
A Fast Memetic Multi-objective Differential
Evolution for Multi-tasking Optimization

Yongliang Chen, Jinghui Zhong (Corresponding Author)
School of Computer Science and Engineering

South China University of Technology

Guangzhou, China

Email: jinghuizhong@gmail.com

Mingkui Tan
School of Software Engineering

South China University of Technology

Guangzhou, China

Abstract—Multi-tasking optimization has now become a
promising research topic that has attracted increasing attention
from researchers. In this paper, an efficient memetic evolutionary
multi-tasking optimization framework is proposed. The key idea
is to use multiple subpopulations to solve multiple tasks, with
each subpopulation focusing on solving a single task. A knowledge
transferring crossover is proposed to transfer knowledge between
subpopulations during the evolution. The proposed framework
is further integrated with a multi-objective differential evolution
and an adaptive local search strategy, forming a memetic multi-
objective DE named MM-DE for multi-tasking optimization.
The proposed MM-DE is compared with the state-of-the-art
multi-tasking multi-objective evolutionary algorithm (named MO-
MFEA) on nine benchmark problems in the CEC 2017 multi-
tasking optimization competition. The experimental results have
demonstrated that the proposed MM-DE can offer very promis-
ing performance.

Index Terms—Evolutionary Algorithm, Memetic Algorithm,
Local Search, Multi-tasking Optimization, Multi-objective Op-
timization, Differential Evolution

I. INTRODUCTION

Evolutionary algorithms (EAs) are powerful nature-inspired

meta-heuristic search algorithms, which have been widely used

in problem-optimization fields [1]–[5]. EAs are manipulated

based on groups of individuals carrying different genes, relying

on bio-inspired operators such as mutation, crossover and

selection.

Most of the existing EAs focus on solving a single task at a

time. However, in actual conditions, we often face more than

one task, and the tasks are usually related to some extent. One

problem often contains useful information that can help solve

another related problem. This fact urges us to think of a more

efficient EA to handle multiple tasks simultaneously. Multi-

tasking is such a proposition that can tackle several tasks at

the same time. Since the proposition of multi-tasking has been

raised out, it has proved to be very useful and has achieved

great success in machine learning research area, including bi-

level optimization [6], measuring complementarity [7], modular

training [8] and software tests generation [9].

Multi-tasking optimization is now receiving more and

more attention in computing intelligence and problem op-

timization fields. In 2016, multifactorial evolutionary algo-

rithm (MFEA) [10] for single-objective optimization problems

(SOOPs) was brought out and gained promising performance

in multi-tasking continuous optimization. Later in 2017, new

achievements were gained in evolutionary multifactorial opti-

mization based on partial swarm optimization (PSO) and dif-

ferential evolution (DE) [11], and evolutionary multi-objective

optimization problems (MOOPs) [12]. Nevertheless, existing

works are mainly designed based on basic multifactorial

framework [10], whose efficiency is not high enough to tackle

complicated optimization problems. There is still an urgent

need for a more general and efficient method to handle different

multi-tasking problems.

Local search is an effective tool to improve the search

efficiency of EAs on various applications [13]–[15]. In the past

decades, local search has been adopted to improve a number of

population-based search algorithms, including but not limited to

evolutionary programming [16], genetic algorithm [17], genetic

programming [18], ant colony optimization [3], and particle

swarm optimazation [19]. These EAs embedded with local

search are also known as memetic algorithm (MA) [20].

In this paper, an efficient memetic multi-objective evolu-

tionary algorithm is proposed for multi-tasking optimization.

First of all, a general evolutionary multi-tasking optimization

framework named multi-population multi-tasking evolutionary

framework(MMEF) is proposed. The key idea is dividing

the whole population into several subpopulations to solve

several tasks respectively at the same time. A knowledge

transferring crossover operator is proposed, which allows

knowledge to transfer between different subpopulations during

the evolution process. Furthermore, the proposed MMEF is

integrated with a multi-objective differential evolution and

an adaptive local search, forming a memetic multi-objective

differential evolution algorithm (MM-DE) for multi-tasking

optimization. The proposed MM-DE was tested on nine

benchmark problems in CEC 2017 multi-tasking optimization

competition [21] against the state-of-the-art MO-MFEA [12].

The experimental results have demonstrated that the MM-DE

perform much better than MO-MFEA in terms of solution

accuracy and search efficiency.

II. PRELIMINARIES

Our proposed method is developed based on a DE vari-

ant named JADE [22] and the multi-objective optimization

978-1-5090-6017-7/18/$31.00 ©2018 IEEE

mechanism in NSGA-II [23]. Thus, in this section, we briefly

introduce the related background of these algorithms.

