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Abstract—Heterogeneous Information Network (HIN) collecitve classification studies the problem of predicting labels for one
type of nodes in a HIN which contains multiple types of nodes multiple types of links among them. Previous studies have revealed
that exploiting relative importance of links is quite useful to improve node classification performance as connected nodes tend to
have similar labels. Most existing approaches exploit the relative importance of links either by directly counting the number of
connections among nodes or by learning the weight of each type of link from labeled data only. However, these approaches either
neglect the importance of types of links to the class labels or may lead to overfitting problem. We propose a Tensor-based Markov
chain (T-Mark) approach, which is able to automatically and simultaneously predict the labels for unlabeled nodes and give the
relative importance of types of links that actually improve the classification accuracy. Specifically, we build two tensor equations
by using the HIN and features of nodes from both labeled and unlabeled data. A Markov chain-based model is proposed and it is
solved by an iterative process to obtain the stationary distributions. Theoretical analyses of the existence and uniqueness of such
probability distributions are given. Extensive experimental results demonstrate that T-Mark is able to achieve superior
performance in the comparison and obtain reasonable relative importance of links.

Index Terms—Heterogeneous information network, Node classification, relative importance of links, Tensor, Markov Chain,
Iterative algorithm
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1 Introduction
In recent years, Heterogeneous Information Network (HIN)
[16] attracts a lot of attention. HIN is a complex network
which contians multiple types of nodes and multiple types
of links among these nodes. Collective classification [7] of
nodes through the links among nodes, especially in a complex
network, has attracted considerable attention in recent years
and can be applied in many fields ranging from the Internet
to social sciences, biology and many others [1], [2]. HIN is
effective in representing structured data consisting of multi-
ple links. For example, in research collaboration networks,
research papers (as nodes) are published in the different
areas and connected through citations (as links); in movie
recommendation networks, movies (as nodes) with various
genres are associated with each other in terms of directors
or actors (as links); in social networks, users (as nodes) are
interconnected by friendship networks with interesting topics
(as links).

Node classification in HIN has been extensively studied
[3], [4] in recent years, and has been successfully applied to
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many real-world applications, such as recommending specific
items for individuals [1], discovering communities in social
networks [2].

The most straightforward solution for this task is to
decompose the HIN consisting of multiple types of links
into a series of single-relational graphs [6]. Then, a set of
classifiers are learned separately, and each for one single-
relational graph. The decisions of the classifiers are combined
to make a final prediction [7], [8]. However, such a solution
neglects the relative importance of different types of links
among nodes. Other approaches [9], [10] try to estimate the
relative importance by tuning a weighting parameter for each
types of links. Although such strategies can be effective in
some cases, they may be prone to overfitting the training
data, particularly when there are noise links and the training
data is scant. Some other approaches [7], [11] try to exploit
the relative importance of links by counting the number of
connections among nodes through each type of links; such
approaches are straightforward and easy to implement, but
there are high risks that link counting may have only a weak
discriminative effect for the classification purpose.

In this paper, we propose a new approach, called Tensor-
based Markov chain (T-Mark), which is able to determine
the class labels of nodes and obtain the ranking of types
of links simultaneously. In T-Mark, we represent the HIN
by a tensor which is a multi-dimensional array. To be more
specific, we show an example of an authorship HIN over five
authors in Fig. 1(a). One author links to the others with
different types of links, such as “citation”, “research area”,
“collaboration”, and “same conference”. The graph structure
involves interconnected nodes with multiple types of links.
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As shown in Fig. 1(b), a three-dimensional array is used
to represent the relational dataset in Fig. 1(a). Each two-
dimensional font slice represents an adjacency matrix for a
single relation. The size of the tensor is (5 × 5 × 4), and the
(i, j, k) entry is nonzero if the ith node is connected to the
jth node by using the kth relation.

The main contribution of this paper is to propose a
method which can perform the relative importance of links
and node classification simultaneously in HIN. To achieve
this, we use a tensor to represent the HIN and construct
transition probability graphs for the Markov model by using
the tensor of relations and the description features of nodes.
We also design an iterative algorithm to solve the tensor
equations to obtain the stationary probability distributions
w.r.t. nodes and relations for different classes. The basic idea
is to imagine the nodes randomly walk in the transition
probability graphs and transfer their label information to
the connected neighbors. This leads to a new tensor-based
Markov chain model calculating the stationary probability
distributions of nodes and links as probability scores for node
classification and relative importance of links .

Intuitively, for the node classification task, the top-ranked
links tend to have a better discriminative effect for node
classification. One hopes that relatively important type of
links connecting the nodes with similar labels receives a high
ranking value. In our approach, we predict the label of a node
by 1) ordering a rank which respects the relative importance
of links first and 2) performing label propagation with a
random walk across the nodes based on their feature-based
similarities and the relative importance of connecting links.
To this end, we compute the rankings of types of links by 1)
finding a confidence distribution for node classification first
and 2) calculating the closeness among the large confidence
nodes connected by this type of link.

The paper is based on our previous work by Han et al.
[12]. Han et al. [12] proposed a Markov chain based model for
node classification. This paper extends the previous work in
the following directions:

• The tasks of node classification and link rankings in
HIN are discussed jointly. An extensive discussion of the
related work is also provided.

• We have extended the algorithm using an iterative mech-
anism to update the label matrix in each iteration to
enhance the performance.

• The proofs of the existence and uniqueness of the station-
ary probability distributions of nodes and links for the
proposed tensor based Markov chain model is presented.

• A computation complexity analysis of the proposed
method is conducted.

• An example of synthetic HIN is used to show the compu-
tational procedure of the proposed T-Mark algorithm.

• The experimental evaluations are performed on a wider
selection of datasets. A more detailed discussion of
the effect of relative importance of links is provided.
Parameters of the model are discussed and evaluated.

The rest of the paper is organized as follows. The related
work is introduced in Section 2. The notations and tensor
representation are described in Section 3. The proposed
methodology is detailed in Section 4. Theoretical analysis is
presented in Section 5. The experimental results are presented
in Section 6. Conclusions are given in Section 7.

2 Related Work

2.1 Collective Classification of HIN Nodes

Various approaches have been developed for classification in
HIN data [7], [13]. Some methods adopt the straightforward
stratege which decomposes the HIN classification problem
into a number of independent classification tasks. Eldardiry
and Neville [13] developed an iterative approach and incorpo-
rated the ensemble classifiers learned from heterogeneous net-
works into it to refine the prediction. Although these problem
transformation approaches are simple and easy to implement
because existing single-relational classification methods can
be used directly as components. This method learns each
type of link information sequentially and gradually reduce
the prediction error. However, it is clear that this method
is incapable of exploiting the relative importance of types of
links.

