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Abstract—Deep neural networks have achieved remarkable
success for video-based action recognition. However, most of
existing approaches cannot be deployed in practice due to the
high computational cost. To address this challenge, we propose
a new real-time convolutional architecture, called Temporal
Convolutional 3D Network (T-C3D), for action representation.
T-C3D learns video action representations in a hierarchical
multi-granularity manner while obtaining a high process speed.
Specifically, we propose a residual 3D Convolutional Neural
Network (CNN) to capture complementary information on the
appearance of a single frame and the motion between consecutive
frames. Based on this CNN, we develop a new temporal encoding
method to explore the temporal dynamics of the whole video.
Furthermore, we integrate deep compression techniques with
T-C3D to further accelerate the deployment of models via
reducing the size of the model. By these means, heavy calculations
can be avoided when doing the inference, which enables the
method to deal with videos beyond real-time speed while keeping
promising performance. We validate our approach by studying
its action representation performance on four benchmarks over
three different tasks. Our method achieves clear improvements
on UCF101 action recognition benchmark against the state-of-
the-art real-time methods by 5.4% in terms of accuracy and 2
times faster in terms of inference speed with a less than 5MB
storage model. The source code and the pre-trained models are
publicly available at https://github.com/tc3d.

Index Terms—Real-time, action recognition, temporal encod-
ing, deep compression

I. INTRODUCTION

THE representation of human actions, which tries to
capture the powerful features of action, is an impor-

tant research topic in the video understanding community.
Video-based action recognition aims to make computers rec-
ognize human actions automatically in real-world videos.
Many researchers in video understanding and computer vision
fields have concentrated on action representation due to its
widespread application, such as video classification [1], [2]
and event detection [3], [4]. The task of human action recog-
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(b) Breast Stroke and Front Crawl

(c) Long Jump and High Jump

(a) Playing Guitar and Violin

Figure 1: Example videos from six categories of UCF101.
Some actions can be reliably distinguished through a single
frame or the motion computed from consecutive frames.
However, certain similar actions such as “High Jump” and
“Long Jump” require long-term features of the video, since
the short-term information on a clip is almost the same.

nition in videos, however, is still very challenging due to the
three following reasons.

First, the video is naturally an information-intensive media
with hierarchical multi-granularity structure, e.g., static infor-
mation in one frame, short-term slow motions in a clip, and
long-term temporal evolution of appearances. As shown in
Figure 1(a), some actions, such as “playing guitar” and “play-
ing archery”, can be accurately recognized through extracting
features of only one frame. Meanwhile, a number of human
events require more abundant information like the motion
between several consecutive frames to identify the action.
For example, Figure 1(b) demonstrates that “front crawl” and
“breaststroke” can be differentiated via one clip rather than
one frame. As for some highly similar human actions, as
shown in Figure 1(c), several clips cannot precisely distinguish
both actions due to the almost identical visual representation,
especially during the run-up phase in “high jump” and “long
jump”. Therefore, we suppose that efficiently learning a multi-
level temporal structure is an indispensable part of recognizing
actions in videos.

To deal with the above challenges, we introduce an effective
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and efficient architecture, named T-C3D, by integrating the
deep residual 3D network with the temporal encoding. The 3D
convolutional network is able to capture both the static image
information and the short-term motion features in successive
frames. The long-term information is characterized by the
temporal encoding algorithm. As a result, our T-C3D can
represent the hierarchical multi-granularity structure of the
actions, achieving competitive performance compared with the
state-of-the-art methods.

Second, the calculation of most methods for action repre-
sentation is too high to deploy in practice. These methods can
be fallen into two categories: hand-crafted descriptor-based
methods [5], [6], [7] and action representations with deep
learning [8], [9], [10], [11], [12], [13], [14], [15]. The former
predominantly consists of feature extraction, feature encoding,
and classification, which mainly focuses on developing dis-
criminative and powerful spatial-temporal video descriptors.
Different from the methods with hand-crafted descriptors,
most deep learning methods make use of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
to exploit individual image-level appearance and model the
temporal characteristic in videos. However, the majority of
the impressive methods, such as improved Dense Trajectory
(iDT) [6], two-stream [9] and their improved version [10],
[15], [16], cannot meet the real-time requirement due to their
high computation cost, e.g., the calculation of optical flow.
Unfortunately, the application of action recognition in real life
is severely impeded by this obstacle.

To circumvent this difficulty, we propose to accelerate the
deployment of our T-C3D from three aspects. First, we adopt
the three-dimensional convolutional neural network to obtain
the motion between continuous frames, which significantly
avoids the heavy calculation compared with the two-stream
based methods as they extract the optical flow. We also adopt
some efficient techniques to prevent over-fitting when training
the T-C3D. Moreover, during the training process, we design
the temporal encoding algorithm which aggregates the feature
of several clips sampled from the same video, which leads
to a promising accuracy when fusing only a small fraction of
testing clips rather than predicting all of the testing instances.
This also dramatically decreases the inference time. More
importantly, we speed up the T-C3D from weight distribution.
More specifically, we first progressively prune all layers of T-
C3D to set most values of the weight to be zero. Then we store
the pruned sparse results using Compressed Sparse Row (CSR)
format. In the last step, we reduce computational complexity
via a certain kernel designed for optimizing the sparse matrix-
vector multiplication on popular GPUs.

Third, the existence of large video benchmarks for action
recognition and worldwide challenges, like UCF101 [17],
Sports-1M [8], and Kinetics [18] has boosted researches in
this area. Consequently, powerful models have mainly been
appraised according to classification accuracy. Meanwhile,
most works in the video understanding community pay little
attention to computational efficiency and model complexity for
applying action recognition into the real-world. For example,
the C3D model [11] saved in a format of caffemodel is
over 300MB, which consumes expensive memory storage and

results in the difficulty of application. While video-based
action recognition has made great achievements in terms of
classification accuracy, successful deployment of action recog-
nition in real-life, which is beneficial to social development,
is still missing. The major obstacle for the deployment is
the requirement of small model sizes to accommodate limited
memory on the smart devices. Many applications on mobile
devices are extremely sensitive to the size of the files. For
instance, App Store has the restriction apps above 100 MB
will not download until you connect to Wi-Fi [19]. Therefore,
apps with fewer model sizes are more likely to be installed
and updated. This motivates us to concentrate on reducing the
model size and inference time of T-C3D while preserving the
accuracy.

