the eight

eams on both the online (validation) and onsite (testing) datasets

or the two proposed tasks. The leaderboards of the overall chal-

enge can be accessed on the AGE challenge website at https:

/age.grand-challenge.org . 

.1. Task 1: scleral spur localization 

Results and box-plots summarizing the distribution of the per-

ormance metrics obtained by each of the participating teams for

he scleral spur localization are presented in Table 3 and Fig. 12 ,

espectively. The RedScarf team achieved the best performance on
he onsite dataset with ED of 9.395 and �AOD of 0.02772. The EF-

UNET team ( ED of 12.653 and �AOD of 0.03546) and Dream Sun

eam ( ED of 12.468 and �AOD of 0.03654) achieved the second

nd third best performances, respectively, on the onsite dataset.

ig. 13 shows several qualitative examples of the scleral spur lo-

alization of the top-three ranked methods (i.e., RedScarf, EFFUNET

nd Dream Sun) together with the ground truth, where (A-C) are

pen angle images, and (D-F) are angle-closure images. The gen-

ral behaviors of all methods were fairly stable relative to each

ther, in most cases. Fig. 13 (C, F) illustrates some challenging low-

uality images, where the poor illumination and low-contrast (e.g.,

ig. 13 (C)) often made it difficult to determine the SS point. 

https://age.grand-challenge.org
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Table 3 

Results of the scleral spur localization task. 

Team Online (validation) data Onsite (testing) data Final Ranking 

ED �AOD Rank ED �AOD Rank S final Rank 

EFFUNET 12.95 0.0456 4 12.65 0.0355 2 2.4 1 

RedScarf 16.55 0.1200 8 9.40 0.0277 1 2.4 1 

Dream Sun 12.90 0.0424 1 12.47 0.0365 3 2.6 3 

VistaLab 15.18 0.0470 6 14.00 0.0430 4 4.4 4 

CUEye 13.43 0.0450 3 14.39 0.0430 5 4.6 5 

MIPAV 13.76 0.0390 2 14.35 0.0469 6 5.2 6 

iMed 16.32 0.0547 7 14.87 0.0483 7 7.0 7 

Cerostar 13.53 0.0472 5 14.41 0.0486 8 7.4 8 

Table 4 

Results of the angle closure classification task. 

Team Online (validation) data Onsite (testing) data Final Ranking 

AUC Sensitivity Specificity Rank AUC Sensitivity Specificity Rank S final Rank 

EFFUNET 1.00000 1.00000 1.00000 1 1.00000 1.00000 1.00000 1 1.0 1 

RedScarf 0.99976 0.99375 0.99531 8 1.00000 1.00000 1.00000 1 2.4 2 

VistaLab 1.00000 0.99688 1.00000 4 0.99998 1.00000 0.99375 3 3.2 3 

Dream Sun 1.00000 1.00000 1.00000 1 0.99992 1.00000 0.98750 4 3.4 4 

MIPAV 1.00000 1.00000 1.00000 1 0.99992 0.99688 0.99844 6 5.0 5 

iMed 0.99983 0.98750 0.99844 7 0.99959 1.00000 0.99375 5 5.4 6 

Cerostar 0.99999 0.99959 1.00000 5 0.99491 1.00000 0.97422 7 6.6 7 

CUEye 0.99297 1.00000 0.98594 6 0.98203 1.00000 0.96406 8 7.6 8 

Fig. 13. Zoomed-in scleral spur localization results of ground truth and top-three teams (i.e., RedScarf, EFFUNET and Dream Sun). Top raw images are open angle cases, 

while bottom raw images are angle-closure cases. 
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5.2. Task 2: angle closure classification 

The participating methods for the angle closure classification

task are reported in Table 4 . As can be observed, the RedScarf and

EFFUNET teams obtained perfect scores on the onsite dataset. Fur-

ther, almost all the methods achieved a Sensitivity of 100%, while

the major differences in performance between the methods is seen

in the Specificity scores, ranging from 96.4% to 100%. There are

several possible reasons for this high-performance: 1) The angle

closure cases in the AGE challenge were at moderate or advanced

stage, with an obvious closed anterior chamber angle making

them easy to discriminate from open angle cases. 2) In contrast

to the quantitative clinical measurements (e.g. anterior chamber

area, ACW, AOD, and angle recess area), the visual representations

extracted by deep networks can present more information beyond

what clinicians recognize as relevant. This point was also observed

in other angle closure studies ( Fu et al., 2019; Xu et al., 2019; Fu

et al., 2020 ). 
m  
.3. Discussion 

From the AGE challenge results, the top-performing approach

RedScarf) had an average ED of 10 pixel (10 μm) in scleral spur

ocalization, while in the task of angle closure classification, all

he algorithms achieved satisfactory performances,with the top-

wo (EFFUNET and RedScarf) obtaining accuracy rates of 100% on

he onsite dataset. In this section, we provide more analysis and

iscussion comparing the different solutions. 

.3.1. Scleral spur localization task 

The original resolution of AS-OCT images was 2130 × 998,

hich is too large for training deep models directly due to limi-

ations in GPU memory. As such, most teams chose a coarse-to-

ne strategy. For example, the solutions of the top-three teams

ere all based on an ROI cropped flowchart. In fact, six out of

he eight teams employed this strategy (see Table 2 ) to ensure a

ore precise localization. This was perhaps motivated by the fact
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hat the scleral spur labels were provided as single pixels. There-

ore, identifying a first approximation of the area and predicting

he final value in a second iteration allows more detailed features

f the ACA structure to be preserved and prevents information

oss caused, for example, by down-sampling. The standard U-Net

as utilized by most methods for identifying the initial ROI, which

ould provide a satisfactory result. 

