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A Hybrid PSO-BFGS Strategy for Global
Optimization of Multimodal Functions
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Abstract—Particle swarm optimizer (PSO) is a powerful opti-
mization algorithm that has been applied to a variety of problems.
It can, however, suffer from premature convergence and slow
convergence rate. Motivated by these two problems, a hybrid
global optimization strategy combining PSOs with a modified
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is presented
in this paper. The modified BFGS method is integrated into the
context of the PSOs to improve the particles’ local search ability. In
addition, in conjunction with the territory technique, a reposition
technique to maintain the diversity of particles is proposed to
improve the global search ability of PSOs. One advantage of
the hybrid strategy is that it can effectively find multiple local
solutions or global solutions to the multimodal functions in a box-
constrained space. Based on these local solutions, a reconstruction
technique can be adopted to further estimate better solutions.
The proposed method is compared with several recently devel-
oped optimization algorithms on a set of 20 standard benchmark
problems. Experimental results demonstrate that the proposed ap-
proach can obtain high-quality solutions on multimodal function
optimization problems.

Index Terms—Local diversity, particle swarm optimizer (PSO),
reconstruction technique, territory.

I. INTRODUCTION

PARTICLE swarm optimizer (PSO), which was proposed
by Kennedy and Eberhart in 1995 [1], is a population-

based stochastic optimization technique inspired by the social
behavior of bird flocking or fish schooling for finding an opti-
mal solution in complex search spaces. Due to its effectiveness
and simple implementation in solving multidimensional prob-
lems, PSO and its variants have been applied in many areas.

However, one drawback of the canonical PSO is that it suffers
from premature convergence and slow convergence rate [2],
[3]. To address this problem, many improvements of the PSO
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algorithms have been proposed. Traditional improved variants
can be generally categorized into three groups [3]. The first
category adjusts parameters to trade off the global and local
search abilities of PSO [4], [5]. The second category designs
efficient population utilization strategy or dynamic multiple
swarms to improve the global search ability [6]–[8]. In the
third category, a hybrid mechanism combining PSO with other
evolutionary algorithms is explored to keep the population
diversity and improve the local convergence rate [9]–[11].

Another drawback of the canonical PSO and the traditional
variants is that it is difficult for them to find multiple optima
due to an intrinsic restriction that all particles must converge to
only one point at the final step [12]. To address this problem,
a multigrouped particle swarm optimization technique was
proposed in [12]. It allows particles to converge to multiple
points rather than to only one point, and thus, it can find
multiple local optima. However, it has the limitation that each
local optimum needs to be supported by an independent swarm
[12]. Parsopoulos and Vrahatis [13] introduced a repulsion
technique as well as deflection and stretching techniques into
PSO to compute all the global optima. This is an efficient
algorithm that has the ability to detect all global minimizers
of a function, under the assumption that the global optimum
was known a priori. However, this assumption does not hold
for most problems in real problems.

Recently, improving the performance of evolutionary algo-
rithms by introducing the local search method into the evo-
lutionary algorithms has attracted much attention [14]–[16].
Based on the estimation of distribution algorithm, Zhang et al.
[17] introduced a hybrid evolutionary algorithm for continuous
global optimization problems where the simplex method was
introduced to implement the local search. To improve the local
search ability of genetic algorithm (GA), a large collection
of methods, named as memetic algorithm (MA), has been
thoroughly studied in recent years [18]–[20]. In particular, in
[19], a dynamical approach is proposed to start the local search
and determine the local search intensity. However, this strategy
may lead to too many local searches. As for PSO, Liang and
Suganthan developed a hybrid strategy combining a dynamic
multiswarm (DMS) PSO with a local search technique to main-
tain the particles’ diversity as well as local search ability [2].

In addition, Fan and Zahara [21] also proposed to integrate
the simplex search method into the PSO iterations for uncon-
strained optimizations. There are also some other combination
strategies [22], [23]. For example, Coelho and Mariani [23]
recently developed a novel chaotic PSO combined with an im-
plicit filtering local search method to solve economic dispatch
problems.

1083-4419/$26.00 © 2011 IEEE
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The above methods have shown great improvements to the
local convergence of the population-based methods. However,
the backscattering mechanism and the potentials of the hybrid
strategy need to be investigated further. One important issue is
how to prevent particles from being trapped in a local optimum
in the local search. In this paper, an innovative framework is
proposed to integrate the deterministic optimization methods
into PSO algorithms. The main objectives of this work are to
alleviate the premature convergence of PSO and improve its
convergence rate.

In conclusion, the main contributions of this paper are listed
as follows: 1) in the proposed method, rather than periodically
invoked, the local search is dynamically started by using a pro-
posed local diversity index (LDI); 2) a reposition technique in
conjunction with a territory technique is proposed to maintain
the diversity of the particles, which can efficiently improve the
global search ability and prevent particles from being trapped
in a local optima; and 3) a reconstruction operator is conducted
to learn the global optimum or better local solutions from
the obtained multiple local optima. In addition, our method
is helpful for finding the multiple solutions to the multimodal
functions in a more efficient way.

