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A Unified Feature Selection Framework for
Graph Embedding on High Dimensional Data

Marcus Chen, Ivor W. Tsang, Mingkui Tan, and Tat Jen Cham

Abstract—Although graph embedding has been a powerful tool for modeling data intrinsic structures, simply employing all features for
data structure discovery may result in noise amplification. This is particularly severe for high dimensional data with small samples. To
meet this challenge, this paper proposes a novel efficient framework to perform feature selection for graph embedding, in which a
category of graph embedding methods is cast as a least squares regression problem. In this framework, a binary feature selector is
introduced to naturally handle the feature cardinality in the least squares formulation. The resultant integral programming problem is
then relaxed into a convex Quadratically Constrained Quadratic Program (QCQP) learning problem, which can be efficiently solved via
a sequence of accelerated proximal gradient (APG) methods. Since each APG optimization is w.r.t. only a subset of features, the
proposed method is fast and memory efficient. The proposed framework is applied to several graph embedding learning problems,
including supervised, unsupervised, and semi-supervised graph embedding. Experimental results on several high dimensional data
demonstrated that the proposed method outperformed the considered state-of-the-art methods.

Index Terms—Sparse graph embedding, sparse principal component analysis, efficient feature selection, high dimensional data

1 INTRODUCTION

HIGH dimensional data is ubiquitous in many real world
applications, especially in this era of data [1], [2]. In
microarray technology, a large sensor array can capture
thousands of genes simultaneously. The latest camera
phones such as the Nokia Lumia 1020 are able to capture
photos of up to 41 megapixels. However, directly learning
a classifier on high dimensional data may significantly
degrade the performance of many applications, especially
when data features are highly correlated and the sample
size is relatively small. This is commonly referred to as
the curse of dimensionality [3]. To alleviate this, one possi-
ble approach is to transform high dimensional data into a
lower dimensional representation while preserving the
intrinsic data structure. This is known as dimensionality
reduction.

Graph embedding has been shown to be a powerful
tool for dimensionality reduction [4], [5]. In particular,
some popular dimensionality reduction methods such as
Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA) [6], Isomap [7], Locally Linear
Embedding (LLE) [8], and Locality Preserving Projection
(LPP) [4] can be formulated into graph embedding meth-
ods [5]. By employing full dimensional features for
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learning tasks, the graph embedding methods aim to learn
a low dimensional projection, preserving some intrinsic
data structures. Intrinsic data structures can have both
local and global properties, depending on the applications.
Local properties often refer to the local neighborhood rela-
tionship such as in LPP, while examples of global proper-
ties include class separation in LDA, the global variance in
PCA, and the global shortest path between any pairs of
data samples in the Isomap method. Graph embedding of
high dimensional data suffers from two weaknesses. First,
it is hard to interpret the resultant features when using
all dimensions for embedding. Second, the original data
inevitably contains noisy feature measurements. Simply
incorporating these noisy features could make graph
embedding unreliable and noisy [9], [10]. Therefore, it is
important to select only the significant features for graph
embedding.

Many feature selection methods have been proposed in
different learning contexts [11], [12], [13], [14], [15], [16]
with different feature importance measures. These meth-
ods can be categorized into two classes, namely, the
supervised and unsupervised methods [17]. For the
supervised methods, there are two main feature impor-
tance measures, distance based measures, and the correla-
tion based measures. Specifically, the distance based
measures define the important features as those that sepa-
rate classes better and cluster the within-class samples,
such as LDA-based feature selection methods [18]. In cor-
relation based feature selection methds [19], the impor-
tant features are those that correlate well with class labels
and give better prediction results. In the unsupervised
methods, due to the absence of class labels, several
criteria have been proposed to evaluate the feature impor-
tance based on different learning contexts, such as infor-
mation measure, variance measure, and locality measure,
summarized as follows:
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e Information measure: good features gain more infor-

mation when included.

e Variance measure: good features capture more vari-

ance in the data.

e Locality measure: good features can preserve data

locality better.

The existing feature selection methods are also often classi-
fied as filter, wrapper, and embedded approaches [20]. Filter
methods aim to predefine some desired intrinsic data prop-
erties and rank feature subsets accordingly. These methods
employ either forward selection or backward elimination
search strategies, often resulting in local optimality. They do
not consider the subsequent applications for feature evalua-
tion, and are thus suboptimal in performance. He et al. [21]
proposed to encode data locality via a Laplacian Score (LS)
for feature ranking. Similarly, Zhao and Liu [22] proposed to
evaluate features based on SPECtrum decomposition (SPEC)
on the Laplacian matrix. These two methods employ feature
level ranking, and do not consider the redundancy among
features. To address this, Nie et al. [23] proposed a feature
subset trace ratio method to rank feature subsets that best
discriminate between-class samples and preserve within-
class relationships.

In contrast to filter methods, wrapper methods are appli-
cation dependent. The feature subset giving the best perfor-
mance of a predetermined learning task will be chosen. The
evaluation of each feature subset requires a complete run of
the application, and is thus very computationally expensive.
Generally, given a learning task, wrapper methods can per-
form better than filter methods [24]. Finally, embedded
methods encapsulate the feature selection problem into
their optimization objectives such as the solution sparsity
[25], [26], [27], [28].