A. JADE

Differential evolution (DE), an early EA developed by Storn

and Price for global single-objective continuous optimization

problem (SOOP) [24], has proved to be a simple yet efficient

algorithm in real-world applications [25]–[27]. Except for the

canonical DE, extended versions for multi-objective optimiza-

tion problem (MOOP) (e.g., PDE [28] and MOEA/D [29])

have also been verified powerful. Nowadays, some improved

DE variants embedded with self-adaptive technologies have

been widely used, such as jDE [30], SaDE [31], JADE [22] and

so on. These variants can offer very promising performance in

optimization problems.

In this paper, JADE is adopted as the core evolution

algorithm. At the beginning of JADE, an initial population

is randomly generated. Then, new individuals are created by

randomly combining individuals in the previous generation

using genetic operators such as mutation and crossover.

For each individual at each generation, the mutation vector

wi
G+1 can be generated based on the current parent population

{viG|i = 1, 2, ..., NP}, where NP is the population size and

G means the current generation. Different mutation strate-

gies [2], [24] can be used in this process, e.g., “DE/rand/1”,

“DE/current-to-best/1”, “DE/best/1” and so on. In JADE, the

“DE/current-to-pbest” strategy is used, which is expressed by

wi
G+1 = viG + Fi ∗ (vp,bestG − viG) + Fi ∗ (vaG − ṽbG) (1)

where a, b, c ∈ [1, NP] are random integers with a �= b �= i,
vp,bestG is chosen randomly from the top p% individuals of

the population in generation G, and ṽbG is selected randomly

from a joint set P ∪ A, where P is the current population and

archive A is a set storing inferior individuals. The update of A
is very simple. A is initiated as empty at the beginning. When

selection operation is conducted through DE, obsoleted parent

individual will be picked out and put into A if A is not full yet,

otherwise, it will then randomly replace one of the individual

in A to keep A full. Using interference from the archive to

guide the search process can somehow avoid the population

being trapped in local optimum and premature scene. Fi is the

scaling factor, in conventional DE, Fi = F is a preset constant,

while in JADE, each individual vi is associated with its own

scaling factor Fi. For solutions with more than one dimension,

we have

wi
G+1(j) =viG(j) + Fi ∗ (vp,bestG (j)− viG(j))

+ Fi ∗ (vaG(j)− ṽbG(j)), (2)

j = 1, 2, ..., D

where D represents the dimension number of the solution

vector. To guarantee more diversity, a crossover operation is

generated by combining individuals from previous generation

vG and newly produced individuals wG+1, following the rule

of

piG(j) =

{
wi

G+1(j) if rand(0, 1) < CRi or j = k

viG(j) otherwise
(3)

where k ∈ [1, D] is a random integer to ensure that at least

one element in viG is replaced, CRi is crossover rate which is

predefined in traditional DE and associated to certain individual

in JADE, and rand(a, b) returns a random number between a
and b. At last, evaluation and selection can be described as

viG+1 =

{
piG if f(piG) < f(viG)

viG(j) otherwise
(4)

where f is the objective function and we suppose that the

smaller objective value is better.

In JADE, The CRi and Fi are updated adaptively based on

the CRs and F s obtained from the last generation. Mark SCR

and SF to be sets storing former CR and F values respectively,

and the CRi associated to individual xi is generated according

to a normal distribution of mean value μCR and standard

deviation 0.1

CRi = randni(μCR, 0.1) (5)

then truncated to its range [LCR, UCR]. The mean μCR is

initialized to be 0.5 at the first generation and updated at the

end of each generation by

μCR = (1− c) ∗ μCR + c ∗meanA(SCR) (6)

where c ∈ (0, 1) is a predefined constant and meanA(·) returns

the usual arithmetic mean.

Similarly, Fi ∈ [LF , UF] for individual xi is generated

according to a Cauchy distribution with location parameter μF

and scale parameter 0.1

Fi = randci(μF , 0.1) (7)

and then truncated to be UF if Fi > UF or regenerated if

Fi < LF . μF is initialized to be 0.5 at the first generation and

then updated at the end of each generation by

μF = (1− c) ∗ μF + c ∗meanL(SF) (8)

where meanL(·) returns the Lehmer mean

meanL(SF) =

∑
F∈SF

F 2∑
F∈SF

F
(9)

The whole population improves through iteration of mutation,

crossover and selection together with the self-adaptive updates

of parameters, until the terminate condition is met.

2018 IEEE Congress on Evolutionary Computation (CEC)

B. NSGA-II for MOOPs

The nondominated sorting genetic algorithm II (NSGA-

II) proposed in [23] is a well-known algorithm for MOOP.

MOOP is about multi-criteria decision making, that is to

give consideration to multiple objectives while solving the

encountered problem. In MOOPs, several objective functions

need to be optimized in one solution space, which can be

formulated as

min(f1(x), f2(x), ..., fk(x)), x ∈ X (10)

where x is a solution vector, k is the number of objective

functions, and X represents the decision space.