The rest of this paper is organized as follows. In Section II,
the hybrid PSO-BFGS strategy as well as the related techniques
are presented. Experiments on the benchmark functions and
discussions are illustrated in Section III. The conclusions of this
paper are finally discussed in Section IV.

II. PSO-BFGS STRATEGY

A. Canonical Particle Swarm Optimization

In the canonical PSO algorithm, each individual can be seen
as a particle in a D-dimensional space. The PSO exploits poten-
tial solutions through a population and detects the optimal solu-
tion based on the cooperation and competition among particles.

The evolution mechanism of a single particle in the canonical
PSO can be described as follows:

Vid = w × Vid + c1 × r1 × (pbestid − Xid)
+ c2 × r2 × (gbestd − Xid) (1)

Xid = Xid + Vid (2)

where Vid and Xid represent the velocity and position of
particle i in the dth dimension, respectively, w is the inertial
weight that makes a tradeoff between the global and local
search abilities [4], c1 and c2 are acceleration constants, r1

and r2 are random numbers in the range [0, 1], pbestid is the
best position found so far regarding to particle i in the dth
dimension, and gbestd is the globally best position that has been
visited so far by all the particles.

B. Premature Convergence and Population Diversity

The main deficiencies of the canonical PSOs are the pre-
mature convergence and the slow convergence rate. Therefore,
why is the performance of PSO limited? Generally speaking,
we can divide the multimodal function optimization into two
substages: the first stage is to find the optimality basin, and the
second stage is to reach the local or global optimum [24]. Here,

the optimality basin means a small neighborhood around a local
minimum x∗, from any point x of which one can reach to x∗

smoothly and monotonically [19]. In the traditional PSOs, both
stages are fulfilled by the cooperation and competition of parti-
cles, which unavoidably weakens the global search ability of the
particles at the final iterations [12]. Therefore, to maintain high
diversity is important for PSOs to avoid premature convergence.
Multiswarming is one possible way to maintain large diversity
[2]. However, it may decrease the local convergence rate.

The diversity of the population can be a good measure to the
global search ability. Then how do we measure the population
diversity? In this paper, we propose the use of LDI to measure
the local as well as global diversity of the population. Here, we
use three nearest particles to represent the local neighborhood
structure of the population. Let Xk

0 be the particle with the best
fitness value and Xk

01 and Xk
02 be the two particles closest to

Xk
0 , where k is the iteration index. Then, LDI at iteration k is

defined as

LDIk =
∑2

i=1

∥∥Xk
0 − Xk

0i

∥∥
2
√∑D

j=1 (Ubj − Lbj)2
(3)

where Ubj and Lbj are the upper and lower bounds for the
dimension j of the search space, respectively, and D is the
dimensionality of the problem. For simplicity, we hereafter
drop the superscript k for LDIk. There are several consider-
ations to use LDI . At first, the local neighborhood is better
to describe the structure of particles in the local basins. Second,
this definition is also suitable for multiswarm systems where the
leading swarm may only contain a small number of particles.

Obviously, LDI can also present the global diversity of the
population. For a given swarm system, the larger the LDI is,
the less likely will the population get stuck in premature con-
vergence. The faster the LDI value decreases, the faster PSO
converges and the more likely it is to be trapped in premature
convergence. Hence, we can roughly determine whether the
particles enter an optimality basin or not by using LDI . if LDI
is small enough (e.g., smaller than a predefined LDI0), we can
assume that the particles have entered an optimality basin. In
conclusion, we can divide the particles’ search behavior into
the global search and the local search by using LDI . That is, if
LDI > LDI0, then the population is doing the global search.
Otherwise, the population will perform the local search. Here,
LDI0 can be also considered as a coarse stopping criterion
on the PSO algorithms and can be directly adopted as the
termination criterion for the traditional PSOs.

C. General Ideas

As below, we will start to present our new hybrid scheme that
integrates the local search into PSO iterations for multimodal
function optimization. In our method, we use a modified BFGS
method as the local search technique. Several critical issues of
such integration remain to be addressed. The first is when to
start the local search and how to efficiently use the local search.
The second is how to find and hold multiple local optima and
prevent intruding a local optimum (or local optimality basin)
in the local search. The third is how to efficiently keep the
diversity of the population. The last issue is how to reuse the
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obtained multiple local optima to estimate the global or better
solutions, if possible.

We address the first problem by means of LDI , as shown in
Section II-B. To approach the latter problems, several operators
are proposed: a territory technique in Section II-E to hold the
multiple local optima while reposition operator in Section II-F
to keep the diversity of particles. Meanwhile, a reconstruction
algorithm is adopted in Section II-G to reconstruct solutions.
Finally, the general scheme that integrates these terms will be
presented in Section II-H.