To relieve this problem, we compress the model size of T-
C3D via three following strategies: 1) prune all layers of the
network, 2) quantize the weights of the model, and 3) encode
the model weights with Huffman coding. More specially, we
sort the T-C3D weights and set the weights with less value
to be zero, obtaining a sparse model whose most values are
zero. To utilize fewer bits to represent more weights, we cluster
each layer of T-C3D via K-means. In the last step, we adopt
the Huffman coding, a particular type of optimal prefix code
designed for lossless data compression, to further compress
the model size without sacrificing the performance. On the
UCF101 dataset, these above measures significantly reduce the
storage requirement of T-C3D from 128MB to 4.2MB, almost
without loss of accuracy.

To validate the effectiveness of our proposed method, ex-
tensive experiments are conducted on four datasets over three
tasks, including action recognition, action similarity labeling,
and anomaly detection in surveillance videos. In particular, on
the action recognition task, we appraise the accuracy, speed
and model size of proposed T-C3D. Experiments demonstrate
that T-C3D outperforms the-state-of-the-art methods by 5.4%
in terms of accuracy and 2 times faster in terms of speed with
a less than 5MB storage model. On both the action similarity
labeling and anomaly detection, T-C3D also improves the
existing methods by a substantial margin. In particular, T-C3D
achieves superior performance against the C3D from 50.0% to
76.26% on the anomaly detection benchmark in terms of Area
Under Curve (AUC).

We extend our previous work [20] from three aspects.
First, we integrate a series of deep compression techniques
with temporal encoding algorithm to further accelerate the
employment of this framework. In terms of performance, deep
compression techniques reduce the model size from 230MB
to less than 5MB without accuracy degradation. Second, we
validate our method on another two benchmarks over two
different tasks. More specially, we adopt our method to detect
anomaly in surveillance videos to verify that our method can
be deployed in practice. Third, we provide further insight
into our learned models via some subjective results, such as
visualization.

In summary, the main contributions of this work are
summarized as follows:

• We propose a 3D-CNN based framework equipped with
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the temporal encoding method to learn action represen-
tation at a multitude of granularity.

• We introduce several compression techniques to reduce
the original model size of T-C3D to less than 5MB, which
significantly promotes the application of our T-C3D into
the real-world.

• Our framework can process videos at real-time while
achieving competitive accuracy since we avoid compu-
tationally expensive steps to extract video features.

II. RELATED WORK

Action representation has been extensively studied in the
past few years. We classify major prior work related to
ours into two classes: 1) action recognition with hand-crafted
features, and 2) action recognition with deep learning.

A. Action Recognition with Hand-crafted Features.

To capture the intrinsic temporal motion in videos, extensive
work makes efforts to manually develop powerful features for
action recognition. This kind of approach always follows these
procedures: feature extraction, feature encoding, and classifi-
cation. Researchers often focus on designing powerful spatial-
temporal video descriptors which are developed from the static
single image area and extended to depict the three dimension
of videos (temporal dimension), including 3D Histogram of
Gradient (HOG3D) [5] and 3D Scale-Invariant Feature Trans-
form (SIFT-3D) [21]. Moreover, some work concentrates on
devising local spatio-temporal features to model the temporal
dimension. Besides, Wang et al. [6] propose a powerful hand-
crafted feature named Improved Dense Trajectories (IDT),
which extracts several descriptors (HOG, HOF, and MBH)
and tracks them in a dense optical flow field. Most of the
features designed by human beings are not discriminative
enough to obtain satisfactory performance. While few hand-
crafted features exhibit the promising experimental results,
e.g., IDT, these methods cannot meet the requirement of real-
time due to the expensive computation cost caused by the
calculation of optical flow.

B. Action Recognition with Deep Neural Network.

Since deep neural networks bring remarkable achievements
over many visual tasks, such as video summarization [22],
[23] and video retrieval [24], [25]. This sort of approaches
make use of neural networks to learn action representation
automatically in an end-to-end manner, which eliminates the
inaccuracies of manual design. According to different network
architecture, deep neural networks for action recognition can
fall into two categories: one-stream framework based methods
and two-stream architecture based approaches.

One-stream framework. As to the one-stream framework
[11], [12], [13], [26], [27], [28] , networks are always designed
to capture both the spatial feature and the temporal infor-
mation simultaneously. Some work [11], [12], [13] utilizes
3D convolution filters with the input of a short snippet to
capture the temporal dimension motion in videos. Recently,
Qiu et al.[14] factorize the standard 3D convolutional filters

into 1D temporal filters and 2D spatial kernel and achieve
competitive performance. However, this kind of approach has
not yet dramatically exceeded the state of the art hand-crafted
methods for video-based action recognition.

We argue there are two reasons for this phenomenon.
First, this is partly owing to the lack of the ability to grasp
the characteristics of long-term features. Obviously, feeding
3D-CNN with more consecutive frames can capture longer
temporal features. However, this strategy is largely limited
by GPU memory and obtains slight improvements [13]. The
other reason might be the failure to unleash the full po-
tential of large-scale video benchmarks comparable in size
and diversity with ImageNet,which can avoid over-fitting.
The emergence of large-scale and well-labeled benchmarks
for action recognition, like Sports-1M [8] and Kinetics [18],
bring the opportunities to advance researches in this domain.
To tackle these above difficulties, we not only integrate the
standard 3D-CNN with temporal encoding algorithm to model
the long-term temporal character but also perform initialization
of T-C3D parameters on large-scale video datasets to fully
inspire the potential of 3D-CNN.

Two-stream framework. The two-stream approach for
action recognition is first proposed in [9], in which spatial
network acquires single RGB frame feature and temporal
network captures the motion pattern between frames with the
input of 10 stacked optical flow images. Then a great number
of efforts [15], [16], [29] have been made to enhance the two-
stream network from different perspectives.

Since RNN has exhibited remarkable ability on sequence
modeling, some researchers [30], [31]incorporate the two-
stream framework with RNN to capture the long-term infor-
mation. Recently, Kar et al. [10] propose an adaptive temporal
pooling method that selects informative frames and ignores the
unnecessary and non-discriminative frames in the video. The
method described in [15] offers a novel feature aggregation
scheme for two-stream in an end-to-end trainable manner,
where both the feature extractor (Two-stream CNNs) and the
inherent visual vocabularies (VLAD) are learned automatically
by minimizing the loss value.

Despite outstanding performance, all of the two-stream
based approaches are too computationally expensive to process
videos in real-time because of the heavy calculation of optical
flows. Besides, during the testing stage, two separate models
require to be deployed, which makes the application of action
recognition in real life more difficult.

For real-time action recognition, Zhang et al. [32] propose a
real-time algorithm that utilizes the enhanced motion vectors
to replace the optical flow. Although this work indeed speeds
up the architecture of deep neural networks for video-based ac-
tion representation, it is cumbersome owing to the calculation
of optical flow during the training phase and the deployment of
two models (RGB model and motion vector model) during the
testing stage. Compared with it, our approach fully prevents
extracting the optical flow and only adopts video frames to
train the network. Meanwhile, our method can achieve a higher
classification accuracy at a faster speed.
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Figure 2: The framework of the proposed architecture for real-time video action representation.