As functions in MOOPs are conflicting with each other,

finding a solution that can optimize all objective functions is

almost impossible. Thus, the goal of an MOOP is to find a

set of trade-off solutions which are all equally good. This set

is called Pareto set (PS) and solutions in it are called Pareto

optimal solutions (POS).

To apply EA for MOOPs, a fundamental problem is to

evaluate the quality of individuals in the population, so that

the algorithm can select the better ones. In NSGA-II, two core

strategies are used to solve this problem, i.e., the nondominated

sorting strategy (NSS) and crowding distance sorting strategy

(CDSS). These two approaches set up a criterion to judge

solutions of a population.

Specifically, for two solution vectors x1 and x2 in the

solution space, we can define x1 ≺ x2 to represent that x1

dominates x2, and the dominated relation can be described as

x1 ≺ x2 ⇔ fi(x1) ≤ fi(x2), i = 1, 2, ..., k

and ∃j ∈ [1, k], s.t. fj(x1) < fj(x2)
(11)

From (11), it can be observed that solution a dominates b iff
a is not worse than b on all objectives and a is better than b
on at least one objective. If x1 ⊀ x2 and x2 ⊀ x1, we regard

them to be nondominated, which means they are equally good.

Then, we can rank all solutions in a solution set by using

NSS. We classify solutions which can’t be dominated by other

solutions in the population into rank 1. Then, we remove

solutions of rank 1, and the non-dominated solutions in the

remaining solution set is classified to rank 2 by using the same

method. The above procedures are repeated until all solutions

have been ranked. The set of solutions in rank 1 is called

approximation Pareto-front (PF).

After NSS, solutions are distributed into different ranks.

Then, the CDSS can be used to sort the solutions in the same

rank.

To get an estimation of the density of a certain solution

within its nondominated rank, we can calculate the size of the

region that restricts it. The definition of the region can be a

cuboid in Fig. 1, and the crowding distance of a solution in its

rank is the average side length of the cuboid. For solutions in

the same rank, we prefer those with larger crowding distance

values, which means there are fewer other solutions around

them, which can increase the diversity of the PS.

Fig. 1. Crowding-distance calculation. Solid points are in the same nondomi-
nated rank.

At last, having gained the ranks and crowding distances of

all solutions, we can choose NP best solutions of them to

form a new population. It should be emphasized that we first

select the solutions with low rank numbers, if solutions in the

previous i ranks can’t reach NP and previous i+ 1 ranks are

beyond NP , then we will select the rest of the solutions of

rank (i+ 1) according to CDSS.

III. THE PROPOSED METHOD

In global search algorithms, exploration and exploitation

are two competing goals [32]. To find correct global optima,

information of the search space needs to be collected and

estimated. Exploration is such a process to ensure the reliability

of the final global optima. Exploration can sometimes locate

a precise optimum, however, it takes a relatively long time

and huge computing cost (and it does not always succeed).

In this sense, Exploitation is important, for it concentrates on

searching for better and more precise solutions around current

solutions. To this end, the balance between exploration and

exploitation can lead to discrepancies in performance of search

methods.

Memetic computing (MC) is a term derived from “meme”

in [33], which is defined as a paradigm that uses the notion
of meme(s) as units of information encoded in computational
representations for the purpose of problem-solving [34]. The

memetic algorithm (MA) [35] is one of the earliest research

field in MC. MAs usually adopt a population-based heuristic

search algorithm to perform global search, and a local search

algorithm as meme. Thus, MAs are algorithms achieving the

two goals mentioned above.

This section first introduces the memetic multi-population

multi-tasking evolutionary framework (MMEF), and then a

memetic multi-objective DE developed on MMEF with JADE

and an adaptive local search strategy [36] is presented.

A. The Proposed Memetic MMEF
Figure 2 illustrates the proposed memetic MMEF. Specif-

ically, suppose there are N tasks to be solved, then the

whole population is divided into N subpopulations, with each

subpopulation focusing on solving one task. Each subpopulation

is evolved by genetic operators, including a newly proposed

Transfer Learning Crossover (TLC). In traditional multi-tasking

EAs, the whole population is evolved as the whole, which

may reduce the search efficiency due to the negative effects

raised from learning different tasks. Inspired by this drawback,

2018 IEEE Congress on Evolutionary Computation (CEC)

Fig. 2. The proposed memetic multi-population multi-tasking evolutionary framework.

we propose to use multi-populations to evolve multiple tasks

simultaneously. In this way, each subpopulation can concentrate

on one task, which can avoid the extra disturbance. To allow

knowledge transferring, TLC is proposed. The key idea is to

use a new parameter α to determine the parents that used to

generate offsprings. Specifically, to generate an offspring for a

subpopulation, we first generate a random value r ∈ [0, 1]. If

r < α, then, the parents are selected from a mixed-population

of two tasks. Otherwise, the parents are selected from the

subject subpopulation. At last, local search is performed to

improve the promising individuals in each subpopulation.