D. Local Search With a Modified BFGS Method

In the proposed strategy, the local search of PSO is imple-
mented by a modified BFGS method. BFGS is an effective
quasi-Newton method in solving unconstrained nonlinear opti-
mization problems. In the BFGS method, only the first deriv-
ative needs to be calculated. However, there is no guarantee
that it can converge on nonconvex or ill-conditioned problems.
Hence, some modifications should be made. Let ∇f(x) be the
gradient or subgradient of a function f(x) at point x and dk be
the search direction at iteration k.

1) Given an optimization problem with constraint set Ω, a
minimizer may lie either in the interior or on the bound-
ary. Hence, besides ‖∇f(xk)‖ < ε, two other stopping
criteria, i.e., ‖∇f(xk)‖/‖∇f(x0)‖ < ε and |f(xk+1) −
f(xk)| < ε, are adopted when solving nonsmooth or non-
convex problems, where ∇f(x0) is the gradient of the
initial point x0. These two conditions are very important
when the point is on the constraint bounds or BFGS
cannot converge. For those points without the definition
of gradient, we can simply treat these points as the local
optima. Note that in the real-world applications, some
problems may not be differentiable. In these cases, we can
use the numerical gradients instead [25]. The feasibility
as well as the convergence property of the BFGS method
using numerical gradient was discussed in [25].

2) The magnitude of the search direction dk can be very
large in the early iterations, and this may move the
particle far beyond the search space. Then, a projection
strategy is adopted to ensure that the particles always stay
inside the bound. That is, if xk+1 is outside the search
space, it will be projected back by

xk+1 = PΩ(xk+1) (4)

where PΩ is a projection operator on Ω defined as
follows [26]:

PΩ(x,Lb, Ub)i =

{
Lbi xi < Lbi

xi Lbi ≤ xi ≤ Ubi

Ubi xi > Ubi.

E. Territory of Particles

With the local search, we can easily find multiple solutions.
To hold those solutions and avoid intruding in the same basin,
the term territory is used. In animal behaviors, territory is a
fixed area from which an animal or a group of animals exclude

other members of the same species. In light of this function, the
territory can be naturally introduced into PSOs to prevent the
particles being trapped in a local optimality basin.

In this paper, a territory is represented as a hyperball consist-
ing of the following three parts: 1) the local solution L; 2) the
radius of the territory R; and 3) the local optimal value f(L). It
is presented as O(L,R, f(L)). If a particle finds a local solution
L, it will exclude others from intruding. If a new local optimum
is found, a new territory is added to territory set T (which is
initially empty).

For a given local optimum L, the radius R of a territory can
be approximated by Rs = ‖xs − L‖2. However, ‖xs − L‖2

can be too large for some cases, and it may overlay some
potential solutions. Then, we should constrain the radius using
an upper bound Rmax. In our method, we use LDI to determine
the particles’ status. Then, Rmax should be smaller than the
sum of the distance of X0, X01 and X02. Hence, we can

approximate Rmax by Rmax ≈ LDI0

√∑D
n=1 (Ubn − Lbn)2,

where D is the variable dimensions. Obviously, different search
scopes may result in different Rmax values. To avoid this, we
use the following alternative metric:

Rmax ≈ LDI0

√
D. (5)

Finally, we confirm the radius R by min{Rmax, Rs}. On
the other hand, if another particle of local search is trapped in
an existing territory, we can update the radius dynamically if
possible. That is, once we obtain a new Rnew, we update R with
Rnew if Rnew >R. In such a way, we can quit the local search
in advance for saving computations. Note that if a particle
is trapped in multiple territories, it is necessary to confirm
which territory the particle is trapped in. This can be easily
performed by

j = arg max
i

(cos(βi)) (6)

where cos(βi) is the cosine of the angle βi formed by the
search direction of BFGS and the direction of the particle to
each territory. The territory mentioned above can be seen as
an approximation to the local optimality basin. However, the
real local optimality basin may be much more complex with
complex shapes, while the territory is defined as a hyper ball
for simplicity.