Among the sparsity induced methods, the sparse regres-
sion method, termed as LASSO [29], is popular in the litera-
ture due to its simplicity and efficiency in computation. Its
formulation of the feature selection problem is as follows:

min [|XTw —y|* + yllwl,, @

where X € R¥" is the d-dimensional data matrix of n sam-
ples, y is the response variable vector, and w is the weight
vector. The regularization constant y controls the sparsity of
solution; a larger y generally results in a sparser solution,
and vice versa. However, LASSO can only choose at most n
variables even when d > n, and the solution is not well
defined unless ||w||; is bounded by a certain value [30]. The
LASSO shrinkage may produce biased estimates for large
coefficients of w [31]. Zhou and Hastie [30] then proposed
the Elastic net method, which adds an L, norm term, i.e.,

ylwll, + Bllw|*. However, both LASSO and the Elastic net
method do not guarantee the choice of the same set of fea-
tures when regressing over different principal components
(y). To address this issue, Cai et al. [32] proposed a simple
heuristic method to rank the features based on the weight of
different subspaces. This method is termed as MultiClusters
Feature Selection (MCFS) with preserving data locality as
its main learning objective.

Recently, the Convex Relaxations for Subset Selection
method (CRSS) [33] was shown to achieve better results
than the Least Angle Regression (LAR) method [34]. Bach
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(b) Overlaying a face sample
with 300 features using the pro-
posed method.

Fig. 1. Important pixels that capture variations in the face images under
different illumination conditions, poses, and facial expressions.

et al. [33] proposes two search methods. One is a branch
and bound search method and is combinatorial in computa-
tional complexity. The other one is based on the random
generation of Gaussian vectors. Both LASSO and CRSS
select features based on sequential iterations of principal
components. In this manner, tuning parameters for different
components is complicated [10]. Therefore, they do not opti-
mize for the collective objectives. There has been little work
of estimating multiple sparse components simultaneously.
The most similar method by Vu et al. [10], Fantope Projec-
tion and Selection (FPS), optimizes the collective objectives
for sparse PCA via a Fantope projection approach.

Both the graph embedding and feature selection methods
define their own paradigms to preserve data intrinsic struc-
tures. In existing work in the literature, these two tasks have
been done independently or mutually exclusively. This
paper instead proposes a novel paradigm to unify these
two schemes by performing feature selection and graph
embedding simultaneously. As an application illustrated in
Fig. 1b, the proposed paradigm is applied to the LPP graph
embedding of some face images. The proposed method can
automatically choose some important pixels that capture
the variations in illumination conditions, poses, and facial
expressions. The main contributions of this paper are sum-
marized as follows.

e By exploiting the least squares formulation of graph
embedding, we introduce a binary feature selector to
directly constrain the desired number of features. We
further reformulate the resultant problem as a convex
semi-infinite programming problem (SIP). This novel
feature selection scheme can be applied to unsuper-
vised, supervised, and semi-supervised learning
tasks in preserving the corresponding intrinsic data
structures via low dimensional embeddings.

e By exploiting the observation that only a few con-
straints are active in the resultant SIP problem, we
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proposed an efficient cutting plane method, which
essentially conducts a sequence of accelerated proxi-
mal gradients on a set of features only. Therefore, a
major advantage of the proposed method is its abil-
ity to handle ultrahigh dimensions efficiently due to
its low computation cost and memory requirements.
Moreover, the proposed method is guaranteed to
converge globally.

e The proposed method addresses the learning in a
holistic way, resulting in both generalized graph
embedding and the desired cardinality of the fea-
tures. A wide range of datasets have been tested in
the experiments to verify the effectiveness of the pro-
posed framework for unsupervised, supervised, and
semi-supervised learning tasks.

The organization of the rest of the paper is as follows. In
Section 2, we briefly review some graph embedding meth-
ods for dimensionality reduction and introduce the least
squares formulation of graph embedding. Section 3 details
the proposed approach. In Section 4, we conduct some
experiments to compare our results with the current state-
of-the-art algorithms. Section 5 concludes this paper.

2 RELATED WORK AND PRELIMINARIES

In this section, we first briefly review the recent literature on
graph embedding and feature selection. An overview of the
generalized subspace problem is also provided since this is
a foundation of our method.

2.1 Graph Embedding for Dimensionality Reduction
Coherent structures in high dimensional data, such as
neighboring pixels in images, naturally induce a high corre-
lation among dimensions. To alleviate the curse of
dimensionality, scientists have proposed to transform data
into a low dimensional manifold via graph embedding [5],
[21]. The number of data samples, data dimensionality,
and the number of classes are denoted by n,d, and &k,
respectively. X € R" is a zero-mean data matrix, and
Y = {y1,92,...y,} € R®" if available represents class label
information. Furthermore, the symmetric positive semi-def-
inite matrix, S € R™*", encodes the desired data properties.
Graph embedding for a class of dimensionality reduction
methods aims to find the projection vector w for the follow-
ing generalized eigenvalue problem [35]:

XSXTw=\XX"w. 2)

Many dimensionality reduction methods such as PCA,
LDA, CCA, LPP, and Hypergraph Spectral Learning (HSL)
can be formulated into the above graph embedding frame-
work [5]. The definitions of S for the above mentioned
methods are tabulated in Table I. More details can be found
in [35] and references therein.