The above MMEF has three main advantages. First, the

mechanism of multi-population reduces the distraction when

handling MT problems, which makes it more efficient. Second,

by selecting parents from different subpopulations, the frame-

work can maintain a high population diversity. Third, the gene

transferring rate between subpopulations can be controlled by

α. When the tasks to be solved are not similar, which means

knowledge-transferring can do little to improve solving the

problems, a little α may be more proper to make subpopulation

evolved more separately. On the other hand, if the tasks to be

solved are related intimately, which means solving one task

can effectively help solve other tasks, then a bigger α may be

suitable. However, as creatures tend to communicate within

their surrounding area, α should not be too large to ensure

individuals primarily evolve in their own subpopulations.

B. The Proposed MM-DE
Our MM-DE algorithm is developed by integrating the multi-

objective JADE for global search and an adaptive local search

proposed in [36], together with the MMEF. In the following

parts, we first introduce the chromosome representation for

evolution and the local search of the proposed method, then

detailed evolution procedures are described in a step-by-step

manner.

Chromosome Representation In MOOPs and MTEAs, one

priority is to confirm the uniform coding strategy. In some

situations, the dimensions of solutions of the functions in

one MOOP can be different, then we need to put them into

a uniform solution space. For MOOP having functions with

different dimensions, the largest dimension number is chosen as

the length of the chromosome for coding, in which the smaller

one takes the front part while the larger one takes relatively

more dimensions and the largest takes all. When it comes to

solving multi-tasking problems, the dimension number of each

task is set to be the largest one. Though some dimensions are

needless for tasks of low dimensions, they are necessary for

transferring knowledge.

To represent solutions in functions with different domains,

all solutions in the solution space are varied in the range of

[0, 1]. The method to map the solutions to the domains can be

expressed as

X ′ = L+X ∗ (U − L) (12)

where X ′ is the solution in the domain, X is the solution in

the solution space, and U and L are the upper bound and the

lower bound of the function respectively.

Fig. 3. Comparison of two different coding strategies.

The MM-DE adopts a normal form proposed in [36] to

represent chromosome. In traditional EAs, as illustrated in

Fig. 3(a), each individual represents a candidate solution in the

search space, containing no information about their surrounding

area. This coding strategy is not effective enough to exploit

the neighboring regions of individuals. To improve the search

efficiency, a stochastic coding strategy is adopted as shown in

Fig. 3(b), each solution contains not only the solution of the

encountered problem, but also a region which is defined by a

2018 IEEE Congress on Evolutionary Computation (CEC)

radius value r. Specifically, each individual can be expressed

by

S = ((s1, r1), (s2, r2), ..., (sD, rD)) (13)

where the vector {s1, s2, ..., sD} represents the center values of

the regions in each solution, vector {r1, r2, ..., rD} determines

the size of the neighboring region. During the evolution,

individuals may be updated by sampling solutions within the

region, this fine-tuning strategy can efficiently improve the

search efficiency.

Based on the above coding strategy, four steps are utilized

in the proposed method to evolve chromosomes.

Step 1 - Initialization In this step, N initial subpopulations

with NP random individuals are generated. Let P0 be one of

the initial subpopulations, then P0 can be expressed as

P0 = {S1, S2, ..., SNP } (14)

where Si is the ith individual, which can be expressed as

Si = {(s1, r1), (s2, r2), ..., (sD, rD)}, i = 1, 2, ..., NP (15)

For the ith individual Si, its jth solution center value is

randomly generated within the search space, i.e.,

si,j = rand(Li, Ui), j = 1, 2, ..., D (16)

where Li and Ui are the lower bound and the upper bound

of the search space, respectively. The region radius ri,j is

initialized by

ri,j = (Ui − Li)/10 (17)

In the same way, we generate N − 1 other subpopulations.

Then, for each individual in all subpopulations, its fitness value

(i.e., the objective value of the corresponding task assigned to

the subpopulation) is evaluated.