Other methods considered a transformation from the rela-
tional information to the features. For example, Vijayan et al.
[11] solved the multi-label collective classification in a multi-
attribute HIN, where each relational view was transformed
into a vector space by aggregating the label information. The
counting number of connections among nodes through a rela-
tion is used as its weighting value. Obviously, the classification
results are implicitly influenced by the weighting values of
relations. Kong et al. [3] proposed an approach for solving this
problem, which employs the meta-path method to transform
a heterogeneous network to multiple relations. These relations
are considered as a sequence of feature vectors by aggregating
the label information of neighbors. This method is used as a
baseline in our experiments. However, there is a high risk that
the connection counting has only weak discrimination effect
for the classification.

Another approaches were proposed to estimate the rela-
tion relevance by tuning the parameter values. For example,
Jacob et al. [14] transformed the relations into a feature vector
and then defined an edge function with multiple parameters
for the relations. Shi et al. [9] developed an objective func-
tion for minimizing an empirical loss, which was solved by
stochastic gradient boosting trees. In this approach, a set of
weighting parameters was used for judiciously filtering out the
data sources that were noisy. Satchidanand et al. [10] modeled
multiple relations as a set of hypergraphs and performed
parameter selection for these different hypergraphs. The deep
learning methods also train many weights to model the neural
networks. The compared Graph Inception [39] method in
our experiments shows a decrease when the training data
increases. It may be that too many weights will generate an
overfitting problem.

Eswaran et al. [15] proposed ZooBP to perform on hetero-
geneous graphs with multiple types of nodes and links. Ji et al.
[16] proposed an algorithm, RankClass, for both classification
and ranking of the nodes in the heterogeneous network. This
method assumed that the important node within each class
played more important roles for classification. Our proposed
T-Mark is different from these methods, where we aim to
classify the nodes with feature descriptions and rank the
connecting links simultaneously.
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(a) (b)

Fig. 1. An example of authorship network. (a) Examples of multiple types of connections; (b) A tensor representation of the data.

2.2 Tensor-based Relational Learning

A tensor is a multi-dimensional array which is powerful
and versatile to model HIN. Tensor-based relational learning
techniques have been extensively used in many applications,
such as community discovery [17], [18], link prediction [19],
and node ranking [21].

A natural extension to learning multiple relations is to
stack the matrices to be factorization and applying tensor
factorization methods for analyzing multi-way interactions
among nodes [19]. These approaches, which induce some
inherent sharing of parameters between different nodes and
links, have been applied successfully in many applications,
such as community discovery [18], link prediction [20], and
ranking [21].

Recently, Ng et al. [22] proposed a framework, MultiRank,
to seek the stationary probability distributions of tensors
for the ranking problem in HIN. Later on, this approach
is employed for computing the hub, authority scores of an
node, and the relevance scores of relations [23]. The approach
is also used for discovering the community structure [24].
Subsequently, Li et al. [25] extend the method for image
retrieval, where an image is represented by several visual
concepts. Different from these approaches, we focus on the
problem of node classification and relation ranking in which
the node features and the labels information of each node
are taken into account. A tensor-based transition probability
graph with both labeled and unlabeled data is constructed.
This leads to a semi-supervised learning approach for node
classification and link ranking.

Various researchers have considered tensor factorization
techniques to analyze multi-way interactions among nodes in
HIN. For instance, Sun et al. [26] applied a 3-way Tucker
decomposition on the user, query-term and web page data
in order to personalize web search. Lin et al. [17] proposed
a novel relational hypergraph representation for modeling
multi-relational and multi-dimensional social data and stud-
ied an efficient factorization method for community extraction
on a given meta-graph. Nickel et al. [19] proposed a three-way
tensor factorization approach, RESCAL, which is a symmetric
Tucker model, to exploit the collective learning effect. In
these approaches, the number of decomposition in the tensor
factorization is artificially selected, and the computation may
not be unique.

3 Notations and Tensor Representation
We use a graph G = (V, E) to represent a HIN, where V
denotes the multiple sets of nodes where each set includes one
type of nodes, E denotes multiple sets of edges between any
two nodes in V , each corresponding to one type of links. Each
edge connects two nodes with a specific type of link. Each node
vi is represented by a feature vector fi ∈ Rd and is associated
with at least one labels. Suppose there are n nodes, m types
of links, and q possible labels. The problem is to predict the
class labels of unlabeled nodes in HIN with the relational
information and attribute feature of nodes. Simultaneously,
we obtain the rankings of links associated with each class
label to analyze the relatively important links.

3.1 Tensor Representation
We use a three-way tensor to represent the multiple rela-
tions among nodes [22]. We call A=(ai,j,k) a 3-dimensional
tensor of size (n × n × m), where i, j = 1, 2, . . . , n, and
k = 1, 2, . . . ,m. We refer (i, j) to be the indices for nodes and
k to be the indices for relations. Specifically, if the ith node is
linked to the jth node through the kth types of link, then ai,j,k
is set to 1. A is a nonnegative tensor for ai,j,k ≥ 0,∀i, j, k.

In order to leverage the labeled and unlabeled nodes
simultaneously for semi-supervised node classification and
relation ranking, we construct a transition probability graph
for a Markov chain of all the labeled and unlabeled nodes,
and then make use of the idea in topic-sensitive PageRank
[27] and random walk with restart [28] to propagate the label
information from labeled data to unlabeled data.

In the graph, the Markov transition probabilities
O=(oi,j,k) and R=(ri,j,k) w.r.t. nodes and links can be
obtained by normalizing the entries of A as follows:

oi,j,k =
ai,j,k
n∑

i=1
ai,j,k

, i = 1, . . . , n, (1)

ri,j,k =
ai,j,k

m∑
k=1

ai,j,k

, k = 1, . . . ,m. (2)

Here, oi,j,k represents the probability of visiting the ith node
by given that jth node is currently visited and the kth relation
is used, and ri,j,k represents the probability of using the kth
relation given that ith node is visited from the jth node.
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Let Xt = [Xt = 1, . . . , Xt = n] and Zt = [Zt =
1, . . . , Zt = m] be the random variables referring to visiting
any particular node and using any particular type of links
respectively at the time t. The transition probabilities can be
written as follows:

oi,j,k = P [Xt = i |Xt−1 = j, Zt = k ] ,

ri,j,k = P [Zt = k |Xt = i,Xt−1 = j ] .

If there is a dangling node (ai,j,k is equal to 0 for all
1 ≤ i ≤ n [29]), the values of oi,j,k can be set to 1/n (an
equal chance to visit any object). Similarly, ri,j,k can be set to
1/m (an equal chance to use any relation), if ai,j,k is equal to
0 for all 1 ≤ k ≤ m. We call O and R transition probability
tensors which are the analog of transition probability matrices
in Markov chains [30].