Both PCA and LPP are unsupervised as they do not con-
sider class labels. They are often used for general pre-proc-
essing, clustering, or visualization. For classification,
supervised graph embedding, such as LDA, generally can
achieve better performance since class label information
is considered. The graph embedding can be readily
extended to the semi-supervised setting, which utilizes
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TABLE 1
S Computations for Common Generalized
Eigen Problems

S/N  Methods S

1 PCA XTX

2 CCA yT(ny)*ly

3 LDA YT(YYT)—ly

4 LPP D12 AD1/2

5 HSL I1—L

6 SDA (14 gD)"*(W, + BA)(I + D) /*

X is a data matrix, Y is a regression response matrix in CCA and
class label matrix in LDA and PLS, A is an affinity matrix, D is a
diagonal matrix whose diagonal entries are the row sum of A, L is a
Laplacian matrix, and B is a regularization constant.

large unlabeled datasets and small labeled datasets to
model intrinsic data structures [36], [37], [38], [39]. To
achieve this, a possible model is a weighted graph whose
vertices are both labeled and unlabeled samples and edges
reflect samples similarity. For example, the semi-supervised
discriminative analysis (SDA) method [40] builds upon the
LDA and LPP graph embeddings.

2.2 The Least Squares Formulation
for Graph Embedding

Solving the generalized eigenvalue problem in (2) is very
expensive for large-scale and high dimensional problems.
To reduce the computational burden for large-scale prob-
lems, Sun et al. [35] formulates it into a least squares prob-
lem, as in (4). Specifically, since S € R"*" is a symmetric
positive semi-definite matrix, it can be decomposed as
S = HH', where H € R™" and r < n is the number of sig-
nificant singular values of S. Furthermore, let HP = QR be
the QR-decomposition of H with the permutation matrix P,
where Q € R™*" is a matrix with » orthonormal columns.
Moreover, let R = U2V, be the compact singular value
decomposition (SVD) of R, and the regression response
T € R"™" is computed as follows:

T = QUp. 3

Then the generalized eigenvalue problem can be cast as the
following least squares regression problem,

min [ XTW — T3, )

where X € R" and W € R¥" are data matrix and weight
matrix, respectively. In practice, to improve the robustness
to noise and avoid overfitting, a regularization term could
be added as follows:

min  [|XTW =T[5 + y|[ W] ®)

3 GENERAL FRAMEWORK FOR FEATURE
SELECTION

After transforming the generalized eigenvalue problem into
a regression problem, the formulation (5) can benefit from
many existing efficient least squares solvers. However, the
regularizer y|W|% may not produce sparse solutions. In
other words, it cannot achieve the feature selection task. To
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induce sparsity, we introduce a binary vector p € {0,1}%,
whose entries are 1 for the selected features and 0 otherwise.
To select m desired features, exactly m entries in p will be
setto 1, where m < d. Let P= {p: p € {0,1}",p"1 = m} be
the domain of p, and 1 € R? denotes a vector with all entries
equal to 1. The proposed least squares formulation for
graph embedding based feature selection is cast as the fol-
lowing optimization problem,

. R ST S % 2
min min 2| Z[p +ZIWIk

(6)
st. B = X"diag(p)W — T,

where T' € R"*" is the response matrix, diag(p) is the matrix
whose diagonal is the feature selector vector p, and
E € R™" denotes the residual matrix.

The proposed formulation has several advantages over
the conventional approaches, which impose sparsity
directly on W like the sparsity objective ). ||W;||; in the
sparse PCA (SPCA) method [41]. First, it selects features
naturally with the desired cardinality. This is much more
efficient than the sparsity induced methods, in which a reg-
ularizer constant controls cardinality. Second, the proposed
model can be transformed to a convex programming prob-
lem [42], based on which an efficient solver can be devel-
oped. The similar schemes used in [42] and [18] are
designed for the Fisher score method and classification
method, respectively. These two methods can be seen as
special cases of the proposed framework in (6).