Step 2 - New Individual Generation In this step, JADE

is applied to generate N ∗NP new individuals. Notice that,

except using traditional mutation operators in JADE, TLC is

applied in this step. Specifically, for each target individual

solution Si = ((si,1, ri,1), (si,2, ri,2), ..., (si,D, ri,D)) focus-

ing on task k in the current generation, a new individual

S′
i = ((s′i,1, r

′
i,1), (s

′
i,2, r

′
i,2), ..., (s

′
i,D, r′i,D)) is generated by

the following processes. First, a new temporary population P
is generated by

P =

{
Pk ∪ Pl if rand(0, 1) < αk,l

Pk otherwise
(18)

where l ∈ [1, N] is a random integer with l �= k, Pk and Pl are

subpopulation k and l, αk,l ∈ (0, 1) is the TLC rate between

Pk and Pl set by users. Once P has been generated, the new

individual S′
i can be generated by

s′i,j =

⎧⎪⎨⎪⎩
si,j + Fi ∗ (srbest,j − si,j) + Fi ∗ (sa,j − s̃b,j)

if rand(0, 1) < CRi or j = q

si,j if rand(0, 1) ≥ CR
(19)

r′i,j =

⎧⎪⎨⎪⎩
ri,j + Fi ∗ (rrbest,j − ri,j) + Fi ∗ (ra,j − r̃b,j)

if rand(0, 1) < CRi or j = q

ri,j if rand(0, 1) ≥ CR
(20)

where Fi and CRi are parameters associated to individual Si,

a �= b ∈ [1, NP] ([1, 2 ∗ NP], if P = Pk ∪ Pl) are random

individual indexes and q ∈ [1, D] is a random integer to ensure

at least one dimension is replaced. We extend the “DE/current-

to-pbest” strategy to “DE/current-to-rankbest”, which means

the individuals of rank 1 can be candidates of Srbest. It should

be emphasized that, if P is a mixed-population, then the basic

vector Si is from Pl, which gives the chance for individuals

in Pl to handle task k. What’s more, if Fi goes beyond its

range, it will be regenerated until it is valid. If CRi exceeds its

range, it will be set to be a random number within the range. It

can be observed that when TLC takes place, JADE operations

are conducted with the mixed-population P to generate new

individuals. If s′i,j exceeds the search range, it will be replaced

by the nearest value in the search range. Simultaneously, there

is a limit for r′i,j by adaptively setting the maximum value of

ri,j according to the evaluation times evals

rmax =
U − L

10
∗ evalmax − evals+ 1

evalmax
(21)

where evalmax is the maximum evaluation times the algorithm

can conduct. rmax will reduce as the evolution goes on, which

is good for improving the fine-tuning accuracy. Finally, we

combine all s′i,js together to form a new individual S′
i. Because

Si comes from Pk, S′
i and Si will compete under the standard

of task k. Si will be substituted by the better one that dominates

the other and become a new individual of the new population.

If either of them can dominate each other, then S′
i will be

added to a new set Ak.

Step 3 - Adaptive Local Search In this step, an adaptive

local search is performed to fine-tune the solutions by sampling

solutions from their neighboring regions.

In MM-DE, we set a variable T to control the frequency

of performing the local search. To reduce computational cost,

the local search is only performed on the LM individuals

of rank 1. A constant β ∈ (0, 1) is set to control the local

search rate of each dimension value in the LM solutions.

Also, there is a random integer l ∈ [1, D] to guarantee at least

one dimension value in one solution is updated. For the LM
chosen individuals, LN neighboring individuals are generated

to compete with the original individual by

s′i,j =

{
si,j +Gauss(0, 1) ∗ ri,j if rand(0,1)< β or j = l

si,j otherwise
,

(22)

where Gauss(0, 1) returns a random number with standard

Gaussian distribution.

To ensure s′i,j ∈ [Li, Ui], we use the method of

s′i,j =

{
rand(si,j , Ui) if s′i,j > Ui

rand(Li, si,j) if s′i,j < Li

(23)

2018 IEEE Congress on Evolutionary Computation (CEC)

When a new individual S′
i is generated by involving all s′i,j ,

it will be compared with the previous individual Si and replace

Si with nondominated relations. If none of them can dominate

each other, then S′
i will be added to Ak. The radius values are

updated adaptively after the local search. If S′
i dominates Si,

then the radius values of Si will be extended. Otherwise, if Si

dominates S′
i, then the radius values of Si will be reduced

ri,j =

{
ri,j ∗ λ reduce case

ri,j/λ extend case
j = 1, 2, ..., D (24)

where λ ∈ (0, 1) is the shrinking rate.

Algorithm 1: Pseudocode of local search in MM-DE

1 Select LM individuals of rank 1

2 for every Si in the LM individuals do
3 for 1 to LN do
4 Generate a random integer l ∈ [1, D]
5 for every center value si,j in Si do
6 if rand(0, 1) < β or j = l then
7 s′i,j = si,j +Gauss(0, 1) ∗ ri,j
8 else
9 s′i,j = si,j

10 end if
11 Ensure s′i,j ∈ [Li, Ui]
12 S′

i ← S′
i ∪ {(s′i,j , ri,j)}

13 end for
14 Substitute Si with the better one between Si and S′

i

15 end for
16 Update radius values in Si

17 end for

Step 4 - New Subpopulations Updating This step aims to

update all subpopulations. Specifically, for the kth subpopula-

tion, the NP best individuals are selected from Pk ∪ Ak by

using NSS and CDSS.