F. Reposition

We use a Reposition operator to dispatch particles, which
can efficiently maintain the diversity of the population. Once
a territory is found, there is no need to do the local search
within this territory. The particle in a local search as well as its
two neighboring particles can then be repulsed to explore other
solutions. To explore larger space, we also repulse the pr × ps
particles with better fitness values. Here, ps denotes the number
of particles, and pr denotes the portion of particles that should
be repulsed. On the other hand, if the PSOs cannot converge, we
reduce the search scope of the pr × ps particles with inferior
fitness values and drag them to the pbest of someone else. The
repulsed or dragged particles are called freed particles. The
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Fig. 1. Local territories of particles on Griewanks’s function [3]. Fitness
denotes the function value of different territories, and [0, 0, . . . , 0]10 is the
global optimum.

proposed reposition technique keeps the freed particles with
unchanged velocities and updates their positions as follows:

Xik = pbest•k + λk × (Ubk − Lbk) × N(0, 1) (7)

where N(0, 1) is the normal distribution with mean 0 and stan-
dard deviation 1, k is the dimension index, pbest•k is the ran-
domly selected particle’s pbest, and λk is a scalar that confines
the distribution of the new particle in the kth dimension. λk

decreases linearly with the standard variation δk of the swarm as

λk = λk max − λk max − λk min

σk max − σk min
(σk − σk min) (8)

where σk max =
√

(Ubk−Lbk)2/12 is the standard variation of
the uniform distribution U(Lbk, Ubk), λk max =(σk max/Ubk−
Lbk) is the maximum value of λk, σk min is the minimum
standard variation that the population in the kth dimension can
achieve, and λk min is the minimum value of λk. Since the local
search will be started when LDI <LDI0, we set λk min =
σk min =LDI0. According to (8), if the population in the kth
dimension has a large diversity, λk will be small, and particle i
will be dragged to pbest•k. Conversely, when λk is large,
then particle i will be repulsed. Therefore, the reposition
technique can efficiently keep the population’s diversity and
simultaneously reduce the search scopes of the particles when
the PSO cannot converge. Hence, the premature convergence
problem is avoided.

G. Reconstruction

When multiple local optima are obtained, can we further
estimate the global optimum or a relatively better solution from
these optima? The answer is possible, which we will show by
the Reconstruction technique.

Note that two local solutions in a territory set usually have
differences only in some locations. Then, a better solution
can be estimated by exchanging the different locations using
a cooperative learning strategy [27]. For example, in Fig. 1,
there are n territories (local solutions) obtained on Griewanks’s
function (no shift and no rotation) with ten dimensions. None
of them is the global solution, and the global optimum is
[0, 0, . . . , 0]D. However, they contain some information about
the global optimum. And we can easily estimate the global
optimum based on these local optima. For example, if we
choose O1 as the context vector and On as the learning vector.
Then, the global solution can be obtained by exchanging the
different components of O1 with On at the first dimension.

In the above example, only one exchange step is required to
get the global optimum. However, we can also change multiple
positions, i.e., learning steps, in one time. More generally, to
handle the nonseparable function, rather than exchanging fixed
learning steps in the original cooperative learning [27], we can
use varied learning steps, referred to as the variable-step-length
cooperative learning (VSLCL) strategy. Given two local solu-
tions, suppose that the one Oc = [Lc, Rc, f(Lc)] with smaller
fitness values may contain more information about the global
optimum, we choose it as the context vector, and the other one,
Ol = [Ll, Rl, f(Ll)], is called the learning vector. In VSLCL,
let ml be the maximum number of locations that can be ex-
changed each time and ls be the learning step in some iteration.
The VSLCL between the two vectors is performed as follows:

Algorithm 1. VSLCL algorithm
0) Given two local solutions Lc and Ll.
1) Find the locations with different values under some pre-

cision ε, counting the number as dn. If dn < ml, set ml = dn.
Initialize ls = ml.

2) Replace ls locations in Lc that are different in Ll with the
counterparts in Ll by order, resulting in a new vector Lnew with
fitness f(Lnew). Let Lc = Lnew if f(Lnew) < f(Lc).

3) Let ls = ls − 1. If ls > 0, go to step 2; otherwise, output
the new Oc = [Lc, Rc, f(Lc)].

The learning strategy in VSLCL is very similar to the guided
mutation used in discrete GAs [28]. The difference lies in that
in guided mutation, the swap is performed with some proba-
bilities, while in VSLCL, the swap is performed when there
is an improvement for the fitness value. When there are more
than two local solutions, the VSLCL can be easily extended
to the multiple local optima case. Let NT be the number of
territories and all better reconstructed solutions are stored in
a new territory set Tnew. Then, the reconstruction algorithm
iteratively proceeds as follows:

Algorithm 2. Reconstruction algorithm
0) Given a territory set T and new territory set Tnew = [ ].

Let nt be the size of T .
1) Find the territory from T with the minimum fitness value

as a context vector Oc. Select another territory in turn as the
learning territory Ol. Perform VSLCL between Ol and Oc, and
obtain a new territory Onewc.

2) If Onewc = Oc, it indicates that Oc is not changed, and
that there is no need to continue to update this Oc. Add Oc to
Tnew and delete Oc from T . Let nt = nt − 1.

3) If nt < 2 and Oc to Tnew and go to step 4); otherwise, go
to step 1).

4) Choose the solution with the best fitness value from Tnew

as the estimated global optimum.