In general, the problem in (6) is NP-hard to solve due to
the combinatorial integral constraints on p. To address it, it
is necessary to make some transformations and relaxations.
It is not difficult to verify that the inner minimization prob-
lem with a fixed p can be solved equivalently in its dual. By
introducing V' € R™", the dual variable, to the constraint
Z = X "diag(p)W — T, we can solve the inner regression
problem in its dual. Specifically, the Lagrangian function of
the inner regression problem is

1
LW,E,V) == |E%+ LW + (V2 — X diag(p)W +T),
2 2

where (-,-) denotes the inner product. By setting the first
derivatives of L(W,Z,V) w.r.t. W and Z to zero, we can
obtain the Karush-Kuhn-Tucker (KKT) conditions, namely,
yW = diag(p)XV and V = —Z. By substituting these results
into the Lagrangian function, the problem in (6) can be
transformed into the following dual formulation:

i Vip), 7
iy max, f(Vor) ®

where
T 1 (1 o1
f(Vip)=tr(V'T) —itr 1% )—/X diag(p) X + 1)V ).
However, this problem is still a non-convex problem since

the main optimization variable p is in discrete values. Fol-
lowing the convex relaxation in [42], we have

min max f(V,p) > max min f(V,p).
pEP Y ernxk Vernxk peP
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Moreover, this convex relaxed problem can be further trans-
formed into a convex QCQP problem by introducing an
additional variable 0 € R,

max 6
k
VERM N geR (8)

st. 0< f(V,p), peP.

Note that the constraint domain P contains a combinatorial
number of p’s, making the optimization problem intractable
even for small-sized p and m.

3.1 Sparse Graph Embedding for Feature Selection
The optimization problem in (8) has a combinatorial num-
ber of constraints. However, only a few of them are active.
Exploiting this observation, we adopt the cutting plane
algorithm to solve the QCQP problem (8). The cutting plane
algorithm iteratively finds the most active constraint and
adds it to the active constraint set I, which is initialized to
an empty set (). The active constraint set IT is always a subset
of P, i.e., Il C IP. Given the updated set II, we solve the fol-
lowing subproblem,

max 0
VeRn<k geR 9)

st. < f(V,ph), Vp' ell

We term our proposed procedure Sparse Graph Embedding
(or SparGE for short), described in Algorithm 1.

Algorithm 1. Sparse Graph Embedding for Feature
Selection

Input: data X € R, a positive semi-definite matrix S, the
desired feature cardinality m.
1) Initialize I = (), and compute T according to (3). Assign
t:=1.
2) Iterate the following two steps until convergence.
a) Update V by solving the subproblem in (9).
b) Find the most active constraint, which is indicated
by p', by solving p' = argmax, f(V,p), based on V.
Update IIby IT:=ITU {p'} and t by t :=t + 1.
Output: I1 = {p',p%,...,p"}, with each p’ indexing the selected
features.

Given V, Step 2b) of Algorithm 1 requires us solving

p' = argmax f(V,p) = argmax ||diag(p) X V'[|7
p p

in order to find the most active constraint of problem (8). Let

A =XV € R¥™, and define s; = Z;zl(Ai‘j)Q. The optimiza-

tion problem becomes:

d

argmax ||diag(p)XVH% = argmax Z SiDi-
V4 P i=1

(10)

Apparently, problem (10) can be solved readily by sorting
s and then setting its top m values in s to 1 and the rest
to 0. In other words, the most active constraint can be
identified by choosing the features with the m highest
values in s. The algorithm for the most active constraint
analysis is summarized in Algorithm 2. The most active
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constraint p' obtained is then added to the active con-
straint set IT := T U {p'}.

Algorithm 2. The Most Active Constraint Selection

Input: data X € R%"  dual variable V, the desired number of
features m, and the selection vector p.

1) Set all the entries of p to 0.

2) Compute s; = 2.1;:1(141'“]')2, Vi=1,...,d.

3) Sort s in descending order.

4) Setm entries of p w.r.t. the top m values of s.
Output: p which defines the most active constraint.

3.2 The Subproblem Optimization

After updating the active constraint set II, we then solve the
subproblem in (9) with reduced constraints as defined by II.
Since the number of constraints in II is no longer large, this
problem is readily solved by a sub-gradient method, such
as simpleMKL [18], [42]. However, solving this problem
w.r.t. the dual variables V' can be very expensive, in particu-
lar when n is very large.

Assume there are « active constraints in II, i.e., k¥ = |II].
Even though there are a large number of features in X, at
most mk features are chosen by II C P, where m«x < d. Based
on this observation, the subproblem in (9) might be solved
more efficiently w.r.t. the primal variables W. To be more
specific, following [43], we have the following proposition.

Proposition 1. The subproblem in (9) can be equivalently
addressed in the following primal form:

an

c 2
Y t Loz

ming (; 12 ||F> +§H~||p7

where & =T — >, X diag(p')Q)’ denotes the regression

residual matrix and Q' denotes the weight matrix defined on

the features indicated by p'. Moreover, the dual variable V in

(9) can be recovered by V = E, which is required for the most
active constraint selection.

The proof of this proposition is included in Appendix A.
Problem (11) is a non-smooth problem due to the regulari-
zation term } (3, 19| )%, However, there are at most m«
(where mk < d) features involved in this problem, making
it easier to be solved.! For convenience, we define Q = [Q',
O, Q] € R™" by stacking Q' € R™". Let P(Q) =1
(5, 1971 2)7 and f(Q) = 1||Z|[;.. Following [44], we pro-
pose to solve the primal problem using the accelerated
proximal gradient method (APG), which iteratively mini-
mizes the following quadratic approximation of (11):

Q) = f(Q)+ < VAQ = Q > +2[10 - [} + P(Q)

1
=212 = GlIE + PQ) + £(@) - - IV £
(12)

where Vf denotes the gradient of f at point Q;, >0
denotes the Lipschitz constant of f((1), and G =, —1V

1. In practice, the optimization is conducted on those selected
features only.
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f=[GG2,....G] e R™* wirt. Q = [Q, 0% ..., Q. Note
that f(Qy) — 5 |V £||% is constant w.r.t. ), and thus we just
need to solve the following projection problem:

min §\|Q—G|\§+P(Q). (13)

This problem has a unique global closed-form solution, which
can be calculated as follows via Moreau Projection [45].