There is a loop from Step2 and Step 4 until termination

conditions are met.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

In this section, the proposed MM-DE is validated by testing

nine benchmark problems in [21]. In the problems, there are

three levels of similarity between the tasks, i.e., high, medium

and low. Similarly, the intersection levels of the global optima

between tasks can be ranked as complete, partial and no. Then,

the nine problems can be differentiated by combining these

two criteria arbitrarily (i.e., Complete Intersection with High

Similarity (CIHS)). The nine benchmark problems are all multi-

tasking problems with two tasks. Except the first tasks in NIMS

and NILS are 3-objective, the others are all 2-objective.

To evaluate the performance of MOOP, we use the average

inverted generational distance (IGD) as performance metric for

comparison. The IGD is defined as follows: Suppose P is a
set of solutions which is uniformly distributed along the PF of

TABLE I
PARAMETER SETTINGS.

parameter value summary
CRi [0.1, 0.9] Crossover rate
Fi [0.1, 2] Scaling factor
α 0.05 K-crossover rate
β 0.002 Rate to local-search each dimension
LM 3 Individuals for local search
LN 10 Neighboring points generated around
T 10 Frequency of local search
λ 0.5 Shrinking rate
evalmax 300, 000 Maximum evaluation times
NP 120 (NIMS,NILS)

100 (Others)
Population size

an MOOP, and A is a set of approximation Pareto solutions.
The IGD from A to P can be expressed by:

IGD(A,P) =
1

|P |
√∑

x∈P

(mind(x,A))2 (25)

where |P | is the number of solutions in P , and mind(x,A)
returns the distance between x and the point in A which is
closest to x. The IGD can efficiently judge whether a solution

is good enough by measuring both diversity and convergence.

Generally, a small IGD(A,P) value means that A is close to

P . For these nine problems, the accurate PFs are known.

Some initial parameter settings of the proposed MM-DE

are listed in Table I. Notice that, NP is set differently for

NIMS and NILS, because individuals selected to conduct IGD

calculation are set to be 100 for 2-objective tasks and 120 for

3-objective tasks. Algorithms are conducted for 30 independent

times with different random seeds. The average IGD values

are used as the performance metric for comparison.

To demonstrate the capability of MM-DE, it is compared

with MO-MFEA, a state-of-the-art MTEA for MOOP. The

parameter settings of MO-MFEA are set according to [21].

Furthermore, to show the effectiveness of the parameter

adaptation component and the local search component, we

simplify MM-DE and generate two other algorithms, namely,

MM-DE/A (MM-DE without parameter adaptation) and MM-

DE/L (MM-DE without local search). Notice that, for MM-

DE/A, CRi and Fi are generated randomly within their ranges.

The other parameter settings of MM-DE/A and MM-DE/L are

set the same as MM-DE.

B. Experimental Results
Table II shows the average IGD values of the two algorithms

in 30 runs, where the better ones are marked in bold format.

Also, a Wilcoxon signed rank test is performed to better

perceive the significant differences between the two algorithms.

It can be observed clearly that the proposed MM-DE not

only has successfully found all the better results , but also

is significantly better than MO-MFEA. What’s more, the

performance on some problems (i.e., CIMS, PIHS and PIMS),

MM-DE distinctly outperformed MO-MFEA on both two tasks,

which can prove that MM-DE has the better capability of

finding solutions of high quality.

2018 IEEE Congress on Evolutionary Computation (CEC)

TABLE II
COMPARISON RESULTS OF MO-MFEA AND MM-DE.

MO-MFEA MM-DE
CIHS T1 3.99E-04 − 1.36E-04

T2 2.65E-03 − 1.44E-04
CIMS T1 4.57E-02 − 1.46E-04

T2 8.77E-03 − 1.37E-04
CILS T1 2.71E-04 − 1.36E-04

T2 1.90E-04 − 1.37E-04
PIHS T1 1.10E-03 − 1.37E-04

T2 3.04E-02 − 1.36E-04
PIMS T1 2.62E-03 − 9.82E-04

T2 1.09E+01 − 2.29E+00
PILS T1 3.24E-04 − 1.37E-04

T2 1.10E-02 − 1.38E-04
NIHS T1 1.55E+00 − 1.47E+00

T2 5.02E-04 − 1.37E-04
NIMS T1 2.79E-01 − 1.43E-01

T2 2.86E-02 − 2.29E-04
NILS T1 8.35E-04 − 5.88E-04

T2 6.43E-01 − 6.42E-01
Symbols +, ≈ and − represent that the competitor is respectively
significantly better than, similar to and worse than MM-DE according to
the Wilcoxon signed-rank test at α = 0.05.

TABLE III
COMPARISON OF MM-DE, MM-DE/A AND MM-DE/L.