As mentioned in Section 4 , there are three main solutions for

S localization from ROI and global images, e.g. , value regres-

ion, binary mask segmentation, and heat map prediction. Value

egression directly predicts the coordinates of the SS point by

sing a deep regression network ( e.g. , SE-Net ( Hu et al., 2018 ),

esNet ( He et al., 2016 ), or VGG ( Simonyan and Zisserman, 2014 )).

owever, CNN regression networks have more parameters than

he segmentation networks, due to the fully connected layers, and

hus require more training data to avoid overfitting. Moreover,

or a high-resolution image ( i.e. , 2130 × 998), it is challenging to

redict accurate coordinates within a small pixel-level range. By

ontrast, the binary mask segmentation and heat map prediction

re based on segmentation networks ( e.g. , U-Net ( Falk et al., 2019 )

r AG-Net ( Zhang et al., 2019 )), which can be optimized well with

imited data. Moreover, heat maps can extend the scleral spur

osition from a single pixel to a small area that can easily be

pproximated. From the online challenge evaluation results, it can

e deducted that modeling the SS localization task as a heat map

rediction problem is appropriate, with the top-three teams being

ased on this. 

In terms of network architecture, the Cerostar and CUEye teams

tilized a multi-scale ensemble framework to integrate the differ-

nt input ROIs. The Dream Sun team employed a multi-model fu-

ion strategy to combine the results of EfficientNet B2, B3, B5, and

6. Other teams based their methods on a single model to predict

he SS localization. From the challenge evaluation results, the en-

emble strategy does not gain a significant improvement over the

ingle models. One possible reason is that, as a one-pixel position

rediction, semantic information in a larger view does not provide

ore representations than that in a small ROI for SS point local-

zation. Overall, the single segmentation models based on ROIs can

chieve satisfactory results for the scleral spur localization task. 

.3.2. Angle closure classification task 

Similar to the scleral spur localization task, coarse-to-fine

trategies were also widely used for angle closure classification

five out of eight teams in Table 1 ). The general flowchart was

rst to identify the SS point and then crop a smaller ROI, which

as fed to a classification network to predict the angle closure.

ne major reason for doing this is that the main representations

sed to describe features of the anterior chamber angle fall into

he ACA region, which is consistent with previous clinical stud-

es ( Chansangpetch et al., 2018; Ang et al., 2018; Fu et al., 2019 ). 

From Table 1 , we found that most teams built their networks

ased on ResNet ( He et al., 2016 ) or SE-Net ( Hu et al., 2018 ).

his demonstrates that basic deep networks have adequate abil-

ty to distinguish the angle closure. The top-two teams utilized

dvanced deep networks, e.g. , Res2Net ( Gao et al., 2020 ) and Ef-

cientNet ( Tan and Le, 2019 ), and got better performances. How-

ver, due to the limited amount of training data, the deep net-

orks tended to suffer from overfitting. Combining multiple mod-

ls or multi-scale features is a way to prevent this. Table 1 shows

hat six out of the eight teams utilized ensembling to improve the

eneralization performance. 

.3.3. Clinical discussion 

In clinical practice, the localization of the SS is the basic step to

uantitatively evaluate the ACA. Therefore, we set up an indepen-

ent task to automatically annotate the SS, and then calculate the
OD accordingly. Compared to the ground truth, the deep learning

lgorithms had an average deviation in SS localization of around

0 μm. Further improvements are thus needed before they can be

sed in clinics. In the task of angle closure classification, all the

lgorithms achieved ideal performances, with nearly 100% accu-

acy rate. This is understandable since the cases included in the

GE challenge tend to have common ACA morphology and no spe-

ial structures such as plateau iris. Although our AGE challenge,

omposed of 4800 images, is currently the largest public dataset,

e are still unable to predict if the algorithms would maintain

ood performance in a real-world setting, as the ACA morpholo-

ies are even more complex in the general population. This is a

ery promising start but there is still a long way to go. Another

otential limitation of our study is that the AS-OCT images were

nly taken using a Casia SS-10 0 0 OCT device. This could possibly

ave a negative effect on the quality and performance when the

lgorithms are applied to images from other AS-OCT acquisition

evices. In a future challenge, it would be of value to add more

S-OCT modalities from different-stage angle closure patients and

rain the algorithms for diagnosis. 

. Conclusion 

In this paper, we summarized the methods and results of the

GE challenge. We compared the performances of the eight teams

hat participated in the onsite challenge at MICCAI 2019. Artificial

ntelligence techniques were shown to be promising for helping

linicians to reliably and rapidly identify SS points. Further, using

eep learning methods to discriminate moderate or advanced an-

le closure from open angle also demonstrated encouraging results.

In summary, the AGE challenge is the first open AS-OCT dataset

ocused on scleral spur localization and angle closure classification.

he data and evaluation framework are publicly accessible through

he Grand Challenges website at https://age.grand-challenge.org .

uture participants are welcome to submit their results on the

hallenge website and use it for benchmarking their methods.

he website will remain permanently available for submissions, to

ncourage future developments in the field. We expect that the

nique AGE challenge will be beneficial to both early-stage and se-

ior researchers in related fields. 
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