Proposition 2. Suppose the optimal solution to problem (13) is
S:(G) = [S:(GY), S(G?), ..., S(G¥)] € R and o= [0y,
02,...,0. €R" is an intermediate variable. Then S.(G) is
unique and its tth component, S¢(G"), can be calculated as fol-
lows:

=Gt if 0, >0
S(GH = { &t~ Lo 14
(&) { 6, otherwise. s
where t € {1,2,...,k}. The intermediate vector o, can be cal-
culated via a soft-threshold operator soft(u, ¢) [45], [46]:
_ _ Ut — G, Zf Ut > G,
o = [soft(u, 5], = { 0, Otherwise, (15)

where the threshold value ¢ can be calculated as in Step 4 of
Algorithm 3.

Algorithm 3. Moreau Projection S;(G
Giveninput G = [G',G?,...,G"]and s = L.

1: Calculate @, = ||G!|| forallt = 1,...,«.

2: Sort u to obtain u such that uy > -+ > .

3: Find p = max{t|u; — ﬁZﬁ:l u; >0,t=1,...,«}.
4: Calculate the threshold value ¢ = - S0 g

5: Compute o = soft(u, ).

6: Compute and output S;(G).

The overall APG algorithm for solving problem (11) is
summarized in Algorithm 4, where F(Q)=1 (Zf: 1
19 -)° +1|& |7 Interested readers can find more details

and the convergence derivation of Algorithm 1 and
Algorithm 4 in [44].

3.3 Handling High Dimensional Sparse Problems

Given an ultrahigh dimensional sparse data matrix, remov-
ing the data mean (zero-centering) could make the matrix
very dense. The data matrix (11X ) can be used instead for

Xn

regression to remove the data offset. As for the proposed
framework, zero-centering can be performed in each sub-
problem. Zero-centering could also affect the computation
of some regression responses 7', such as PCA as in Table I,
which assumes zero mean. In this case, XX can be first
computed and centering can then be applied to both rows
and columns as follows:

X<I - 11,211)
n

1 1
S = (I - —1,11;))()(T (I - —1n1j>.
n n

(16)

17
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TABLE 2
Computational Complexity of the Proposed Framework
Modules Cholesky & QR SVD Finding p’  Subproblem
decompositions
Details S=HHT, UnS T Compute regression
H=QR RERYR XV, sin (10),

and sort s
Complexity — O(nr?) o(r?) O(ndr+dr  O(mknr)

+ mlog d)

Algorithm 4. Accelerated Proximal Gradient for Solving
Problem (11)

Initialization: Initialize the Lipschitz constant L; = L;_; and set
o t=0 by warm start, 7o = L, n € (0,1), parameter o' =
o’ =1,and k = 0.
1:Set Vi = 0F + 221 (F — 0F ),
2: Set T = nty. ¢
Repeat
Set G = VF -1V f(V*), compute S.(G).
if F(S.(G)) < Q(S:(G), V),
set 7;; = 1, stop, break;
else
t=min{n 17, L;}.
End
Until convergence F/(S.(G)) < Q(S.(G), V)
3:Set Q"' = 5, (G).
4: Let g1 = BVUHEY) oy — g1,

5: Quit if the stopping condition is achieved. Otherwise, go to
step 1.
6: Let L, = n’1; and return.

3.4 Computational Complexity

There are a few components in the proposed framework.
Given S € R™" with r significant singular values, the pro-
posed framework requires a Cholesky decomposition
S=HHT" and a QR-decomposition of HP = QR, SVD of R,
finding p', and solving the subproblem. The decomposed
matrices are compact, ie, Q € R"", Re R"™. Table 2
shows the computational complexity of different compo-
nents. For » < n and the desired feature cardinality m« < d,
the overall computational complexity is O(ndr). This is
much more efficient than FPS [10], whose complexity is
O(d® + nd?®) especially for high dimensional data applica-
tions where d > mk, d > n,and d > r.