We assume that any two nodes in the HIN can be
connected via some relations, so A is irreducible. As we would
like to determine the stable probability distributions of both
nodes and links simultaneously, irreducibility is a reasonable
assumption that we will use in the following analysis and
discussion. It is clear that when A is irreducible, the two
corresponding tensors O and R are also irreducible.

3.2 An Example

We select a subgraph from the DBLP bibliography network
as an example (see Fig. 2(a)) to show the computational
procedure of the proposed T-Mark algorithm. This HIN
consists of 4 publications (as nodes), i.e., p1, p2, p3 and p4, and
3 types of relations, i.e. ”co-author”, ”citation”, and ”same
conference”. For the ”co-author” relation, the publications p1
and p2 have the same author “Jiawei Han”. The publication
p3 cites the publications p2 and p4, and the publication p4
cites the published p1. The four publications are published at
the TKDE 2008, WWW 2016, WWW 2019, and SIGMOD
2014. Thus the publications p2 and p3 are pulicated at the
same conference WWW. We construct a tensor A of size
(4 × 4 × 3) to represent this HIN (see Fig. 2(b)). Each front
slice in the tensor corresponds to one relation in the HIN.

(a) (b)

Fig. 2. (a)An example of bibliography HIN with 3 types of relations;
(b) A tensor representation for the HIN.

For the simplicity of calculating the tensors O and R,
we give the 1-mode and 3-mode matricization of tensor A
which is denoted by A(1) and A(3). The size of matrix A(1)

is 4× 12, and the size of matrix A(3) is 3× 16.

A(1) =


0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

,

A(3) =

 0 0 0 0 0 0 0 0 0 1 0 1 1 ...
0 0 0 0 0 0 1 0 0 1 0 0 0 ...
0 0 0 1 0 0 0 0 0 0 0 0 1 ...

.
We normalize the nodes of A based on Eq. (1) and Eq. (2)
to obtain O and R, respectively. Equivalently, we normalize
each column of A(1) to obtain the tensor O (see Fig. 3) and
each column of A(3) to obtain the tensor R (see Fig. 4).

Fig. 3. An example of tensor O.

Fig. 4. An example of tensor R.

4 Methodology
In our approach, we consider a random walk on transition
probability graphs. The graph is constructed by using the
relation connections and feature-based similarities of both
labeled and unlabeled data. It is a semi-supervised learning
process for label propagation. In the HIN collective classi-
fication problem, the links among nodes can naturally be
considered as the transition probability for label propagation.
We proposed a tensor-based Markov chain model. An iterative
algorithm is developed to solve a set of tensor equations of
the proposed model to obtain the stationary distributions
of nodes and types of links for classification and ranking,
respectively.

4.1 Transition Probabilities from Relation Connections
Let x be a column vector of length n and z be a column
vector of length m. Let A×̄1x×̄3z be a vector in Rn such
that

(A×̄1x×̄3z)i =
n∑

j=1

m∑
k=1

ai,j,kxjzk, i = 1, . . . , n.
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Similarly, A×̄1x×̄2x is a vector in Rm such that

(A×̄1x×̄2x)k =
n∑

i=1

n∑
j=1

ai,j,kxixj , k = 1, . . . ,m.

Given two transition probability tensors O and R, we
study the following probabilities:

P [Xt = i] =
n∑

j=1

m∑
k=1

oi,j,k × P [Xt−1 = j, Zt = k] , (3)

P [Zt = k] =
n∑

i=1

n∑
j=1

ri,j,k × P [Xt = i,Xt−1 = j] , (4)

where P [Xt−1 = j, Zt = k] is the joint probability distribu-
tion of Xt−1 and Zt, and P [Xt = i,Xt−1 = j] is the joint
probability of Xt and Xt−1. Here we employ a product form
of individual probability distributions for joint probability
distributions. Under this assumption, (3) and (4) become

P [Xt = i] =
n∑

j=1

m∑
k=1

oi,j,k × P [Xt−1 = j]P [Zt = k] ,

P [Zt = k] =
n∑

i=1

n∑
j=1

ri,j,k × P [Xt = i]P [Xt−1 = j] .

Here, we seek to achieve a stationary distribution of nodes,
denoted by x̄ = [x̄1, x̄2, . . . , x̄n]

T with
n∑

i=1
x̄i = 1 and a

stationary probability distribution of relations, denoted by
z̄ = [z̄1, z̄2, . . . , z̄m]

T with
m∑

k=1
z̄k = 1, where

x̄i = lim
t→∞

P [Xt = i] , and z̄k = lim
t→∞

P [Zt = k]

for 1 ≤ i ≤ n, and 1 ≤ k ≤ m.
Using the above equations, we have

x̄i =
n∑

j=1

m∑
k=1

oi,j,kx̄j z̄k, i = 1, 2..., n, (5)

z̄k =
n∑

i=1

n∑
j=1

ri,j,kx̄ix̄j , k = 1, 2, ...,m. (6)

Formally, under the tensor operations for (5) and (6),
we compute the stationary probabilities of the nodes and
relations by solving the following two tensor equations:

x̄ = O×̄1x̄×̄3z̄, (7)

z̄ = R×̄1x̄×̄2x̄. (8)

4.2 Transition Probabilities from Node Features
We consider the case where the ith node is represented by
a description feature of a d-dimensional vector fi ∈ Rd. In
our approach, we also construct a feature-based transition
probability graph which employs the similarities among the
nodes for the classification task. In order to compute the
underlying node similarities, many distance metrics have
been developed, such as Neighborhood Component Analysis
(NCA) [31], Lare Marign Nearest Neighbor (LMNN) [32],
Information-Theoretic Metric Learning (ITML) [33], cosine
similarity, hamming distance.

Specifically, we compute the transition probabilities using
cosine similarity which is given by

cos (fi,fj) =
fi · fj

∥fi∥ ∥fj∥
,

where fi and fj are the feature vectors of the ith and jth
nodes, respectively.

We construct an n-by-n matrix C = (ci,j) where
ci,j = cos(fi,fj) indicates the cosine similarity between the
ith and jth nodes. For each column, the sum of the transition
probability matrix equals one. We obtain the transition
probability matrix W by normalizing C w.r.t. each column,
n∑

i=1
wij = 1, j = 1, 2, ..., n.
We obtain the stable probability distributions of nodes on

the feature similarities based transition probability graph by
solving the following equation:

x̄ = Wx̄, (9)

with
n∑

i=1
x̄i = 1.