H. General Framework of the Hybrid Strategy

With all problems solved, we now present the implementa-
tion scheme of the proposed hybrid strategy, as shown in Fig. 2.
Most PSO algorithms can be adopted to implement the hybrid
strategy. To better illustrate the hybrid strategy, a particle flag
pflag is introduced to denote the state of the particles. Based
on our hybrid strategy, there are three possible states, denoted
by 0, 1, and 2, for each particle. State 0 denotes that the particle
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Fig. 2. General framework of the PSO-BFGS strategy.

is normal, and its position and velocity are updated according to
PSO rules. State 1 denotes that the particle is free, and it should
be updated using the reposition technique. State 2 denotes the
particle is in an optimality basin and the local search should be
invoked. A condition transition diagram to describe the particle
status is shown in Fig. 3. During initialization, the flag for each
particle is set to 0. The state updating rules are summarized as
follows.
Condition I: If the LDI < LDI0 holds, then the flag of the

best particle is set to 2, and the flags of its two nearest
particles as well as those pr × ps particles with the best
fitness values are set to 1.

Condition II: If the above condition is not satisfied, the local
search is enforced in every K iterations. In other words,
if k = mK, where m is an integer, the flag of the best
particle is set to 2, and those pr × ps particles with the
lowest fitness values are set to 1.

Condition III: If the local search for a particle i is done, set its
flag to 1.

Condition IV: If the reposition process of the particle i is done,
then its flag is set to 0.

Fig. 3. Condition transition diagram of particles in PSO-BFGS algorithm.
The state variable pflag in Fig. 2 switches among status 0, 1, and 2 in the
update step.

TABLE I
GLOBAL LOCAL OPTIMA, SEARCH RANGES, AND

INITIALIZATION RANGES OF THE TEST FUNCTIONS

By means of the pflag and the LDI , the local search and the
global search can be performed separately. Accordingly, part
of the particles can be freed to go on the global search and
maintain a relatively high diversity. Therefore, the premature
convergence can be avoided. Finally, if multilocal optima are
obtained, we can optionally reconstruct or estimate the global
optimum or a better solution based on the VSLCL method. In
the evolutionary algorithms, the maximum number of iterations
max _iter and the maximum number of fitness evaluations are
commonly used as termination conditions. For the proposed
strategy, in addition to these two conditions, the number of
territories can be also adopted as a stopping criterion. This
criterion is very useful when dealing with multiple global
optimization problems.

III. BENCHMARK TESTS AND DISCUSSIONS

A. Benchmark Functions

Twenty multimodal benchmark functions are chosen to eval-
uate the proposed strategy. These functions, except for f6, f14,
and f17 − f20, are the shifted or shifted rotated versions of
several basic multimodal functions using the rules discussed in
[29]. Note for the last four functions, we omit their fbias in [29].
Table I shows the global optimal fitness value f(x∗), the search
ranges [Lb, Ub]D, and the initialization range of each function.
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TABLE II
AVERAGE RATIO OF TIME SPENT ON GRAD EVALUATIONS TO FUNCTION

EVALUATIONS. tg/tf STANDS FOR THE AVERAGE RATIO OF

2000 EXPERIMENTS, AND Tg/Tf STANDS FOR THE

RATIO ADOPTED IN THE EXPERIMENTS

B. Experimental Settings

In our experiments, we use both the numerical gradient
and the analytical gradient of the test functions to form the
search direction in the BFGS method. The PSO with inertia
weight (PSO-w) [4] and the comprehensive learning particle
swarm optimizer (CLPSO) [3] are chosen as the two context
algorithms. With analytical gradients, it results in two new
algorithms, PSO-w-BFGS and CLPSO-BFGS. Meanwhile, we
use the notation of PSO-w-NBFGS and CLPSO-NBFGS for
numerical gradients, where NBFGS denotes BFGS method
with numerical gradients. For full comparison, we also use an
adaptive simulated annealing (ASA) method [31] as the local
search. Here, we use the DMS and the CLPSO as the context
PSOs, resulting in two new methods, namely, DMS-L-ASA and
CLPSO-ASA. They are compared with other six algorithms,
i.e., GA, MA, PSO-w, CLPSO, DMS-L-PSO [2], and a random
started BFGS method (Rand-BFGS), on the 20 test functions
with 10 and 30 dimensions, respectively. As for Rand-BFGS,
we iteratively initialize BFGS with random starting points and
keep track of the best solution found over all the runs. We use
the Genetic Algorithms for Optimization Toolbox (GAOT) to
implement the GA method [32], and the code of MA is from
the authors [19].