III. THE PROPOSED METHOD

A. Overview of T-C3D Framework

Figure 2(a) shows the training process of the proposed T-
C3D network. First of all, we divide every given input video
into S parts according to the temporal dimension. Then dozens
of frames are chosen from each part to constitute a clip. Next,
S clips sampled from the same video are fed into the 3D-CNNs
simultaneously. Then, the feature maps or class possibilities
of S clips are aggregated by a fusion function to generate the
consensus, which is a video-level prediction since it integrates
multiple clips selected from the entire video. In the last step,
our T-C3D optimizes the neural network by calculating the
loss value with the video-level score.

As a result, T-C3D can capture both short-term and long-
term features in videos. First, the 3D-CNN captures the short-
term information between continuous frames. Especially, the
3D-CNN expands the original 2D convolutional kernel at
the temporal dimension, which might be more applicable
to capture the intrinsic three-dimensional feature in videos.
However, these 3D convolutions require dense sampling in
time to work effectively. Consequently, to fit in GPU memory
the video inputs must be short. Therefore, we design the
temporal encoding model to extract long-term features. Espe-
cially, the video-level predictions which integrate several clips’
information are adopted to update the parameters of networks.
In contrast, most of the previous work calculates the loss with
clip-level or single frame prediction, ignoring the critical long-
term information. Furthermore, both 3D-CNN and temporal
encoding model are trained in an end-to-end manner.

In brief, the framework is mainly made up by the following
procedures: 1) producing the clips of each video, 2) feeding
the clips to the 3D network simultaneously, 3) generating the
video-level predicted possibilities by fusing the features of the
clips, and 4) updating the weights of 3D-CNN using the video-
level prediction. All the above steps are end-to-end trainable.
Then, we will present the proposed temporal encoding al-
gorithm and every step in detail. Finally, deep compression
techniques for reducing the model size are introduced.

B. Temporal Encoding Model

The video is a kind of intrinsically hierarchical structured
medium since a video can be parsed into a spatial static
image, temporal parts are formed by short-term motion among
continuous frames as well as long-term temporal evolution
in videos. Inspired by this observation and considering the
real-time demand, we introduce a novel real-time framework
to recognize the actions in videos. First of all, we replace
computational expensively features (e.g., optical flow) with
3D convolutional filters to depict the short temporal motion,
which brings the framework a sharp acceleration owing to
the only light-weight extraction of video frames. Next, we
introduce the temporal encoding algorithm to capture the long-
term temporal features, which can significantly increase the
recognition performance.

To capture the long-term temporal features, we develop
the temporal encoding algorithm. Formally, given an input
video V during the training stage, we parse it into S parts
{P1, P2, P3, ..., Ps } at temporal dimension. Next, dozens of
frames are selected from Pi to constitute the clip Ci. Then, we
feed the 3D-CNN all clips at the same time to yield S feature
maps or category possibilities. Next, S clips features are
fused with specific aggregating functions to produce the video-
level features. Finally, video-level features derive the final
category possibilities by forwarding a few convolutional or
fully-connected layers. Compared with previous methods, T-
C3D updates its network weights via the video-level prediction
rather than the single frame or one clip score. The whole
procedure can be formulated as Equation 1:

Yv = H(Q(F (C1;W );F (C2;W ); ...;F (Cs;W ))), (1)

where Yv stands for the ultimate category possibility of the
video v, F (Cs,W ) is the function that represents the 3D-CNN
with weights W and produces feature map of clip Cs, such
as last convolutional layer, fully-connected layer, and final
scores of all action classes. The fusion function Q aggregates
the feature maps of multiple clips to generate a powerful
representation for the long-term temporal character in videos.
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Based on this discriminative representation, the score function
H generates the score values of every action class for the
entire video. In this work, by default, the output of F is the
last fully-connected layer. H is the standard softmax function
to get the probability distribution. We explore several choices
of fusion function Q in Section V-C.

The differentiability of the proposed temporal encod-
ing approach makes the network easier to train with
the widely applied back-propagation. Through original
categorical cross-entropy loss, the ultimate loss func-
tions concerning the multiple clip’s consensus G =
Q(F (C1;W );F (C2;W ); ...;F (Cs;W )) can be formulated as

L(y,G) = −
N∑
i=1

yi(Gi − log
N∑
j=1

expGj), (2)

where N is the total of all action categories, yi is the ground-
truth label regarding category i and S is a hyper-parameter.
The sensitivity study of S is conducted in Section V-C.

In our method, the fusion function Q plays a significant
role since it not only aggregates several clips’ feature into a
video-level score but also determines the differentiability of the
entire framework. The main difference between our temporal
encoding method and previous methods is to optimize the
network via the video-level score rather than the features of
clips. It is aggregation functions that fuse the features of clips
into the video-level score. In this work, we extensively explore
several differentiable fusion function alternatives, e.g., average
pooling, maximum pooling, and attention pooling. Differen-
tiable fusion functions allow us to adopt the multiple clips
to jointly optimize the network parameters W through back-
propagation algorithms. Formally, during the back-propagation
procedure, the gradients of T-C3D weights W regarding the
loss value L can be formulated as

∂L(y,G)

∂W
=

∂L

∂W

S∑
s=1

∂Q

∂F (Cs)

∂F (Cs)

∂W
, (3)

in which S is number of clips. In Equation 3, the weights
are updated via the multiple clips’ consensus G derived
from all clip-level scores. Optimized network parameters in
this manner, T-C3D trains network weights from long-term
temporal features instead of a single clip. Then, we will
describe the implementation of the model in detail.

C. Video Components Generation

Compared with the static images, videos are dynamic and
consist of varying sequences. To explore the proper means
to obtain the long-term temporal information, we first parse
the video into a few parts at the temporal dimension. Then
one clip is formed by selecting a certain number of frames
from every part with two sampling strategies. The first strategy
uniformly divides the video snippet generated in the previous
step into a certain number of fragments. Then one frame
is randomly selected from each fragment to form the clip.
The second scheme randomly selects the specified number
of consecutive frames from the snippet to constitute the clip.
In essence, the first sampling scheme randomly chooses non-
consecutive frames distributed uniformly throughout the entire

video. The second approach evenly selects S clips from the
whole video and each clip is composed of the specified amount
of consecutive frames.