4 EXPERIMENTS

In the experiments, we evaluated the proposed framework
for unsupervised, supervised, and semi-supervised graph
embedding, including PCA, LPP, LDA, and semi-super-
vised discriminant analysis (SDA). We termed them as
SparGE-PCA, SparGE-LPP, SparGE-LDA, and SparGE-
SDA, respectively, where SparGE stands for the proposed
sparse graph embedding. We compared them with some
current state-of-the-art algorithms surveyed in Section 1. A
series of experiments on a wide range of datasets were con-
ducted to compare the proposed methods with the current
state-of-the-art algorithms.
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TABLE 3
Datasets Used to Compare the SPCA, FPS,
and SparGE-PCA Methods

S/N  Data # dimensions # instances
1 Toy data 550 5,000
2 Ramaswamy data 16,063 144

4.1 Experiments on Unsupervised

Sparse Embedding

The proposed SparGE-PCA method chooses feature sub-
sets that maximize the variance in the data in an unsuper-
vised manner. It optimizes over all principal components
simultaneously. On the other hand, most of the sparse
PCA methods [41], [47], [48], [49] select features sequen-
tially over the principal components (PC). It is assumed
that the feature subset derived from the first PC should
be more important, but this may not be true. A simple
counterexample is to find one feature explaining the most
variance of the covariance matrix [3.200;033;03 3]. In
this case, SPCA [41] will select either the second or the
third feature based on the first PC, but the correct selec-
tion should actually be the first feature. Only the recent
concurrent work on Fantope Projection and Selection
(FPS) by Vu et al. [10] shares a similar optimization objec-
tive as our proposed method.

To compare the proposed SparGE-PCA method with FPS
and SPCA, we conducted experiments on both simulated
data and a real gene data dataset shown in Table 3. The per-
centage of explained variance rs was used to measure the
quality of the selected feature set as follows:

_ trace(Zg)

= 100
= trace(2) x 100%,

(18)

where 3/, and 3 are the covariances of the selected features
and of all features, respectively. A larger rs indicates a bet-
ter feature subset. The results of 50 independent runs are
reported. For SPCA, we chose the features with the highest
absolute magnitudes of the weight matrix, similar to [32].

4.1.1 The Results on Simulated Data

Optimizing for global variance, a good sparse embedding
method should be able to identify a feature subset
explaining the most variance and also removing noisy
features. To test the optimality of the selected features of
the proposed SparGE-PCA method, a simulation experi-
ment is carried out. In this experiment, a toy data is gen-
erated with 50 significant features and 500 noisy features.
Its covariance is shown in Fig. 2a. The explained variance
should converge at 50 features. Non-zero values in the
off-diagonal entries indicate a correlation among the first
50 significant features.

As shown in Fig. 2c, FPS, SPCA, and the proposed
SparGE-PCA method all converged to the optimal variance
at 50 features in accordance to the groundtruth. Computa-
tionally, SPCA was an order of magnitude slower than the
proposed method, as shown in Fig. 2d. FPS shared a similar
computational time with SPCA.
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than SPCA and FPS. PCA with 25 subspaces using all of the dimensions explains about 99.8 percent of the total variance.

4.1.2 The Results on Real Data Sets

PCA is often used for analyzing high dimensional data with
small samples, especially biological data. In this experiment,
the microarray data, Ramaswamy data [41], is used to find
the meaningful genes from very high dimensional data. The
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144 samples only. Only the first 25 principal components
were used to select features.

In this experiment, the FPS method was unable to handle
such a high dimensionality since the its computational
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Fig. 3. Comparing to the SPCA method on the Ramaswamy data for variance and computational time, the proposed SparGE-PCA method outper-
formed the SPCA method in the explained variance and was much more efficient. PCA with 25 significant subspaces explains about 89 percent of

the total variance.
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complexity is O(d® 4+ nd*) when performing a Fantope Pro-
jection. Therefore, only the SparGE-PCA and SPCA meth-
ods were chosen for comparison.

The proposed SparGE-PCA method outperformed SPCA
significantly in the explained variance, by about 10 percent
between 200 and 350 features as shown in Fig. 3a. Both
SPCA and the proposed SparGE-PCA method converged to
70 percent in the explained variance with 500 features (only
about 3.1 percent of the total features). Computationally,
SPCA was at least two orders of magnitude slower than the
proposed method as shown in Fig. 3b.

4.2 Experiments on Feature Selection for Clustering
Besides sparse graph embedding for PCA, our proposed
framework can be used to identify important features for
clustering tasks. As discussed in Section 1, unsupervised
LPP can model the local data structure well, and thus its
embedding could improve clustering performance. Since
image datasets, such as digits and faces images, usually lie
on a low dimensional manifold, four popular image data-
sets, namely MNIST, COIL20, ORL, and USPS as shown in
Table 4 were chosen.

To evaluate the quality of selected features, we apply
k-means clustering on the data with the chosen features,
where k is set to the number of classes. The normalized
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TABLE 4
Image Datasets used for Clustering
S/N Data # dimensions # instances # classes
1 MNIST 784 4,000 10
2 COIL20 1,024 1,440 20
3 ORL 1,024 400 40
4 USPS 256 9,298 10

mutual information defined in [21] is used as the perfor-
mance measure. The clustering baseline employed all of
the features. Besides the baseline, the feature ranking
methods such as Laplacian Scores (LS) and MultiClusters
Feature Selection (MCFS) were also chosen for a compara-
tive evaluation.