In our experiments, when counting the number of fitness
evaluations, the time spent on the gradient calculation should be
considered. For numerical gradient calculation, we use the two-
point estimation [27]. Hence, one gradient calculation needs D
fitness evaluations. For analytical gradient, Table II lists the
average ratio of time spent on derivative evaluations to the
function evaluations (denoted by tg/tf ) for unrotated problems
by averaging 2000 independent experiments with 10 and 30 di-
mensions. The time ratio adopted in the experiments is denoted
by Tg/Tf . When fixing Tg/Tf , we let it always be greater
than tg/tf , as shown in Table II. Further, we let the ratios of the
rotated problems be the same as their unrotated counterparts.
For f(17) − f(20), only numerical gradients are considered.

All the experiments are performed 50 times. The mean and
variance of the final function value, and the successful times of
finding the global optimum on different problems (referred as
hit rate), are used to compare the various algorithms. The hit
rate shows the whole performance of the algorithms, while the
median convergence elucidates their convergence behaviors.
The median function value is obtained as follows: If the hit
rate of an algorithm for a particular function is zero, then the
median function values of 50 times are recorded; otherwise,
only the success cases of finding the global optima are recorded.
In addition, a t-test is performed between the best results of our

TABLE III
PARAMETER SETTINGS OF THE PSO-BFGS ALGORITHMS.

ml, LDI0, pr , AND K STAND FOR THE MAXIMUM LEARNING

STEPS IN RECONSTRUCTION, THE THRESHOLD VALUE OF THE

LOCAL DIVERSITY, THE PORTION OF FREED PARTICLES,
AND THE SEARCH PERIOD, RESPECTIVELY

methods, and the best results of others to determine whether
the results obtained by the proposed method are statistically
different from others. The values 1 and −1 denote that the
results obtained by the proposed method are statistically better
and worse than the best among the rest of the methods with a
5% significance level, respectively, whereas the value 0 denotes
that the results are not statistically different. To make a fair
comparison, the maximum number of fitness evaluations is set
to 30 000 for the 10-D problems and 180 000 for the 30-D prob-
lems. For our method, 0.05 × max _func fitness evaluations
are left for the reconstruction process. Parameter m_l is the
maximum learning steps in the reconstruction process, and 5 is
usually large enough. Parameter pr is the portion of freed parti-
cles, which is similar to the mutation probability in GAs [19]. In
general, if pr is too large, the swarm may lose the history search
information but can obtain better global search ability. On the
other hand, if pr is too small, the swarm tends to be trapped in
the same optimality basin. LDI0 is the threshold value of the
local diversity that can adaptively start the local search in the
proposed method. Generally speaking, a small LDI0 can be set
to ensure enough evolutions, and a large LDI0 can be set to
obtain multiple local optimal solutions. The hybrid method will
implement the local search periodically at every K iterations
when the context PSOs cannot converge where the condition
LDI < LDI0 cannot achieve. A large K is favorable. The
sensitivity study of the parameters will be further studied in the
third experiment. The final parameter settings of the proposed
method in the experiments are shown in Table III. The parame-
ters of PSO-w and CLPSO are kept the same as in [3]. Except
for DMS-L-PSO, the swarm size or population size is set to 10
for 10-D functions and 30 for 30-D functions for all methods.
The same parameter settings of DMS-L-PSO are used as in [2],
where the swarms’ number is 20 and each swarm’s population
size is 3. Hence, the total population for DMS-L-PSO size is 60.
Except for population size, we also keep the default parameter
settings for GA and MA as they are in the toolbox. In MA, the
local search is also implemented by the BFGS method.

C. Experimental Results and Discussions

1) Results of 10-D Problems: In this experiment, all the
algorithms are performed on the 20 test functions with ten
dimensions. The hit rate (denoted by hit), the mean and vari-
ance of the final function values of various algorithms (de-
noted by mean ± variance), and the t-test results are recorded
in Table IV. The number in brackets in the table for PSO-
w-(N)BFGS and CLPSO-(N)BFGS represents the number of
global optima obtained by the reconstruction technique. Fig. 4
shows the median convergence graphs of the different algo-
rithms, where we do not include the results of DMS-L-ASA
and CLPSO-ASA for the former 16 functions to avoid crowding
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TABLE IV
RESULTS OF 20 BENCHMARK FUNCTIONS ON TEN DIMENSIONS. hit STANDS FOR THE SUCCESSFUL TIMES OF

FINDING THE GLOBAL OPTIMUM, WHILE mean ± variance STANDS FOR THE MEAN AND

VARIANCE OF THE FINAL FUNCTION VALUE, RESPECTIVELY
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Fig. 4. Median convergence graphs of different algorithms on the 20 benchmark functions with ten dimensions. The figures record the mean value of the median
function value of the benchmark functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f)f6. (g) f7. (h) f8. (i) f9. (j) f10. (k) f11. (l) f12. (m) f13. (n) f14. (o) f15.
(p) f16. (q) f17. (r) f18. (s) f19. (t) f20.

in the figures. For the last four functions, we only use the
numerical gradients. Hence, there are no results for PSO-w-
BFGS and CLPSO-BFGS while the results for DMS-L-ASA
and CLPSO-ASA are included.