Formally, given a video consisted of N frames, we first cut
the video into S pieces averagely at the temporal dimension,
and therefore each part contains N

S frames. For simplicity, we
annotate N

S as M . Then, both sampling strategies form the a
clip with k frames according to each piece:

Clip = {f1, f2, fi, ..., fk}, (4)

the frame number of fi is random(0,Mk )+M
k *i for the first

sampling strategy, while the frame number of fi of the second
scheme is random(0,M−k∗o)+i∗o. o means the offset between
two sampled frames. The clip generated by the second strategy
is composed of consecutive frames as the o has nothing with
M and i. In our experiment, S is 3, k is 8, o is 2.

For example, given a video with 300 frames, the first scheme
may generate three segments with the following frame number:
{{1, 23, 26, 40, 53, 68, 81, 88}, {110, 120, 134, 143, 160, 164,
179, 185}, {204, 213, 231, 238, 249, 268, 282, 295}}, while
the second may produce three segments with the following
frame number: {{3, 5, 7, 9, 11, 13, 15, 17}, {125, 127, 129,
131, 133, 135, 137, 139}, {251, 253, 255, 257, 259, 261, 263,
265}}. Obviously, the clips selected by the first strategy may
contain large and imbalanced intervals. In the next section, we
compare the recognition accuracy of both different sampling
schemes.

D. 3D Convolutional Neural Network

Given 2D-CNN’s remarkable performance on a variety of
vision tasks in the image domain, 3D-CNN is likely to achieve
success in the video area since it can be regarded as the
expansion of images at the temporal dimension. Convolutional
3D Network (C3D) [11] is one of the first classical work
that adopts the 3D convolutional filter to model both the
spatial appearance and temporal information with the input
of 16 frames. However, sixteen consecutive RGB frames
do not involve long-term cues. Thus, Long-term Temporal
Convolutions (LTC) [13] enhance the C3D through feeding
network with more continuous RGB frames as long as the
GPU memory allows, ranging from 20 to 100 frames. The
aforementioned work proves that 3D-CNN is a promising
direction to recognize the actions in videos. In this paper,
we extend the above 3D-CNN work from the following
perspectives.

First of all, inspired by the excellent image recognition
performance obtained by the 2D-CNN with residual module
[33], we design a deep 3D-CNN architecture with a powerful
residual block. More specially, according to the previous study
on 3D-CNN architecture search [12], we employ the 3D-
CNN with seventeen 3D convolutional layers and one fully-
connected layer. Experimental results show that the deeper
3D-CNN with residual block can learn more discriminative
and robust spatiotemporal features from the given clips.

Secondly, initializing the weights of CNN on a large-scale
dataset has been demonstrated greatly important for many
visual topics[34]. As for 3D-CNN, previous work such as
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LTC has shown that 3D networks pre-trained on a large-
scale but not well-labeled dataset achieve better recognition
results than the models trained from scratch. In our work,
we first follow the scheme described in C3D and pre-train
our network on Sports-1M. While Sports-1M contains more
than one million videos, part of its ground-truth labels are
wrong since it is tagged by machine rather than manually
labeled. Fortunately, Kay et.al [18] construct a large-scale and
well-labeled benchmark, called Kinetics, which covers 400
human action classes with at least 400 video instances per
action category. To activate as many neurons as possible in the
3D-CNN, we learn the parameter of the T-C3D on Kinetics
with the temporal encoding method. Experiments demonstrate
that pre-training on large-scale datasets significantly improves
accuracy.

E. Aggregation Functions

As shown in Equation 3 , aggregation functions are one
of the key components in the T-C3D architecture. In this
subsection, we insightfully describe and analyze four fusion
functions, e.g., mean pooling, maximum pooling, weighted
pooling, and attention pooling.

Average Pooling. The basic hypothesis of mean pooling
is to adopt the outputs of all clips equally for recognizing
actions. However, a few videos contain redundant or non-
discriminative clips that are unrelated to the events, therefore,
integrating these noisy clips might not precisely depict the
event character.

Maximum Pooling. The intuition of maximum pooling is
to select the most powerful clip for each action class and
represent the multiple clips with this strongest activation.
In some cases, one clip is not discriminative enough to
distinguish these similar actions. Thus, T-C3D degrades to the
prior work which learns the network weights with one clip
instance per video.

Weighted Pooling. This aggregation module aims to yield
a series of linear weights to operate element-wise weighted
linear integration over the outputs of each clip. We employ
this fusion method based on the observation that some action
is formed by several stages and these stages may have dif-
ferent effects on recognizing actions. In our experiment, we
implement the function using a convolutional layer with the
kernel of S × 1.

Attention Pooling. This aggregation module borrows the
memory attention block from the memory network [35]. The
basic idea therein is to utilize a neural model to read ex-
ternal memories through a differentiable addressing/attention
scheme. In our experiment, we consider the outputs of each
clip as the memory and cast feature weighting as a memory
addressing procedure.

Formally, let F s be the 3D-CNN feature map of sth clip,
then the fusion function filters them with a kernel q via
dot product, generating a series of corresponding weights es.
Then we conduct the softmax operator on them to produce

normalized weights ωs with
S∑

s=1
ωs = 1. The above two

procedures can be formulated as the Equation 5

ωs =
exp(qTFs)
S∑

j=1

exp(qTFj)

. (5)

F. Deep Compression.

As shown in Figure 2(b), we deploy the deep compression
technique to reduce the model size after the T-C3D is fully
trained. The model trained with the above temporal encoding
method is the input of deep compression. This algorithm
consists of the following five steps: sparsification, fine-tuning,
pruning, quantization, Huffman Coding. Then, we will de-
scribe each step in detail.

Sparsification. Inspired by [36], we employ the dense-
sparse-dense strategy to further increase the capacity of T-
C3D. In this work, we extend this idea to 3D-CNN for action
recognition by performing the Sparse and Dense procedures. In
essence, the Sparse operation is pruning the weights of T-C3D.
More specially, in each layer (both the convolution layers and
fully-connected layers), the weights are sorted by the absolute
value. Next, we set a single hyperparameter: the sparsity, the
percentage of weights. At the beginning of this procedure,
the sparsity is 0. We progressively prune the smallest weights
to achieve the specified sparsity. For example, if the sparsity
is set to 0.8, the sparsity will add 0.1 after one epoch. The
whole optimization procedure is stopped at 8th epoch. In this
procedure, we set the sparsity to 0.9 for fully-connected layers
and 0.85 for convolutional layers.

Fine-tuning. After obtaining the pruned model, we initial-
ized these previously-pruned weights as zero and the entire
network is trained with a smaller learning rate (1/10 the origi-
nal learning rate). In other words, we progressively subtract the
sparsity until it is 0. To some degree, the function of the sparse-
dense strategy is similar to the dropout. The Sparse step might
eliminate redundancy in 3D-CNN while the Dense procedure
possibly arrives at a better local minimum. The combination
of sparsification and fine-tuning can increase the capacity of
models and improve the recognition performance. More details
about experimental results are shown in Table VII.