MM-DE MM-DE/A MM-DE/L
CIHS T1 1.36E-04 1.40E-04 − 1.36E-04 ≈

T2 1.44E-04 1.44E-04 ≈ 1.44E-04 ≈
CIMS T1 1.46E-04 1.47E-04 − 1.47E-04 ≈

T2 1.37E-04 1.42E-04 − 1.37E-04 ≈
CILS T1 1.36E-04 1.40E-04 − 1.37E-04 −

T2 1.37E-04 1.53E-04 − 1.37E-04 ≈
PIHS T1 1.37E-04 1.44E-04 − 5.32E-03 −

T2 1.36E-04 1.45E-04 − 6.05E-03 −
PIMS T1 9.82E-04 1.35E-03 − 9.19E-04 ≈

T2 2.29E+00 1.93E+00 + 1.65E+00 +
PILS T1 1.37E-04 1.39E-04 − 1.36E-04 ≈

T2 1.38E-04 2.18E-04 − 2.16E-04 −
NIHS T1 1.47E+00 1.39E+00 + 1.48E+00 ≈

T2 1.37E-04 1.44E-04 − 1.37E-04 −
NIMS T1 1.43E-01 1.67E-04 − 1.45E-01 ≈

T2 2.29E-04 2.13E-04 ≈ 2.37E-04 ≈
NILS T1 5.88E-04 9.90E-04 − 5.86E-04 ≈

T2 6.42E-01 6.43E-01 − 6.51E-01 −
Symbols +, ≈ and − represent that the competitor is respectively
significantly better than, similar to and worse than MM-DE according to
the Wilcoxon signed-rank test at α = 0.05.

As for the convergence trend, which is shown in Fig. 4, on

most of the tasks, MM-DE reaches the smallest IGD values

earlier than MO-MFEA. In some cases (i.e., CIHS, PIMS and

NIHS), MM-DE converges faster all the time and gains better

results. Though in some problems (i.e., PILS, CILS and NILS),

MM-DE converges slower than MO-MFEA on early stage, it

can finally reach better IGD values, which indicates the better

global search capability of MM-DE.

Table III shows the comparisons results of the MM-DE

and its two simplified versions. It can be observed that both

of the parameter adaptation component and the local search

component are effective to improve the search performance. We

can find that the parameter adaptation component significantly

impacts the capability of the algorithm, for more than half

of the tasks, MM-DE significantly outperformed MM-DE/A.

Meanwhile, with the help of the local search component, MM-

DE performs much better than or is at least competitive to

MM-DE/L on most problems (e.g., both tasks of PIHS, the

first task of CILS, the second task of PILS and NIHS).

V. CONCLUSION

In this paper, a memetic multi-population based evolutionary

framework is proposed for solving multi-tasking multi-objective

optimization problems. Based on the proposed framework, a

fast memetic algorithm named MM-DE is developed. In the

proposed MM-DE, an adaptive local search strategy is adopted

to capture the features of individuals in the surrounding regions

to exploit better solutions. The parameter adaptation strategy

used in JADE is adopted in MM-DE to further improve the

performance of the algorithm. The experimental results on

nine benchmark problems on multi-tasking multi-objective

optimization demonstrate that the proposed algorithm can offer

very promising performance.

ACKNOWLEDGMENT

This work was supported in part by the National Natural

Science Foundation of China (Grant No. 61602181), and by

the Fundamental Research Funds for the Central Universities

(Grant No. 2017ZD053).

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” IEEE Trans. Evolut. Comput., vol. 9, no. 3,
pp. 303–317, 2005.

[2] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evolut. Comput., vol. 15, no. 1, pp. 4–31,
2011.

[3] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
computational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[4] J. Zhong, L. Feng, and Y. S. Ong, “Gene expression programming: A
survey [review article],” IEEE Computational Intelligence Magazine,
vol. 12, no. 3, pp. 54–72, Aug 2017.

[5] J. Zhong, W. Cai, M. Lees, and L. Luo, “Automatic model construction
for the behavior of human crowds,” Applied Soft Computing, vol. 56, pp.
368 – 378, 2017.

[6] A. Gupta, J. Mańdziuk, and Y.-S. Ong, “Evolutionary multitasking in
bi-level optimization,” Complex & Intelligent Systems, vol. 1, no. 1-4,
pp. 83–95, 2015.

[7] A. Gupta, Y.-S. Ong, B. Da, L. Feng, and S. Handoko, “Measuring com-
plementarity between function landscapes in evolutionary multitasking,”
in IEEE Congress on Evolutionary Computation, accepted, 2016.

[8] R. Chandra, A. Gupta, Y.-S. Ong, and C.-K. Goh, “Evolutionary multi-
task learning for modular training of feedforward neural networks,” in
International Conference on Neural Information Processing. Springer,
2016, pp. 37–46.