In Table IV and Fig. 4, we can see that PSO-w-(N)BFGS
and CLPSO-(N)BFGS have significantly improved their coun-
terparts, i.e., PSO-w and CLPSO, respectively, both on the
hit rate and convergence rate. In general, the performance
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of PSO-w-NBFGS and CLPSO-NBFGS is inferior to their
analytical counterparts, namely, PSO-w-BFGS and CLPSO-
BFGS, particularly on problem f13. Two factors account for
this problem. On one hand, the numerical gradient is generally
less accurate than the analytical gradient, which may bring
bias to the direction calculation in the BFGS method. For
example, on the shifted rotated Rastrigin’s function (f13), the
numerical gradient is not accurate because of the rotation. Then,
the CLPSO-NBFGS and PSO-w-NBFGS methods will fail to
identify the global optimum even the global optimality basin
has been detected. Different from the shifted rotated Rastrigin’s
function, the CLPSO-NBFGS and PSO-w-NBFGS methods
can obtain good performance on its shift counterpart (f5). On
the other hand, the time spent on the numerical gradient is much
more than that spent on the analytical gradient. In Table II, we
can see that the time spent on the analytical gradient calculation
can be at most two times than that spent on the fitness function
evaluation. However, the time spent on numerical gradient is
D times than that spent on fitness function evaluation. Hence,
given fixed function evaluations, there are fewer function evalu-
ations left for particle evolutions in CLPSO-NBFGS and PSO-
w-NBFGS.

PSO-w-BFGS outperforms PSO-w, particularly on f1, f3,
f5, f9, f10, f11, f12, and f13. PSO-w-NBFGS significantly
outperforms PSO-w on f1, f3, f5, f9, f10, f11, and f12 but
shows no considerable improvement on f13. For those functions
that PSO-w has successfully found the global optima, PSO-w-
(N)BFGS shows a faster convergence rate, as shown in Fig. 4.
As to CLPSO-BFGS, it shows great improvements to CLPSO
on hit rates on functions f10, f11, f12, and f13. However,
CLPSO-NBFGS shows little improvement on f13. In Fig. 4,
we can see that CLPSO-(N)BFGS also converges faster than
CLPSO for those functions on which the hit rates are 50. Gen-
erally speaking, CLPSO-(N)BFGS shows better performance
than PSO-w-(N)BFGS, which is caused by the fact that the
CLPSO has better global search ability [3].

Except for f14, CLPSO-BFGS performs better than DMS-
L-PSO on hit rates, particularly on functions f3, f5, f6, f11,
f12, and f13. Except for f13, CLPSO-NBFGS also shows great
improvement compared with DMS-L-PSO. PSO-w-BFGS and
PSO-w-NBFGS also show competitive results compared with
DMS-L-PSO. According to the t-test results, the proposed
hybrid strategy can obtain improved performance on hit rates
on most functions.

In addition, because the accuracy of the hybrid strategy is
mainly controlled by the BFGS method, we can change it to
obtain results of different accuracy. This treatment will not
improve the complexity of the hybrid method too much because
of the territory technique, which prevents the particles from
detecting the detected local optima. On function f12, although
the proposed strategy shows inferior t-test performance to
DMS-L-PSO, it has a higher probability of finding the global
optimum.

Among the 12 methods, Rand-BFGS can achieve good re-
sults on simple problems, such as the shifted Rosenbrock’s
function but performs poorly on most problems. Finally, in
Table IV, we can observe that all the algorithms do not work
well on function f14 as well as the last four algorithms. We can

also conclude from the results that a simple GA may not be
suitable for complicated problems while the MA is better. MA
can obtain the best result on f18, while DMS-L-PSO can obtain
the best result on f19. However, on the whole, our methods can
obtain comparable performance compared with other methods.

For the hybrid methods with the (N)BFGS method, the
number in brackets in Table IV represents the number of global
optima obtained by the reconstruction technique. Take PSO-w-
BFGS as example, 18 of the 44 global optima on function f3

and 12 of the 26 global optima on function f12 are obtained by
the reconstruction technique. Note that f12 is a nonseparable
function that indicates that the multiple local optima obtained
by the hybrid strategy, indeed, contain a wealth of information
about the global optimum, and the reconstruction technique
can be very useful to estimate the global solutions to both
separable and nonseparable functions. However, if we use a
nondeterministic optimization method, such as SA, as the local
search method, we are not likely to obtain accurate enough
local solutions. In such a case, the reconstruction operator
may be not useful. However, SA may be useful for highly
noised problems where the deterministic optimization methods
absolutely cannot work.