Pruning. After performing the Sparse and Dense opera-
tions, we prune the network weights to get the sparse model.
The operating steps are the same as the Sparse strategy. In
this procedure, we set the sparsity to 0.95 for fully-connected
layers and 0.9 for convolutional layers. Therefore, the pruning
procedure reduces the number of parameters by 10× for T-
C3D model.

Following [19], we adopt the compressed sparse column
(CSC) format to store the sparse model weights. This format
requires 2a+m+1 numbers, where a is the number of non-
zero elements and m is the number of columns.

To further compress the T-C3D, we save the index difference
rather than the absolute position, and encode this difference
with 8 bits for the convolutional layer and 5 bits for the fully-
connected layer. When we need an index difference larger than
the bound, we employ the zero-padding scheme. For example,
when we encode weights with 4-bit and the difference exceeds
16, then we add a filler zero. More importantly, we can employ
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some library designed for optimizing the sparse matrix-vector
multiplication (e.g., cuSPARSE) to further accelerate the T-
C3D.

Quantization. We adopt the network quantization and
weight sharing strategy to compress the pruned model. In
essence, this scheme adopts the network quantization to reduce
the number of bits required to represent each weight and
weight sharing to reduce the weights required to represent.
We minimize the number of discriminative weights required to
store by sharing the same weight among multiple connections
and then fine-tune those shared weights.

First of all, the weights of T-C3D are clustered to several
bins, then the weights in the same bin share the one value.
Therefore, for every weight, we only need to store a small
index into a table of shared weights. During the training phase,
all the gradients with the same bin sum together, then multiply
by the learning rate and subtract from the shared centroids
from the last iteration.

In general, for k clusters (e.g., k shared weights), we only
need log2(k) bits to represent the index. Given a model with
n connections and each connection is encoded with b bits,
constraining the connections to have only k shared weights,
the compression rate r can be formulated as:

r =
nb

nlog2(k) + kb
. (6)

In our experiment, a k-means clustering algorithm is em-
ployed to group the weights for each layer of the fully trained
T-C3D. Then the weights that quantized into the same group
will share the same weight. Please note that the weights are not
shared across layers. For the pruned T-C3D, we can quantize
each convolutional layer using 8-bits (256 shared weights),
and 5-bits (32 shared weights) for each fully-connected layer
with a slight loss of accuracy.

Huffman Coding. A Huffman code is an optimal prefix
code widely adopted for lossless data compression. It employs
variable-length codewords to encode source symbols. The ta-
ble is derived from the occurrence probability for each symbol.
More common symbols are represented with fewer bits. Thus,
we can employ Huffman Coding to further compress the model
size of T-C3D.

We present the detail of this process in Algorithm 1. In
this work, the values and indexes of model weights are the
source symbols. First, we arrange symbols in descending order
of probabilities. Then, we merge two symbols of the lowest
probabilities into one subgroup. Next, we assign zero and
one to top and bottom branches, respectively. We conduct the
above step until there is not more than one unmerge node.
Finally, we read transition bits on the branches from top to bot-
tom to generate codewords. Experimental results demonstrate
that Huffman coding these non-uniformly distributed values
(weights and indexes) saves more than 20% of model storage.

IV. APPLICATIONS

A. Application I: Anomaly Recognition in Surveillance Videos

Recognizing anomaly in surveillance video [37], [38] can
stop illegal activities and guarantee public safety. For example,

Algorithm 1 Compress the model with Huffman Coding.
Input: the values and indexes of model weights

1: arrange symbols in descending order of probabilities
2: repeat
3: merge last two symbols into one subgroup
4: assign zero and one to the top and bottom branches
5: until there is not more than one unmerge node
6: read transition bits on the branches to generate codewords

Output: codewords for each symbol

if the algorithms can detect the anomaly, e.g., shooting or
arson, many lives can be saved and the property will be
protected. As its major functionality, our T-C3D framework
can support anomaly recognition for the public security de-
partment.

Recently, Sultani et al. [39] construct a novel anomaly
detection dataset that consists of 1,300 videos recorded from
real-world surveillance cameras. To prove our method can
achieve excellent accuracy, we test our method on this dataset
through the standard evaluation criteria. As shown in Table
VI, our method achieves competitive performance with the
state-of-the-art approaches.

In addition to the impressive recognition performance, the
proposed framework also has two evident advantages over the
current methods: speed and storage size, which are indispens-
able for popular applications. In our work, the final version of
T-C3D can process the videos at 969 frames per second which
is higher than real-time by a large margin. Our method reduces
the size of T-C3D by 25MB from 127MB without degradation
of accuracy. This allows fitting the model into on-chip SRAM
cache rather than off-chip DRAM memory. Our compression
method also facilitates the deployment of complex neural
networks in mobile applications where application size and
download bandwidth are constrained.

B. Application II: Video Classification

The proposed T-C3D framework can also be applied
to tackle the problem of video classification. With the
development of the Internet, people tend to utilize the videos
to share their life on the Internet. However, most videos on the
website are not tagged or wrong-labeled. Consequently, the
video-sharing website, such as YouTube, can make use of the
proposed method to assign the label for each video. Then the
consumer can retrieve the videos by searching the word of the
label. To evaluate the video classification accuracy of T-C3D,
we conduct extensive experiments on three action recognition
datasets, including trimmed video datasets and untrimmed
video benchmarks. In essence, the task of action recognition
is the problem of video classification. Experimental results on
these three datasets demonstrate that our method can fulfill
the task of video classification in practice.
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V. EXPERIMENTS

In this section, we first present the benchmarks and im-
plementation details of T-C3D. Next, we conduct extensive
experiments to explore suitable alternatives for training T-
C3D, such as integration module, computation complexity, and
processing speed. Finally, we provide the comparison between
our method and the state-of-the-art methods on classification
accuracy, speed, and model size.

A. Datasets and Evaluation Protocol

Action recognition. We empirically evaluate our T-C3D
framework on two popular action recognition datasets:
UCF101 [17], HMDB51 [40].

The UCF101 dataset consists of 13, 320 videos covered 101
action classes. Most videos in UCF101 have the 320 × 240
spatial resolution with 25 Frames Per Second (FPS) frame rate.
Every action category has at least 70 training examples. The
HMDB51 is a large-scale collection of real-world videos from
a variety of sources, e.g., movies and video-sharing websites.
This benchmark is constituted by 6, 766 video clips in total
from 51 action classes. Each prescribed split in HMDB51
contains 3, 570 training examples and 1, 530 test instances,
while an official split in UCF101 is composed of around 9, 500
training and 3, 700 testing instances.