4.3 An Example
According to the synthetic example that is proposed in section
3.2, we obtain two transition tensors O and R. Suppose the
cosine similarity matrix C for the nodes is given as

C =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

,
we can obtain the transition probability matrix W by

normalizing each column of the matrix C,

W =


0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0.5 0
0.5 0 0 0.5

.
For this node classification task, there are two class labels,

i.e., data mining (DM) and computer vision (CV). Assuming
that p1 and p2 are labeled nodes assigned with DM and CV,
respectively. The label assignment vector l for two class labels
DM and CV l = [lDM , lCV ] is given as

l =


1 0
0 1
0 0
0 0

.
The task is to predict the class labels of unlabeled nodes

p3 and p4. We initialize x and z as xDM
0 = [1, 0, 0, 0]T ,

xCV
0 = [0, 1, 0, 0]T , z0 = [ 13 ,

1
3 ,

1
3 ]

T . By using Algorithm
1, we obtain the stationary probability distributions xDM ,
xCV , and z after finite iterations,

[xDM ,xCV ] =


0.90 0
0 0.90
0 0.10

0.10 0

,

[zDM , zCV ] =

 0.33 0.33
0.30 0.37
0.37 0.30

.
Regarding x, we can obtain the probabilities of an un-

labeled node belonging to different classes. The ground-true
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classes for p3 and p4 are CV and DM . One can observe from
x that the p3 and p4 has a larger probability to the class CV
and DM , respectively. This observation demonstrated that
our proposed method can achieve an accurate result for the
node classification.

Moreover, we can obtain the relevance of a relation
to different classes according to the stationary probability
distribution of z. One can see from Fig. 2(a) that the nodes p1
and p4 have one green undirected edge (i.e., the ”co-author”
relation) and one red directed edge (i.e., the ”citation”
relation). The probabilities of these two relations for DM
class are 0.37 and 0.33, respectively, which are both higher
than the blue edge (i.e., the ”same conference” relation). This
result shows that our method is able to provide a reasonable
ranking for the relations.

4.4 The ICA-based T-Mark Algorithm
We propose a novel tensor-based Markove chain method,
called T-Mark, to solve the node classification and relation
ranking problem. The pseudo-code of the T-Mark algorithm
is described in Algorithm 1. We start with a random walker on
the labeled nodes. The walker iteratively visits the neighbor-
ing nodes with the transition probabilities O and W given
in (7) and (9). At each step, it has probability α(0 < α < 1)
to return the label information of labeled nodes. We set
a weighting parameter γ to scale the relation and feature
information, which is denoted as O and W , respectively. We
use β = γ×(1−α) to simplify the description of the equation.
The walker with stationary probabilities will finally stay at
different nodes. Formally, these stationary probabilities are
computed using the following equation:

x̄ = (1− α− β)O×̄1x̄×̄3z̄ + βWx̄+ αl, (10)

where l is an assigned probability distribution vector of size
n referring to the labeled nodes in the current label c. To
construct l, one simple way is to use a uniform distribution
of the nodes with the class label c(c = 1, 2, . . . , q). More
precisely,

[l]i =

{
1/nc, if c ∈ Yi;
0 , otherwise. (11)

where nc is the number of nodes associated with the label c
in the labeled dataset, Yi is the label set of ith node.

ICA [7] is proposed for collective classification which is
an iterative algorithm. The core idea of ICA is to update
the feature representation by accepting the high confidence
labels of unlabeled nodes in each iteration. We use this basic
idea to update the start vector of labeled nodes l. We use the
training data to set the vector l in the initialization. After each
iteration of the Markov chain model, we update the vector l
to accept some highly confident labels with high probability
value in the prediction matrix. We set a relative threshold λ
to control the acceptable label.

[l]i =

{
1/nl, if c ∈ Yi or [x]i > λ;
0 , otherwise. (12)

where nl is the number of nodes considering associated with
the label c in the labeled dataset and with correponding
probability value larger than the threshold λ.

In this paper, we present an iterative algorithm to solve the
tensor Eq. (10) and (8) simultaneously. After finite iterations,

we can obtain the stationary probability distributions of nodes
and relations w.r.t. different class labels. We can obtain
the top relevant relations which strongly related with a
specific label based on the stationary probability values of
relations w.r.t this class label. We can also use the stationary
probability distributions of the nodes over different classes as
the classification confident values to predict the labels for the
unlabeled nodes.

Algorithm 1 The T-Mark Algorithm.
Input: O, R, W , l0, x0, z0; Parameters: α, β, ε;

1: repeat
2: set t = t+ 1;
3: if t > 2
4: then Update l with equations(12);
5: xt = (1− α− β)O×̄1xt−1×̄3zt−1 + βWxt−1 + αl;
6: zt = R×̄1xt×̄2xt;
7: until ∥xt − xt−1∥+ ∥zt − zt−1∥ < ε;

4.5 Computational Complexity
The computational cost of T-Mark depends on the mul-
tiplication operation of tensor in the Algorithm 1. Since
the tensor is the high-dimensional vector, we analyze the
computational complexity of the tensor operation in step 2
and 3 (see Algorithm 1). The size of tensor O and R both
are n × n × m. The multiplication operation performs on
each element of tensor. Thus the computational complexity
of tensor operation is O(n2m). However, the zero element of
tensor does not perform the multiplication operation. Because
the tensor is the representation of the relations among nodes,
the tensor is sparse. We assume that there are D nonzero
entries in O and R, the cost of the tensor calculations are of
O(D) arithmetic operations.

Let T be the iteration number of the proposed algorithm.
The cost of obtaining the stationary distributions of x and z
is O(TD). For the classification, we need to get the stationary
distributions of x and z for each label. Assume that we have
q possible labels, the total cost of this algorithms is O(qTD).

5 Theoretical Analysis
In this section, we show the existence and uniqueness of the
stable probability distributions of x̄ and z̄, and then conduct
the convergence on the T-Mark algorithm.

Let Ωn = {x = (x1, x2, · · · , xn) ∈ Rn|xi ≥ 0, 1 ≤
i ≤ n,

∑n
i=1 xi = 1} and Ωm = {z = (z1, z2, · · · , zm) ∈

Rm|zk ≥ 0, 1 ≤ k ≤ m,
∑m

k=1 zk = 1}. Also, let Ω =
{[x, z] ∈ Rn+m|x ∈ Ωn, z ∈ Ωm}. Ωn, Ωm and Ω are closed
convex sets.

Theorem 1. Suppose O and R are constructed in Section 4,
0 ≤ α, β < 1, and l ∈ Ωn is given. For any x ∈ Ωn and
z ∈ Ωm, we have (1− α− β)O×̄1x×̄3z + βWx+ αl ∈ Ωn

and R×̄1x×̄2x ∈ Ωm.