The result was shown in Fig. 4 with up to 250 features
only. Interestingly, the baseline results could be achieved
with as few as 50 to 70 features. Both MCFS and the pro-
posed SparGE-LPP method performed much better than
the LS feature selection method. The proposed SparGE-
LPP method also outperformed MCFS on MNIST,
COIL20, and USPS. Note that MCFS employed a simple
ranking method to choose features from a sequential
learning framework. Theoretically, it is unclear whether
this approach could converge to optimality. Furthermore,

~
o
T

[o2]
o
T

Normalized Mutual Information (%)
B a
2 2

30r == Using all features
—e—MCFS
LS
20 L . | [=>—proposed SparGE-LPP|
0 %0 100 150 200 250
# of features
(b) COIL20

80r

~
o
T

[o2]
o
T

'S
o
T

Normalized Mutual Information (%)
g

a0l '==Using all features
——MCFS
—-LS
i | ‘ ‘ =p=proposed SparGE-LPP! ‘
s 50 100 150 200 250
# of features
(d) USPS

Fig. 4. Comparison of different feature selection methods on clustering tasks.
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it does not learn the collective weights based on the com-
mon feature subsets. In contrast, the proposed framework
could achieve both weight learning and feature subset
selection simultaneously.

4.3 Experiments on Supervised Feature Selection

In this section, we compare the proposed SparGE-LDA
method with some chosen feature selection methods on
classification tasks. Six datasets as shown in Table 5 are
used for comparison. The first three datasets ranging from
text, images, and microarray data, have medium dimension
and small sample sizes, and are collected from the Arizona
State University (ASU) feature selection repository [50]. The
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TABLE 5
A Set of Data used for Classification Experiments
S/N Data # dimensions # instances #classes Type
1 PCMAC 3,289 1,943 2 Text
2 ORL10P 10,304 100 10 Face image
3 GLI-85 22,283 85 2 Microarray
data
4 Real-Sim 20,958 72,309 2 Text
5 RCV1 47,236  training:20,242, 2 Text
testing: 67,739
6 News20 62,060 training:15,935, 20 Text

testing: 3,993

Unless indicated otherwise, datasets were split for 10-fold cross validation.

Mean Accuracy (%)
~
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Fig. 5. Comparison of different feature selection methods on classification tasks. Classification results of PCA as pre-processing is also included as a

benchmark for the first three datasets.
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TABLE 6
Computational Time in Seconds of SparGE-LDA, the
Fisher Score Method, and SVM-RFE on Ultrahigh
Dimensional Data
Methods Real Sim RCV1 News20
SparGE-LDA 228 302 460
Fisher 53 91 329
SVM-RFE 155 344 24,160

other three higher dimensional and large-scale text datasets
are from the LIBSVM [51] repository.

Several popular feature selection methods, such as
Relief-F [52], max-dependency Max-Relevance and Min-
Redundancy (MRMR) [53], Fisher score, and SVM Recur-
sive Feature Elimination (SVM-RFE) are chosen for com-
parison. Beside these, we also compared the most recent
method by Nie et al. [23], the Trace Ratio Criterion
(TRC) method. TRC was shown to outperform many
methods in the literature. PCA is also included as a
benchmark for classification using SVM. However, PCA
cannot handle datasets such as Real-Sim, RCV1, and
News20, which have both ultrahigh dimensions and
large data sample sizes. Therefore, no comparison with
PCA for these three datasets is included. For RCV1 and
News20 datasets, the accuracies on the test sets are
reported. For the rest, the mean accuracies of 10-fold
cross-validation are reported.

The results are shown in Fig. 5. We do not report the
results of Relief-F, TRC, and MRMR on the three high
dimensional and large-scale datasets because these meth-
ods are computationally inefficient on these datasets.
Generally, both TRC and the SparGE-LDA method can
handle global feature subset directly, they outperformed
the feature-level selection processes such as MRMR,
Relief-F, and Fisher score methods. Compared with TRC,
our SparGE-LDA outperformed for the ORL10P and GLI-
85 significantly, was marginally better than TRC for the
PCMAC dataset. In the TRC method, the optimization
enforces only one feature in each column of the weight
matrix; it is thus more constrained and may thus have a
poorer performance.

On the other hand, the SparGE-LDA method outper-
formed SVM-RFE for the ORL10P, PCMAC, Real-Sim,
RCV1, and News20 datasets. On the first three small data-
sets, SVM-RFE performed well too as it directly opti-
mized for the classification methods. However, SVM-RFE
is a greedy method, and its performance dropped

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.6, JUNE 2015

significantly in the higher dimensional and large-scale
data shown in Fig. 5d, 5e, and 5f. Compared to SVM-RFE,
SparGE-LDA achieved 20 percent better in performance
on the News20 dataset, 5 percent on the Real-Sim dataset,
and 10 percent on the RCV1 dataset. On the other hand,
the Fisher score method, the counterpart of SparGE-LDA,
significantly underperformed on the last three high
dimensional datasets.

Computationally, the Fisher score method was the fast-
est, but SparGE-LDA was also efficient and completed the
tasks within minutes as shown in Table VI. SVM-RFE was
generally fast, but it was very slow on the News20 dataset,
which had the highest dimension and number of classes
among the three ultrahigh dimensional datasets.