For UCF101 and HMDB51, we utilize the official train-
ing/testing splits provided in original work and average the
accuracy over these splits as the evaluation scheme. Given the
GPU memory limits, we only conduct the exploration study on
the first split of UCF101. In terms of the judgement of speed,
the widely used FPS is adopted as metric and experiments are
performed on a Tesla K40 GPU and a CPU (E5-2620 v4).

Anomaly detection. Recently, Sultani et al. [39] construct
a novel anomaly detection dataset that consists of 1, 900
untrimmed videos recorded from real-world surveillance cam-
eras, with 13 realistic anomalies and normal actions. Following
[39], we adopt the frame-based Receiver Operating Character-
istic (ROC) curve and the corresponding area under the curve
(AUC) as the evaluation metric.

Action similarity label. The ASLAN dataset includes
3, 631 videos from 432 action categories. This dataset is
constructed to solve the problem of whether a given pair of
videos contain the same action. We follow the prescribed 10-
fold cross-validation with the data splits provided with this
dataset.

B. Implementation Details

No matter which task, each video is first parsed to produce
the clips as the input of the network. Besides, we employ two
kinds of data augmentation tricks to minimize the influence
of severe over-fitting. The first technique is randomly flip half
of clips. The other trick extends the random crop with scale
jittering and aspect ratio jittering techniques that are widely
adopted in image recognition. More specially, we randomly
select the width and height of the cropped region on three
scales 1, 0.875, and 0.75, yielding more training instances.
Next, all the cropped regions are resized into 112×112. Thus,

the network adopts an 8×112×112 input, the largest that can
fit within GPU memory limits and maintain a large enough
mini-batch. The network weights are trained in an end-to-
end manner with the mini-batch stochastic gradient descent
algorithm, where the momentum is 0.9 and the batch size is
8.

On the action recognition, we first train the network on
the Kinetics [18] to initialize network weights. On UCF101
and HMDB51, we randomly initialize the last fully-connected
layer and add a dropout module after the global average pool-
ing layer with a high dropout ratio (set to 0.8 in experiments)
to avoid over-fitting. The initial learning rate is set to 0.005
and decreased to its 1/10 after 8, 000 iterations and 15, 000
iterations. The whole optimization procedure is stopped at
20, 000 iterations. For HMDB51, the training strategy is the
same as that of UCF101, except that the iteration numbers are
adjusted according to the number of training instances.

On the anomaly detection, we consider it as an untrimmed
video classification task because we take the anomalous video
as one category and normal videos as the other category. On
the action similarity label, we only adopt the T-C3D as a
feature extractor to obtain the video visual features. Specially,
we extract the outputs of three layers in T-C3D, i.e., res5b,
pool5, and prob as the visual representation of clips. Then we
average all clip-level features and L2-normalize each feature.
Following the protocol of [41], we adopt the strategy of 10-
fold cross-validation with the provided data splits on this
dataset.

C. Exploration Study

In this subsection, we perform extensive exploration study
of the proposed framework from the following four per-
spectives: 1) sampling approaches for producing clips, 2)
the number of clips sampled from one video, 3) integration
function module, and 4) weights initialization strategy. Please
note that all experiments in this subsection are conducted on
the split 1 of UCF101 dataset.

Study on sampling methods. We study the influences of
two sampling schemes presented in Section III-C. Feeding
network consecutive frames obtains higher accuracy than
sampling non-consecutive frames (89.5% vs 89.2%). Although
each clip generated by the latter sampling scheme can cover
the entire video, the two adjacent frames might contain quite a
large-displace movement. The 3D-CNN possibly fail to model
large motion information.

Study on aggregation functions. Table I presents the
results of different aggregation functions. The effect of the
pooling operation on the results are analysed as follows.

The mean pooling adopts the outputs of all clips equally
for recognizing actions and utilize their average activations to
produce the whole video score. From this view, mean pooling
not only depicts sequences of clips but also generates the
visual feature of the overall video.

Maximum pooling concentrates on only one clip without
considering the outputs of other clips. In some cases, one
clip is not discriminative enough to distinguish these similar
actions. As a result, this aggregation method drives the T-C3D
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Table I: Exploration of different aggregation functions for T-
C3D on split 1 of UCF101 dataset.

Aggregation Functions Accuracy

Max pooling 88.1

Average pooling 89.4

Weighted pooling 89.1

Attention pooling 89.5

Table II: Exploration of different number of sampled clips for
T-C3D on split 1 of UCF101 dataset.

Snippets Number Accuracy

1 85.7

3 89.4

6 89.6

8 89.7

to depict the whole video just with one clip, which violates
the T-C3D’s original idea of capturing long-term information.

We employ weighted pooling and attention pooling based on
the observation that some action is formed by several stages
and these stages may have different effects on recognizing
actions. To some extent, these functions can be regarded as the
combination of the merits of maximum pooling and average
pooling, concentrating on the representation of discriminative
clips while reducing the negative influence of clips.

Surprisingly, both weighted pooling and attention pooling
do not increase the performance substantially. This is partly
because these datasets are clean with less irrelative background
clips. Thus, the simple aggregation function also can lead to
good classification performance. Concerning this observation,
we adopt average pooling as the default aggregation function
in the following sections.

Study on snippets number. We explore the effect of the
number of clips sampled from each video. As shown in Table
II, recognition accuracy is increasing when raising the number
of clips. Please note that the T-C3D weights are optimized
without the temporal encoding algorithm when the number of
clips is 1. According to Table II, we can easily observe that the
temporal encoding method can learn the discriminative feature
for action representation. We also see that there is only a slight
improvement in accuracy when the number of clips increases
from 3 to 8. Concerning the balance between training time
and accuracy, we sample 3 clips from each video in the later
experiments.

Study on parameter initialization. We list the results
of different parameter initialization schemes in Table III.
Obviously, initializing the T-C3D weights on a large-scale
dataset can increase the performance by a large margin.
Compared with Kinetics, the Sports-1M dataset is not well
labeled but has more training samples and more categories.
Thus, we can conclude that the quality is more critical than
quantity when initializing the weights on a large-scale dataset.
Besides, we share weights of networks during training as
this strategy not only reduces the model size but also avoids

Table III: Evaluation of different parameter initialization
schemes for T-C3D on split 1 of UCF101 dataset.

Parameter Initialization Accuracy

Training on scratch (share weights) 68.3

Pre-train on Sports-1M (share weights) 89.5

Pre-train on Kinetics (share weights) 92.5

Pre-train on Kinetics (not share weights) 91.4

Table IV: Comparison of speed and accuracy based on differ-
ent clip numbers and multi-scale strategies for T-C3D on split
1 of UCF101 dataset.