Proof.

(1− α− β)
n∑

i=1

[O×̄1x×̄3z]i + β
n∑

i=1

[Wx]i + α
n∑

i=1

[l]i = 1,

m∑
k=1

[R×̄1x×̄2x]k = 1.
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Using Theorem 1, we prove the existence of positive
solutions to the tensor equations in (10) and (8) in Theorem
2.

Theorem 2. Suppose O and R are constructed in Section 4.
If O and R are irreducible, then there exist x̄ ∈ Ωn and
z̄ ∈ Ωm such that the following equalities hold:

(1− α− β)O×̄1x̄×̄3z̄ + βWx̄+ αl = x̄, (13)

and

R×̄1x̄×̄2x̄ = z̄ (14)

where 0 < α < 1, 0 ≤ β < 1, and l ∈ Ωn is given. Moreover,
both x̄ and z̄ are positive.

Proof. We complete the proof by reducing the problem into
a fixed point problem. We first define the following mapping
T : Ω → Ω

T ([x, z]) = [(1− α− β)O×̄1x×̄3z + βWx+ αl,Rx2].

It is clear that T ([x, z]) ∈ Ω) when [x, z] ∈ Ω T , and T is
continuous. According to the Brouwer Fixed Point Theorem,
there exists [x̄, z̄] ∈ Ω such that T ([x̄, z̄]) = [x̄, z̄], i.e.,
(1−α−β)O×̄1x̄×̄3z̄+βWx̄+αl = x̄ and R×̄1x̄×̄2x̄ = z̄.
Next we show that x̄ and z̄ are positive. Suppose x̄ and z̄
are not positive, i.e., there exist some entries of x̄ and z̄ zero.
Let I = {i|x̄i = 0}, J = {j|x̄j = 0} and K = {k|z̄k = 0}.
Again I, J are proper subsets of {1, 2, · · · , n} and K is a
proper subset of {1, 2, · · · ,m}. Let δ = min{min{x̄i|i /∈
I},min{z̄k|k /∈ K}}. We must have δ > 0. Since x̄ and z̄
satisfy O×̄1x̄×̄3z̄ = x̄, we have

(1− α− β)
n∑

j=1

m∑
k=1

oi,j,kx̄j z̄k + β
n∑

j=1

wi,j x̄j + αli = x̄i = 0,

∀i ∈ I.

Let us consider the following inquantity:

(1− α− β)δ2
∑
j /∈J

∑
k/∈K

oi,j,k

≤(1− α− β)
∑
j /∈J

∑
k/∈K

oi,j,kx̄j z̄k

≤(1− α− β)
n∑

j=1

m∑
k=1

oi,j,kx̄j z̄k + β
n∑

j=1

wi,j x̄j + αli = 0,

for all i ∈ I. Hence we have oi,j,k = 0 for all i ∈ I and for all
j /∈ J for any fixed k /∈ K. Thus the matrices (oi,j,k)(k /∈ K)
are reducible. It implies that O is reducible. By using the
similar argument and considering the equation R×̄1x̄×̄2x̄ =
z̄, R is also reducible. According to these results, we obtain
a contradiction. Hence both x̄ and z̄ must be positive.

In [34], it has been given a general condition which
guarantees the uniqueness of the fixed point in the Brouwer
Fixed Point Theorem, namely, (i) 1 is not an eigenvalue of
the Jacobian matrix of the mapping, and (ii) for each point in
the boundary of the domain of the mapping, it is not a fixed
point. In our case, we have shown in Theorem 2 that all the
fixed points of T are positive when O and R are irreducible,
i.e., they do not lie on the boundary ∂Ω of Ω.

Theorem 3. Suppose O and R are constructed in Section
4, and they are irreducible. If 1 is not the eigenvalue of
DT ([x̄, z̄]) for all [x̄, z̄] ∈ Ω/∂Ω, then the solution vectors
denoted by x̄ and z̄, are unique.

According to Theorem 3, when xt = xt−1 and zt = zt−1

in T-Mark algorithm, then we obtain the unique solution
vectors x̄ and z̄ for O×̄1x×̄3z = x and R×̄1x×̄2x = z.
When xt ̸= xt−1 and zt ̸= zt−1, there exists a subsequence
[xs, zs] converging to [x̄, z̄] by using the fact that Ω is
compact in Rn+m. As we have shown that the solution
vectors are unique, it implies that [xt, zt] converges (up to
a subsequence) to [x̄, z̄] which are the stationary probability
vectors giving T-Mark values of nodes and types of links
respectively for classification purpose effectively.

6 Experimental Results and Analysis
In this section, we conduct experiments to evaluate the
performance of the proposed algorithm, we adopt several
state-of-the-art methods as the baselines.

• ICA: It is commonly used as a comparison in collective
classification [7]. For multiple types of links, we aggregate
them all into one type of link for this algorithm.

• Hcc: Kong et al. [3] proposed this method for hetero-
geneous network classification, in which the meta path-
based linkages among nodes can be viewed as multiple
types of links.

• Hcc-ss: We employ a semi-supervised approach semiICA
[8] to replace the base classifier ICA in Hcc.

• wvRN+RL [37]. It is a collective classification method
which transfers content and structure information to the
relationship among nodes, respectively. Hence, it can
solve multi-relational classification problems.

• EMR: C. Preisach & L. Schmidi-Thieme [6] used an en-
semble to combine multiple types of links while ignoring
their differences. We train an ICA classifier for each type
of link with SVM as the base classifier which votes for
the final prediction.

• Highway Network (HN): Srivastava et al. [38] proposed
a type of neural network layer that uses a gating mech-
anism to control the information flow through a layer.
Stacking multiple highway layers allow for the training
of deep networks.

• Graph Inception (GI): It designed a graph convolution-
based model for learning the deep relational features
in HINs and proposed the graph inception module to
mix both complex and simple dependencies among the
instances [39].

6.1 Performance Evaluation on DBLP Datasets
DBLP is reported by J. Ming et al. [35] which is extracted
from DBLP1 and contains publications from 20 computer
science conferences on four research areas: database (DB),
data mining (DM), artificial intelligence (AI), and information
retrieval (IR). Each of them contains five conferences, see
Table 1. Each publication of this dataset includes the authors,
title, conference, and research area, besides the research area
of all the authors and conferences. For this dataset, our task

1. http://dblp.uni-trier.de/
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is to identify the interested area of each author based on their
content and linkage information. For each author, a bag-of-
words representation of all the publication titles published
by the author is regarded as its content information. For
connecness among authors, each conference is regarded as
one type of links, and two authors have one type of link if
they have published papers on the corresponding conference.
Each author is assigned with a class label indicating his/her
research area.