2) Results of 30-D Problems: In the second experiment,
all the algorithms are performed 50 times with 30-D on the
20 test functions. The hit rate (denoted by hit), the mean
and variance of the final function values of various algorithms
(denoted by mean ± variance), and the t-test results are
shown in Table V. The numbers in brackets of the hybrid
methods are the results obtained by the reconstruction tech-
nique. Due to space limitation, the median convergence graphs
of the different algorithms are not presented in this paper.
In Table V, CLPSO-NBFGS and PSO-w-NBFGS also show
the inferior performance compared with their counterparts,
i.e., CLPSO-BFGS and PSO-w-BFGS, due to the same reason
discussed in 10-D experiments. However, CLPSO-NBFGS and
PSO-w-NBFGS achieve competitive performance compared
with other methods on most problems. For CLPSO-NBFGS,
except for functions f12, f13, and f14, it shows very good
performance on identifying the global optimum. As to PSO-w-
NBFGS, it is not so good as CLPSO-NBFGS. However, it still
outperforms PSO-w on the hit rate for f1, f3, f8, f9, f10, and
f11. In conclusion, the hybrid method shows much improved
performance compared with the context PSOs. For DMS-L-
PSO, it performs the best on f12 but fails on f5 and f6 compared
with CLPSO-BFGS and CLPSO-NBFGS. The t-test results for
30-D problems also show the competitive performance of the
proposed method. On the last four functions, our methods are
also comparable. Similar to the 10-D problem, the simple GA
is also not so good on 30-D problems. In addition, the MA
methods may fail on some problems. One possible reason is
that too many local searches are invoked in the MA method.

Parameter Sensitivity Study: In the third experiment, three
parameters, namely, the threshold LDI0, the iteration K, and
the number of the freed particles pr, are studied. Here, we just
take CLPSO-BFGS on function f1−f8 with 10-D for the case
study. When studying one parameter, we keep other parameters
the same as in Table III. All the experiments are performed
50 times for each value, and the hit rates of each possible
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TABLE V
RESULTS OF 20 BENCHMARK FUNCTIONS ON 30 DIMENSIONS. hit STANDS FOR THE SUCCESSFUL TIMES OF FINDING THE GLOBAL OPTIMUM,

WHILE mean ± variance STANDS FOR THE MEAN AND VARIANCE OF THE FINAL FUNCTION VALUE, RESPECTIVELY

value are recorded. The final results are shown in Fig. 5. From
Fig. 5, the hit rate, by varying LDI0, has a wider range than
the results of K and pr. In general, the proposed strategy is

more sensitive to LDI0 than to K and pr. For LDI0, the best
results are obtained at 0.01. And we know that if it is too small,
the local search will be started mainly by K, which usually
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Fig. 5. Influences of the parameters of CLPSO-BFGS on eight benchmark functions (f1−f8). The figures record the successful times (hit rate) of 50 experiments
with varying values on parameters LDI0, K, and pr , respectively. (a) Hit rate with various LDI0. (b) Hit rate with various K. (c) Hit rate with various pr .

does not show good performance, as shown in Fig. 5(a). On the
other hand, if it is too large, the local search will be started too
frequently, and the performance also degrades. Generally, we
suggest that LDI0 should be smaller than 0.05. From Fig. 5(b),
for the iteration period K, CLPSO-BFGS obtains comparable
results with all possible values, which indicate that the hybrid
strategy is not sensitive to K. Actually, there is no need for
K if the context PSO has a good local convergence property.
However, a too small K may lead to too frequent local searches.
Therefore, a large K would be favorable (even K = max _iter
is acceptable). For pr, from Fig. 5(c), all the possible values
can produce competitive results. However, pr’s from 0.2 to 0.3
perform the best.

IV. CONCLUSION

Premature convergence and slow convergence rate are two
main deficiencies of PSOs. Meanwhile, deterministic optimiza-
tion methods, such as the BFGS method, are known for their
fast convergence but are quite sensitive to the starting point
when solving nonconvex problems. In this paper, we proposed
a new hybrid PSO-BFGS strategy for the global optimization of
multimodal functions. To make the combination more efficient,
an LDI is proposed to dynamically start the local search,
and a reposition technique is proposed to keep the diversity
of particles, which can effectively avoid the premature con-
vergence problem. In addition, by adopting a territory tech-
nique, the proposed strategy can efficiently find multiple local
(or global) optima using a small population. The benchmark
test results demonstrate improved performance compared with
other methods, particularly on the lower dimensional problems.
The implementation of the hybrid strategy is straightforward
and most of the informed PSO algorithms can be adopted as
the context PSOs. However, different context algorithms may
result in different performance. In the experiments, the CLPSO-
(N)BFGS methods usually outperforms PSO-w-(N)BFGS in
both the hit rate and convergence rate. This is mainly caused by
the fact that CLPSO possesses a more complicated and effective
particle learning structure than PSO-w, making CLPSO better
than PSO-w in the use of the freed particles [3]. Therefore, to
design more efficient rules to reuse the freed particles is a future
direction.
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