Input Accuracy FPS FLOPS(1010)

All clips per video (multi-scale) 92.8 45 96.5

S clips per video (multi-scale) 92.2 197 22.1

All clips per video 92.5 220 19.7

S clips per video 91.8 969 4.4

overfitting. According to Table III, sharing weights achieves
better performance due to fewer parameters.

Study on the balance between speed and accuracy. At
the testing stage, to find the trade-off between the speed and
accuracy, we also investigate both multi-scale testing strategy
and a single-center crop predicting scheme. As shown in Table
IV, feeding the network with 5 crops and their corresponding
mirror (multi-scale) slightly increases classification accuracy
but seriously degrade the speed. Besides, we also yield the
final video score with two methods: integrating all clips of
the video or just fusing S clips per video. Owing to the
temporal encoding method, which trains the network with
sparse sampling, only sampling S clips from one video thus
demonstrates competitive performance at fast speed. Moreover,
we also show another meaningful evaluation of floating point
operations (FLOPs) in Table IV. Following [12], we only
calculate FLOPs of networks forward process because the
complexity of preprocessing of videos (extract videos into
frames) is rather low. Given the same input size, we observe
that the setting obtained the high FPS always achieves the low
FLOPs.

D. Comparison with The-State-of-The-Art Methods

In this section, we compare the performance of T-C3D with
the state-of-the-art methods on four datasets; UCF101 [17],
HMDB51 [40], UCFCrime [39], ASLAN [41].

Results on the UCF101 and HMDB51 datasets. The
comparison of accuracy, speed, and model size is summarized
in Table V. These methods can be briefly grouped into three
categories:

1) Hand-crafted feature methods: this kind of method al-
ways consists of three steps, e.g., designing feature, fea-
ture encoding, classification. Most of them often employ
the SVM as the classifier. Thus, we use the format
“designed feature with feature encoding algorithm” to
represent this kind of approach: improved Dense Trajec-
tory with Fisher Vector [6], Dense Trajectory with Multi-
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Table V: Comparison of accuracy, speed and model size with the state-of-the-art methods on UCF101 and HMDB51.
Method Pre-train Dataset UCF101 HMDB51 FPS Model

Size(/M)

Hand-crafted

Feature

improved Dense Trajectory+FV [6] None 85.9 57.2 2 N/A

Dense Trajectory+MVSV [42] None 83.5 55.9 N/A N/A

Motion Vector+FV [43] None 78.5 N/A 133 N/A

One-stream

(RGB)

C3D [11] Sports-1M 82.3 51.6 314 300

C3D(3nets) [11] Sports-1M 85.2 N/A <314 900

Slow Fusion [8] ImageNet 65.8 N/A N/A 233

Res3D [12] Kinetics 85.8 54.9 220 127

Temporal Segment Network(RGB) [16] ImageNet 85.1 51.0 N/A 39

P3D [14] Sports-1M 88.6 N/A 141 98

3D-ResNet18 [44] Kinetics 84.4 56.4 220 252

3D-ResNet101 [44] Kinetics 88.9 61.7 <220 653

3D-ResNet152 [44] Kinetics 89.6 62.4 <220 898

Two-stream

(Based)

Two-stream(VGG-M) [9] ImageNet 88.0 59.4 14 658

Two-stream(ResNet50) [9] ImageNet 91.7 61.2 <14 184

Two-stream+LSTM [30] ImageNet 88.6 N/A <14 105

(Two-stream+C3D)+LSTM [31] ImageNet+Sports-1M 90.8 63.6 <14 958

LTC [13] Sports-1M 91.7 64.8 <14 305

AdaScan [10] ImageNet 89.4 54.9 <14 1026

ActionVLAD [15] ImageNet 92.7 66.9 <14 1026

TDD+FV [45] ImageNet 90.3 63.2 <14 691

Temporal Segment Network(TSN) [16] ImageNet 94.2 69.4 5 79

Enhanced Motion Vector [32] ImageNet 86.4 N/A 390 1037

T-C3D
Ours(Kinetics) Kinetics 92.5 62.4 220 127

Ours(Fast) Kinetics 91.8 62.8 969 127
Ours(Final) Kinetics 91.8 62.8 969 4

view super vector (MVSV) [42], and Motion Vector
(MV) with Fisher Vector [43];

2) One-stream methods: this kind of method only adopts
RGB frames as input, some methods utilize 3D convo-
lutional filter with the input of several RGB frames, e.g.,
C3D [11], Res3D [12], P3D [14], 3D-ResNet152 [44].
Meanwhile, some approach adjust the architecture of
neural networks, such as Slow Fusion [8], and Temporal
Segment Network (TSN) with input RGB [16];

3) Two-stream methods: The original two-stream method
[9] are fed with both single RGB frame and stacked
optical flows. A lots of improved version are proposed:
Two-stream+LSTM [30], LTC [13], AdaScan [10], Ac-
tionVLAD [15], TDD+FV [45] and TSN [16], and
Enhanced MV [32].

Among these three kinds of methods, the two-stream based
methods achieve the highest classification accuracy with the
slowest speed. This is primarily due to the extraction of optical
flow which is computationally expensive and contains fine
structures. Besides, whether one-stream or two-stream based
method, it exceeds hand-crafted methods on the accuracy.
Most deep neural networks integrate the feature extraction and
classification into one network, which is more convenient to
deploy. All of the two-stream based approaches are too com-
putationally expensive to process videos at real-time because
of the heavy calculation of optical flows. Thus, both designing
a light-weight medium to replace optical flow and improving

the 3D convolution network are promising directions.
Compared with hand-crafted features, T-C3D exceeds the

most powerful manually designed feature (iDT) encoded with
Fisher Vector. Besides, it achieves the highest accuracy and
fastest speed among one-stream based methods which only
utilize RGB frames as input. Especially, T-C3D consists of
18 layers, but it can achieve superior accuracy with the deep
3D-CNNs, such as 3D-ResNet101 [44] and 3D-ResNet152
[44]. Pre-training strategy indeed is significant for the action
representation and we report the pre-training dataset for each
method in Table V. According to Table V, Res3D [12], 3D-
ResNet101[44] and 3D-ResNet152 [44] adopt the same pre-
training dataset as ours. However, our approach can achieve
superior accuracy on both benchmarks with the faster speed
and smaller model size. According to the latest results of TSN,
it presents competitive accuracy of 87.3% in 340 fps speed
on UCF101 split 1 when using RGB and RGB Difference.
However, compared with our method, its accuracy is lower
and its computational complexity is higher.