TABLE 1
The conferences of each research area in DBLP.

DB DM AI IR
VLDB KDD IJCAI SIGIR
SIGMOD ICDM AAAI CIKM
ICDE PAKDD ICML ECIR
EDBT SDM ECML WWW
PODS PKDD CVPR WSDM

In this experiment, we evaluate the performance of T-
Mark algorithm on DBLP dataset and report the result in
Table 3 We randomly pick up {10, 20, 30, 40, 50, 60, 70, 80,
90}% of the examples as the training data, and the remaining
for testing. In order to randomize the experiments, for each
given split, 10 test runs were conducted. The mean and
standard deviation of the performance are reported in the
table. The experimental results reveal that:

• Our algorithm always results in the best performance
among all compared methods. Besides, the wvRN+RL
method transforms the attribute feature to one type of
link, and treat it equally with other linkage information.
The results show that it is not competitive with our T-
Mark method.

• Our T-Mark method outperforms the EMR and ICA
approaches which both neglect the relative importance of
links. This suggests the importance of the link relevance
information in predicting the labels of nodes in the HIN.

• Both ICA and wvRN+RL methods without considering
the semi-supervised learning mechanism suffer a perfor-
mance degradation when there are less than 20% la-
beled data. Our method achieves significant improvement
against these baselines in this case, which suggests the
superiority of the idea of leveraging both labeled and
unlabeled data in our algorithm.

Table 2 shows the top-5 conferences in each research area
based on the relative importance of links results of our pro-
posed method. The boldface ones indicate these conferences
are also given in Table 1. Compared to Table 1, we can see that
the top-4 conferences (oerstriking value) are included in the
research areas based on the ranking result. This phenomenon
is consistent with our expectation. For the other conferences
that are not in top-5, PODS rank 6 in Database, PKDD
ranks 6 in Data Mining, ECML ranks 6 and CVPR ranks
11 in Artificial Intelligence, WSDM ranks 19 in Information
Retrieval. In general, the conference link ranking results have
shown their topic preference of these four research areas. This
observation reflects that the ranking results of our proposed
method for the conferences of the DBLP dataset is reasonable.

TABLE 2
Top 5 conferences of each research area given by T-Mark.

DB DM AI IR
VLDB KDD IJCAI SIGIR
SIGMOD ICDM AAAI CIKM
ICDE PAKDD ICML ECIR
EDBT SDM ECML WWW
CIKM ICDE SIGIR IJCAI

6.2 Performance Evaluation on Movies
This Movie dataset is collected from IMDB 2 and Rotten
Tomatoes 3, which is published by GroupLeans research group
4. Each movie contains the tags, director, and genres. For this
dataset, our task is to predict the genre for each movie based
on their tags and director information. The tags are given by
users, and we count the number of users give the same tag
for one movie. A bag-of-word representation of these tags is
considered as the content feature of movies. Each director is
regarded as one type of links. If two movies are directed by the
same director, they are related to each other. Each movie is
assigned one of five genres, i.e., adventure, romance, thriller,
war, documentary as its class label.

Table 4 shows the node classification accuracy of different
methods on the Movies dataset. In the previous experiments,
we have shown that the Hcc and Hcc-ss algorithms can get
much better results than the other compared algorithms. In
this experiment, we can see the EMR approach are the best.
The reason is that each type of link is sparse. This dataset has
a much larger scale and the connections among nodes are more
sparse. For simplicity, we only select five classic types of movie
genres to show the effect of the director links for predicting
movie genre and ranking the directors in each genre.

We can see from Table 4 that the EMR algorithm gets
the best performance. And the performance of our algorithm
is better than the other algorithms. The reason is that the
director links are too sparse. While the EMR algorithm
aggregates all of the links, it leads to better performance than
our proposed T-Mark algorithm. But the T-Mark algorithm
also could get a better performance when even using only
20% training data compared with Hcc and Hcc-ss using
90% training data. Even though 90% of nodes are used as
labeled data for training, the test accuracy is still undesirable,
indicating that the director and the tag information from
users are not sufficient for this task. Maybe more descriptions
about the movie itself such as the story, video, music, costume,
make-up, and, vision design, would increase the precision of
the genre prediction.

Table 5 shows the top 10 directors of each movie genre.
The ranking results is based on the director probability of
each genre given by our proposed method. We can see that,
for the 439 directors, they almost have different rankings in
five genres, which infers that most directors prefer one specific
type of movie. This result is consistent with our common sense
that each director usually has one own style in productions.
For example, the top 1 director of the documentary, Ivan
Reitman, does not appear in other top 10. While some

2. http://www.imdb.com
3. https://www.rottentomatoes.com/
4. https://grouplens.org/datasets/hetrec-2011/
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TABLE 3
The node classification accuracy on DBLP.

Percentage T-Mark TensorRrCc GI HN Hcc Hcc-ss wvRN+RL EMR ICA
0.1 0.928 0.927 0.277 0.683 0.914 0.917 0.805 0.789 0.860
0.2 0.933 0.933 0.243 0.725 0.924 0.927 0.876 0.818 0.919
0.3 0.935 0.935 0.267 0.753 0.929 0.929 0.880 0.835 0.922
0.4 0.935 0.935 0.304 0.770 0.930 0.929 0.888 0.847 0.927
0.5 0.939 0.938 0.436 0.787 0.932 0.932 0.898 0.855 0.928
0.6 0.939 0.938 0.410 0.790 0.934 0.933 0.901 0.858 0.928
0.7 0.940 0.939 0.464 0.793 0.935 0.934 0.904 0.863 0.929
0.8 0.940 0.940 0.489 0.806 0.935 0.935 0.904 0.865 0.933
0.9 0.940 0.940 0.575 0.803 0.937 0.938 0.908 0.860 0.933

TABLE 4
The node classification accuracy on Movies.

Percentage T-Mark TensorRrCc GI HN Hcc Hcc-ss wvRN+RL EMR ICA
0.1 0.441 0.441 0.309 0.453 0.435 0.426 0.318 0.486 0.203
0.2 0.483 0.483 0.297 0.483 0.456 0.453 0.318 0.537 0.219
0.3 0.511 0.511 0.292 0.506 0.460 0.458 0.309 0.569 0.239
0.4 0.518 0.518 0.302 0.531 0.461 0.460 0.308 0.582 0.238
0.5 0.529 0.529 0.348 0.543 0.467 0.468 0.309 0.600 0.254
0.6 0.546 0.546 0.299 0.563 0.473 0.471 0.306 0.613 0.258
0.7 0.549 0.549 0.391 0.572 0.478 0.476 0.314 0.612 0.257
0.8 0.553 0.553 0.376 0.579 0.474 0.473 0.300 0.613 0.258
0.9 0.560 0.560 0.339 0.594 0.491 0.486 0.303 0.629 0.268

famous directors such as Alfred Hithchcok, Joel Schumacher,
Akira kurosawa, and Steven Spielberg, have many works with
different styles.