4.4 Experiments on Semi-Supervised
Feature Selection

So far, the experiments demonstrated the effectiveness of
our proposed framework for both unsupervised and super-
vised learning settings. By incorporating small labeled sam-
ples, the semi-supervised discriminant analysis based on
the proposed framework (SparGE-SDA) can achieve a good
classification rate.

Two datasets (COIL and ORL) from Table 4 are used for
evaluation. The proposed SparGE-SDA method was com-
pared with the SVM-RFE and Fisher score feature selection
methods. The classification accuracies are tabulated in
Table 7. The proposed SparGE-SDA method was much bet-
ter than the Fisher score method and consistently better
than SVM-RFE.

4.5 Experiments on Data Visualization

In this section, we intend to identify the important face
features that can preserve the data locality, i.e., the neigh-
borhood relationships of these image samples. The data
locality is visualized using two dimensional linear
embedding of face images by LPP. From the CMU-PIE
database [54], 170 face images of one person shown in
Fig. la were chosen for this experiment. The linear
embedding of these images is shown in Fig. 6. In Fig. 6a,
it can be observed that the illumination increases from
left to right, and her face turns from left to right. The
faces with expressions are far apart from the rest showing
on the top, indicating a large difference. A similar
observation can be drawn using the proposed SparGE-
LPP with only 20 features. Variations in illumination,
poses, and expressions are much more gradual on the

TABLE 7
Feature Selection Results for the SparGE-SDA, SVM-RFE and Fisher Score Methods
1labeled samples 2 labeled samples 3 labeled samples

Datasets #feats SparGE-SDA SVM-RFE Fisher SparGE-SDA SVM-RFE Fisher SparGE-SDA SVM-RFE Fisher

100 59.7 56.8 31.9 64.3 61.8 39.7 71.3 70.3 50.4
COIL 200 61.2 57.6 37.0 67.1 62.6 54.9 74.5 70.8 61.1

300 64.2 57.9 50.0 69.1 63.4 58.5 76.7 71.1 65.5

100 59.0 48.5 25.3 65.3 63.3 56.8 70.1 73.9 34.8
ORL 200 64.7 52.2 40.0 71.5 66.5 64.9 77.5 75.9 68.9

300 65.0 53.9 48.5 71.9 66.6 69.2 76.8 76.9 74.2
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(a) Linear embedding of face images using LPP on all of the pixels

(b) Linear embedding of face images using the proposed SparGE-LPP
method on 20 pixels

Fig. 6. Linear embedding of face images using all of the pixels and the 20 selected pixels by the proposed SparGE-LPP method. The proposed
SparGE-LPP method has a better embedding as indicated by a gradual change in different poses, illumination, and expressions. The respective

enlarged portions are shown in the red boxes.

embedding shown in Fig. 6b, indicating a better fit of the
underlying manifold.

5 CONCLUSION

This paper proposes a novel unified framework to select
features for generalized graph embedding. It utilizes a fea-
ture selector to directly optimize feature subsets for graph
embedding in modeling the intrinsic data structures,
enabling a more robust embedding, especially for high
dimensional data with a small sample size. Its efficiency
and effectiveness have been demonstrated with a series of
experiments for clustering, classification, and visualization.
In the experiments, the proposed methods outperformed
the current state-of-the-art algorithms for unsupervised,
supervised, and semi-supervised learning tasks. The pro-
posed framework demonstrated its computational and
memory efficiency in handling ultrahigh dimensional data
for classification.

APPENDIX A: PROOF OF PROPOSITION 1

In Proposition 1, the dual form of problem (11) has the same
form as in problem (9).

Let O =[Q' 0% ..., Q be the stack of Q. Define the
cone Q= {(Q,v)} € R™R)||Qp < v}. Let z =[Q"]
z=Y__; z. The optimization problem in (11) is equivalent
to the following problem:

oA, 1
12}{1 57 +§||~HF7

st. 2=T-Y X'diag(p))Q', (19)
t=1

K
Zt < 2 (Qtvzt) S Qr
t=1

The Lagrangian function of (19) can be written as:

14 12 = . / -
L= 522 +5 10 —tr (VT (; X "diag(ph) Q' — T + H>>

o (Z 20— ) ST ()T Q) + ),

’ =1
where V € R™,

ne Rl é't c R’!LX’V‘/
Lagrangian dual variables for

and u, € R are the
the corresponding

constraints. By setting the derivatives of £ w.r.t. z, z,(,
and Z to zero, we obtain the KKT conditions as follows:

yz=n=p,& = —Xdiag(p")V,E = -V, ||¢']lp < n.

Substitute these results into the Lagrangian function, and
we obtain the dual problem as follows:

1 1
max tr(V'T) —=tr(V'V) — —n?

2
ha 5 5 (20

st. [ Xdiag(p")V|, <nt=1,...,k (21)

Setting 6 = tr(V'T) — 5tr(V'V) — 5. n* and f(V,p') = tr(V"
T)—5; | Xdiag(p')V||7 —1tr(VTV), then the problem
becomes as follows:

max 0
VeR™k peR

s.t. 0 < f(V.p'),

(22)
vp' e I
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