Compared with two-stream based methods, our method
achieves better recognition performance than the original two-
stream architecture even with an extra deep CNN network.
More importantly, it attains competitive accuracy that is su-
perior or very close to some recently published work, such
as AdaScan [10] and ActionVLAD [15]. Despite outstanding
results on HMDB51 and UCF101, the computation overhead
of TSN is so expensive (5 fps) that it is difficult or impossible
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Table VI: Comparison of AUC with the state-of-the-art meth-
ods on UCFCrime dataset for anomaly detection task.

Method AUC

C3D(Binary classifier) [11] 50.0

Hasan et al. [46] 50.6

Lu et al. [47] 65.5

Multiple Instance Learning [39] 75.4

Ours 76.3

to apply in practice, especially with the real-time demand.
For processing speed, our method significantly outperforms

the state-of-the-art real-time method. Especially, the final
version of T-C3D can achieve the 969 FPS. As for model
size, after performing the deep compression, our method
beats other approaches by a large margin without sacrificing
the classification accuracy, which dramatically promotes the
application of action recognition in the real-world.

Results on the UCFCrime dataset. On this dataset, we
evaluate our method on the task of anomaly detection. This
task is quite challenging because the videos are long and
untrimmed. In other words, we only know the training videos
are normal or not, but we do not know when the anomaly
starts and ends. In our experiments, we regard the anomaly
detection as a binary classification while the anomalous activ-
ity recognition as a standard multi-class classification.

In Table VI, we can observe that our T-C3D outperforms all
state-of-the-art methods for anomaly detection. More specially,
T-C3D improves the very recent method in [39] from 75.4% to
76.3%, which adopts the multiple instance learning algorithm
[48], [49] to detect anomaly in surveillance videos. Unlike the
performance on UCF101 and HMDB51 for video-based action
recognition task, C3D fails to detect the anomaly since it
achieves the same accuracy as the random choice. However, T-
C3D can successfully detect the anomaly owing to its capacity
to capture the long-term information. This suggests that T-C3D
cannot only solve the real-world problem well but also achieve
remarkable performance on the challenging untrimmed video
datasets.

Compared with the performance of previous work on
UCF101 and HMDB51, popular datasets for recognizing daily
normal actions, anomalous activity recognition is more chal-
lenging due to its unique complexities, e.g., low resolution,
dark night condition. Thus, designing methods for anomalous
activity recognition should consider these unique properties.

Results on the ASLAN dataset. Table VII summarizes the
performance and comparison with the state-of-the-art methods
on the ASLAN dataset. Overall, our T-C3D performs con-
sistently better than both hand-crafted feature representations
and deep neural networks based approaches using the official
protocol of the area under the ROC curve (AUC). In general,
deep neural networks based methods exhibit better perfor-
mance than hand-crafted feature representations. Surprisingly,
C3D outperforms the powerful 2D-CNN (ResNet-152) by a
large margin on this challenging task. This is partly because
the action similarity labeling task requires more the scene or

Table VII: Comparison of AUC with the state-of-the-art meth-
ods on ASLAN dataset.

Method Model AUC

IDT+FV [6] metric 75.4

ResNet152 [33] linear 77.4

C3D [11] linear 86.5

P3D [14] linear 87.8

Ours linear 87.4

Table VIII: Accuracy and model size of T-C3D with deep
compression techniques.

Method Accuracy Model size

Baseline T-C3D 92.5 127

Sparse 92.6 127

Dense 92.9 127

Prune 92.9 13.5

Quantization 92.4 6.7

Huffman Coding 92.4 4.4

action features rather than the knowledge for recognizing some
specific objects. Compared with both shallow features and
deep neural networks such as C3D [11], we can observe the
apparent improvements. Besides, T-C3D contains 18 layers,
but it achieves comparable performance with the P3D [14]
which consists of more than 200 layers. This demonstrates
that T-C3D is endowed with the advantages of both extra deep
2D-CNN and C3D.

Effectiveness on deep compression. After training the
T-C3D, we make efforts to reduce the model size without
influencing the accuracy. Table VIII lists the classification
accuracy and model size when performing the following five
steps: sparse, dense, prune, quantization, Huffman Coding. In
all experiments about deep compression, we add a dropout
layer after the global average pooling layer with a high dropout
ratio (set to 0.8 in experiments). Interestingly, we can observe
that the sparse step increase accuracy due to its capacity to
avoid over-fitting. This suggests that the 3D-CNNs are always
redundant and tends to over-fitting, leading to degradation of
classification accuracy. Quantization procedure decreases the
performance because it is difficult to employ a small bit (8 bit)
to represent the extensive information. In summary, the model
size is reduced progressively by performing specific proce-
dures step by step. According to the final version result, we
significantly reduce the model size while preserving accuracy.

E. Visualization Results.

Besides performance, we would like to provide in-depth
analyses for T-C3D models. In this sense, we adopt the
technique of Class Activation Mapping (CAM) in [50] to
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Figure 3: Visualization of T-C3D models for action recognition using Class Activation Mapping (CAM) in [50]. Best seen in
color and with zoom.

understand what T-C3D has learned for action recognition.
We can utilize this technique to visualize the predicted class
scores on the given clip, highlighting the discriminative motion
parts learned by the T-C3D.

We randomly pick sixteen categories from the UCF101
dataset, such as shaving beard, yoyo, playing guitar, hair
cut, boxing punching bag and so on. We present the RGB
frame, RGB frame covered with heat-map results in Figure
3. The predicted categories are marked with white font on
the RGB frame. As illustrated in Figure 3, T-C3D model
could precisely localize the motion parts in both the small
motion and long-term motion. Take the category of playing
the piano as an example, our model captures not only the
interactions between the hands and piano but also the shook
back. The motion between the hands and piano is small
while the back motion requires long-term information to be
observed. Besides, considering “shaving beard” and “writing
on board” as the example, it is also easy to notice that T-C3D
predicts the right category through detecting discriminative
human-object interactions accurately. These above observa-
tions suggest that T-C3D models perform well on learning
action representation, which is also well reflected in our above
quantitative experiments.

VI. CONCLUSION

In this work, we first present T-C3D, an end-to-end
trainable framework equipped with the temporal encoding
method to model the multiple granularity features of videos.
Then, we integrate the deep compression techniques with
the temporal encoding algorithm to further accelerate the
employment of this framework. Besides, T-C3D can process
video at a faster speed than real-time. Experiments conducted

on four datasets over three tasks demonstrate the effectiveness
of the discriminative action representation produced by
T-C3D. Performance improvements are clearly observed
when comparing to the state-of-the-art real-time methods. In
the future, we will extend T-C3D for online processing to
recognize the actions once the frames are received instead of
presenting the entire video.
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