6.3 Link Selection Analysis
HIN is a complex network which contains many useless links.
In this section, we will conduct the experiment on the NUS
dataset to demonstrate the importance of link selection.

NUS is a real-world image dataset collected by Lab for
Media Search in National University of Singapore (NUS) 5.
More details of this dataset can be found in [36]. For this
paper, we choose two high-level concepts, i.e., scene and
object, as the label of 5780 images. A bag-of-words of SIFT
description of length 500 is regarded as the feature of each
image. These images are correlated with each other through
41 tags given by users. Our task is to identify these images
are pure scenes or include one noticeable object.

In this experiment, we evaluate the effect of relative
importance of links to nodes classification. If a link has a
large probability of connecting the nodes belonging to the
same class label, this link is considered as a relevant link.
Otherwise, it is an irrelevant link. The relevant links are able
to contribute more than irrelevant links in the process of label
propagation for accurate and efficient nodes classification. For
the NUS dataset, most of the images (as nodes) are linked by
multiple tags (as links). If most of the images linked by a
specific tag have the same class, this tag is considered as a
relevant tag to this class label, verse visa.

In this experiment, we select two sets of tags (as link sets)
from 1,000 tags. For the first link set, namely Tagset1, we
select the tags which have at least 6% images are linked by
this tag, and rank these tags based on their probabilities of

5. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

connecting nodes belonging to the same class. The top 41
links with the largest probability are selected and listed in
Table 6.

For the second link set, namely Tagset2, we rank 1,000
tags based on their frequency of appearance in the HIN. the
top 41 tags with the largest frequency are selected and listed
in Table 7.

We construct two HIN using the links in Tagset1 and
Tagset2, and compared the performances of T-Mark on these
two HIN. For each HIN, we randomly pick up {10, 30, 50,
70, 90}% of the nodes as labeled data, and use the remains
as unlabeled data. Table 8 shows the mean of the accuracy
of T-Mark over 10 trials on these two HIN using Tagset1 and
Tagset2. We can see that T-Mark achieves a high accuracy
on the HIN with Tagset1. The accuracy is 0.955 even with
only 10% labeled data. Whilst the accuracy of T-Mark is only
0.692 even though 90% images are used as labeled data in the
HIN with Tagset2.

We randomly select two classes (“Scene” and “Object”)
in the NUS dataset, and compare the top-ranked links in
Tagset1 and Tagset2 w.r.t. these two classes. Tables 9 and 10
show the top 12 links in the Tagset1 and Tagset2 link set,
respectively. For the tags in Tagset1 (see Table 9), one can see
that the tags top-ranked w.r.t. “Scene” and “Object” are quite
different. Meanwhile, these tags are relevant to the semantics
of these two classes.

For the tags in Tagset2 (see Table 10), the top-6 tags
w.r.t. the “Scene” and “Object” classes are similar, only have
a small difference in orders. These tags may have weak effects
on discriminating the “Scene” class and the “Object” class.

6.4 Multi-label Collective Classification of HIN on ACM
In this section, we conduct an experiment on a multi-
label dataset ACM to evaluate the performance of T-Mark
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TABLE 5
Top 10 directors of each movie genre.

Ranking Adventure Documentary Romance Thriller War
1 Akira Kurosawa Ivan Reitman Alfred Hitchcock Alfred Hitchcock Alfred Hitchcock
2 Joel Schumacher Akira Kurosawa Clint Eastwood Steven Spielberg Howard Hawks
3 William Wyler Woody Allen Steven Spielberg Clint Eastwood John Badham
4 Renny Harlin Martin Scorsese Joel Schumacher Roger Donaldson Wes Craven
5 George Miller Sydney Pollack Werner Herzog Woody Allen Peter Howitt
6 Oliver Stone Stephen Hopkins Akira Kurosawa Brian De Palma Michael Mann
7 John Huston John Woo Ron Howard Richard Fleischer Oliver Hirschbiegel
8 Phillip Noyce Ethan Coen Don Siegel Michael Apted Jim Gillespie
9 Billy Wilder Sidney Lumet Terry Gilliam William Wyler Christian Duguary
10 Peter Jackson John Sturges Kenneth Branagh Renny Harlin Steven Spielberg

TABLE 6
The tags in Tagset1 (each tag corresponding to one types of links).

No. Tag
1− 4 sky water clouds landscape
5− 8 sunset architecture portrait reflection
9− 12 animal building animals lake
13− 16 mountains cute abandoned grass
17− 20 mountain window cat sunrise
21− 24 zoo bridge cloud dog
25− 28 fall face square rain
29− 32 airplane eyes home cold
33− 36 windows sign flying plane
37− 40 arizona manhattan peace rural
41 sports

TABLE 7
The tags in Tagset2 (each tag corresponding to one types of link).

No. Tag
1− 4 nature sky blue water
5− 8 clouds red green bravo
9− 12 landscape explore sunset white
13− 16 night architecture portrait city
17− 20 travel trees california reflection
21− 24 animal girl interestingness building
25− 28 river animals lake abandoned
29− 32 window cat sunrise zoo
33− 36 bridge dog baby buildings
37− 40 food storm moon skyline
41 cats

TABLE 8
The node classification accuracy on Movies.

Percentage Tagset1 Tagset2
0.1 0.955 0.664
0.2 0.954 0.672
0.3 0.958 0.683
0.4 0.956 0.684
0.5 0.959 0.682
0.6 0.959 0.692
0.7 0.960 0.688
0.8 0.959 0.686
0.9 0.961 0.692

TABLE 9
Top-12 tags in Tagset1 given by T-Mark.

Scene
sky clouds sunset water
landscape architecture reflection abandoned
bridge lake building window

Object
portrait cat animals face
animal zoo rain sports
dog cute airplane fall

TABLE 10
Top-12 tags in Tagset2 given by T-Mark.

Scene
sky clouds sunset water
landscape bravo portrait architecture
blue nature reflection abandoned

Object
sky clouds landscape bravo
water sunset nature cat
portrait animals animal baby

algorithm on multi-label classification.
ACM dataset is extracted from the ACM digital library

6 with KDD conferences from 1999 to 2010 and SIGIR
conferences from 2000 to 2010, which has been published by
[22]. Each publication contains the title, keywords, authors,
concepts, conference, citations, published year, and index
terms. The index terms of papers are given by ACM based
on the ACM Computing Classification Systems 7. The task
of this experiment is to predict the index term for each
publication based on their representation and links. Each
publication is represented by a bag-of-words vector from
title terms. The other information implicates the correlation
among publications, such that they can be organized into six
types of links, i.e., authors, concepts, conferences, keywords,
published year and citations. Note that the authors, concepts,
conferences, keywords, and published year are non-directed.
For example, if two publications have one same keyword, we
consider there are two converse links with different start-end
nodes. While the citation link is directed, we just confirm that
the publication is related to the cited paper.