[9] R. Sagarna and Y.-S. Ong, “Concurrently searching branches in software
tests generation through multitask evolution,” in Symposium Series on
Computational Intelligence (SSCI). IEEE, 2016, pp. 1–8.

[10] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: toward
evolutionary multitasking,” IEEE Trans. Evolut. Comput., vol. 20, no. 3,
pp. 343–357, 2016.

[11] L. Feng, W. Zhou, L. Zhou, S. Jiang, J. Zhong, B. Da, Z. Zhu, and
Y. Wang, “An empirical study of multifactorial pso and multifactorial de,”
in IEEE Congress on Evolutionary Computation (CEC), 2017. IEEE,
2017, pp. 921–928.

[12] A. Gupta, Y. S. Ong, L. Feng, and K. C. Tan, “Multiobjective multifac-
torial optimization in evolutionary multitasking,” IEEE Transactions on
Cybernetics, vol. 47, no. 7, pp. 1652–1665, July 2017.

[13] A. Auger and N. Hansen, “Performance evaluation of an advanced local
search evolutionary algorithm,” in The IEEE Congress on Evolutionary
Computation, 2005, vol. 2. IEEE, 2005, pp. 1777–1784.

2018 IEEE Congress on Evolutionary Computation (CEC)

Fig. 4. Evolution average IGD with the number of evaluation times.

[14] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” Theoretical
Computer Science, vol. 378, no. 1, pp. 32–40, 2007.

[15] N. Noman and H. Iba, “Accelerating differential evolution using an
adaptive local search,” IEEE Trans. Evolut. Comput., vol. 12, no. 1, pp.
107–125, 2008.

[16] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehensive
introduction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[17] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[18] N. F. McPhee, R. Poli, and W. B. Langdon, “Field guide to genetic
programming,” 2008.

[19] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE
International Conference on Evolutionary Computation Proceedings,
1998. IEEE, 1998, pp. 69–73.

[20] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A multi-facet survey
on memetic computation,” IEEE Trans. Evolut. Comput., vol. 15, no. 5,
pp. 591–607, 2011.

[21] Y. Yuan, Y.-S. Ong, L. Feng, A. Qin, A. Gupta, B. Da, Q. Zhang, K. C.
Tan, Y. Jin, and H. Ishibuchi, “Evolutionary multitasking for multiobjec-
tive continuous optimization: Benchmark problems, performance metrics
and baseline results,” arXiv preprint arXiv:1706.02766, 2017.

[22] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution with
optional external archive,” IEEE Trans. Evolut. Comput., vol. 13, no. 5,
pp. 945–958, 2009.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evolut. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[24] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[25] R. Joshi and A. C. Sanderson, “Minimal representation multisensor fusion
using differential evolution,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 29, no. 1, pp. 63–76,
1999.

[26] J. Zhang, V. Avasarala, and R. Subbu, “Evolutionary optimization of

transition probability matrices for credit decision-making,” European
Journal of Operational Research, vol. 200, no. 2, pp. 557–567, 2010.

[27] J. H. Zhong, M. Shen, J. Zhang, H. S. H. Chung, Y. H. Shi, and Y. Li,
“A differential evolution algorithm with dual populations for solving
periodic railway timetable scheduling problem,” IEEE Trans. Evolut.
Comput., vol. 17, no. 4, pp. 512–527, Aug 2013.

[28] H. A. Abbass, R. Sarker, and C. Newton, “Pde: a pareto-frontier
differential evolution approach for multi-objective optimization problems,”
in Proceedings of the IEEE Congress on Evolutionary Computation, 2001,
vol. 2. IEEE, 2001, pp. 971–978.

[29] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated pareto sets, moea/d and nsga-ii,” IEEE Trans. Evolut.
Comput., vol. 13, no. 2, pp. 284–302, 2009.

[30] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evolut. Comput.,
vol. 10, no. 6, pp. 646–657, 2006.

[31] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evolut. Comput., vol. 13, no. 2, pp. 398–417, 2009.

[32] A. Torn and A. Zilinskas, Global optimization. Springer-Verlag New
York, Inc., 1989.

[33] R. Dawkins, The selfish gene. Oxford university press, 2016.
[34] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey

on memetic computation,” IEEE Trans. Evolut. Comput., vol. 15, no. 5,
pp. 591–607, 2011.

[35] P. Moscato et al., “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech concurrent
computation program, C3P Report, vol. 826, p. 1989, 1989.

[36] J. Zhong and J. Zhang, “Adaptive multi-objective differential evolution
with stochastic coding strategy,” in Proceedings of the 13th annual
conference on Genetic and evolutionary computation. ACM, 2011, pp.
665–672.

2018 IEEE Congress on Evolutionary Computation (CEC)

		2018-09-27T07:51:47-0400
	Preflight Ticket Signature