Fig. 5 shows the relative importance of links w.r.t. each
class labels based on the ranking of types of links. The larger
the probability value of the type of link on one class, this link
is more important w.r.t. this class. We can see the probability
distributions of link types over different classes are similar.

6. http://dl.acm.org/
7. https://dl.acm.org/ccs/ccs.cfm

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 23,2021 at 07:33:11 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3039533, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. **, NO. **, NOVEMBER 2020 11

Two types of links (”concept” and ”conference”) are more
important than others, which means that many nodes that are
interconnected through these two types of links have similar
class labels.

relations

labels

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

citation
author
keyword
year
conference
concept

Fig. 5. The relative importance of link types on ACM given by T-
Mark.

In this experiment, we predict the index terms for the pub-
lications on the ACM dataset. One publication is related to
different information, such as authors, conference, keywords,
published year, citations, and concepts. The classification
result on ACM is shown in Table 11. From the table, we can
see our algorithm outperforms the compared methods with
different percentages of labeled data. Specifically, when the
percentage of labeled data is less than 30%, our algorithm
has a great superiority. The EMR and wvRN+RL algorithms
have poor performances, and similar observation can also be
found in the experiments on DBLP. The reason is that these
algorithms treat all types of links equally.

6.5 Parameters Selection
In this part, we discuss the parameters and the convergence
of the T-Mark algorithm. The proposed algorithm has two
essential parameters, i.e., the restart parameter α and the
scale parameter γ.

The parameter α indicates the importance of supervision
information at each iteration of our semi-supervised learning
model. In general, when α has a larger value, the algorithm
performs better. We test the performance of the algorithm
on two datasets when α varies from 0.1 to 0.99. From Fig. 6,
we can see the accuracy firstly increases and then goes down
varying with α increasing. It gets best when α = 0.8 on DBLP
and we set α = 0.8 as the default value in all experiments.
The value of α controls how much information we use from the
labeled data. When α is larger than 0.8, the information from
labeled data can not increase the accuracy. It is necessary
learning from the content feature and relational information
of nodes themselves.

Some differences appear in NUS dataset. The accuracy
keeps going up with α varying from 0.1 to 0.99. And when
α is larger than 0.6, the increment has a little drop. In the
experiment, we set α = 0.9 as the default value.

For the other two datasets, ACM and Movies, they show
the same trend on the NUS dataset, and we set α = 0.9 as
the default value for them in the experiments.

Parameter γ mostly depends on the effect of the descrip-
tion features and relational information for the classification
accuracy. When γ = 0, it means only use the relational
information. When γ = 1, it means only use the feature
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Fig. 6. The accuracy of T-Mark vs. parameter α on DBLP.
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Fig. 7. The accuracy of T-Mark vs. parameter α on NUS.

information. When γ is larger than zero, it means the
relational information has a positive effect on the classification
result. And when γ is larger, the feature takes more roles in
the classification process. For different datasets, they have a
different tendency which we will discuss more in the following
experiments.

We first test the performance of the algorithm on DBLP
when γ varies from 0 to 1. From Fig. 8, we can see the variance
of accuracy when γ increases. We get the worst result when
only use the feature information, which is lower than 0.8.
Though the performance achieves over than 0.9 when only
using the relational information, the result is better when
using both relational and feature information. The figure
shows that our algorithm performs best when γ = 0.6 on
DBLP, and we set it as the default value.
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Fig. 8. The accuracy of T-Mark vs. parameter γ on DBLP.

We conduct the same experiment on NUS dataset. we can
see from Fig. 9 that it shows the similar tendency with the
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TABLE 11
The node classification performance under Macro F1 on ACM.

Percentage T-Mark TensorRrCc GI HN Hcc Hcc-ss wvRN+RL EMR ICA
0.1 0.940 0.940 0.220 0.618 0.430 0.569 0.105 0.265 0.049
0.2 0.966 0.968 0.528 0.729 0.478 0.912 0.115 0.340 0.048
0.3 0.978 0.988 0.655 0.722 0.559 0.953 0.157 0.377 0.105
0.4 0.989 0.993 0.725 0.739 0.855 0.988 0.173 0.408 0.194
0.5 0.992 0.997 0.734 0.756 0.972 0.995 0.180 0.433 0.570
0.6 0.995 0.997 0.816 0.756 0.991 0.995 0.180 0.434 0.860
0.7 0.995 0.997 0.821 0.758 0.995 0.996 0.180 0.469 0.947
0.8 0.995 0.997 0.659 0.773 0.995 0.995 0.180 0.460 0.989
0.9 0.995 0.997 0.658 0.785 0.996 0.998 0.179 0.451 0.987

result on DBLP dataset. However, when γ varies from 0 to
0.4, the line keeps stable. Then it goes down when γ increases.
It shows that it’s enough to get the best result when only
using the tag information in NUS dataset. And some little
representation information cannot affect the classification
result. When the representation information takes much more
role in the process, the accuracy will drop. We set γ = 0.4 as
the default value in all the experiments.
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Fig. 9. The accuracy of T-Mark vs. parameter γ on NUS.

6.6 Convergence Study
In this section, we discuss the convergence of the T-Mark
algorithm. We show the difference of neighboring iteration
(ρ = ∥xt − xt−1∥+∥zt − zt−1∥) w.r.t. the iteration number
on four datasets. The result is shown in Fig. 10. We can see
from this figure that the difference drops to zero or keeps
stable when the iteration number is larger than 10, which
means the algorithm has good convergence.
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Fig. 10. The convergence curve of T-Mark on four datasets.

7 Conclusion
In this paper, we have proposed a novel algorithm, called
T-Mark, for node classification in the Heterogeneous Infor-
mation Network (HIN). The relative importance of the link
types referring to class labels can improve classification per-
formance. We used a three-dimensional tensor to represented
the HIN and introduced a scheme to determine the rankings of
link types and the class labels of nodes simultaneously based
on the probability distributions. To solve the tensor equations,
we develop an iterative algorithm based on the Markov chain
to obtain the stationary probability distributions of nodes and
types of links.Moreover, theoretical analyses were provided to
declare the existence and the uniqueness of the stationary
probability distributions. Extensive experiments on four real-
world datasets demonstrate the superiority of the proposed
method in node classification and its effectiveness in link
rankings.
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