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Abstract
In real-world applications, data often come in
a growing manner, where the data volume and
the number of classes may increase dynamically.
This will bring a critical challenge for learning:
given the increasing data volume or the number
of classes, one has to instantaneously adjust the
neural model capacity to obtain promising perfor-
mance. Existing methods either ignore the grow-
ing nature of data or seek to independently search
an optimal architecture for a given dataset, and
thus are incapable of promptly adjusting the archi-
tectures for the changed data. To address this, we
present a neural architecture adaptation method,
namely Adaptation eXpert (AdaXpert), to effi-
ciently adjust previous architectures on the grow-
ing data. Specifically, we introduce an architec-
ture adjuster to generate a suitable architecture for
each data snapshot, based on the previous architec-
ture and the different extent between current and
previous data distributions. Furthermore, we pro-
pose an adaptation condition to determine the ne-
cessity of adjustment, thereby avoiding unneces-
sary and time-consuming adjustments. Extensive
experiments on two growth scenarios (increasing
data volume and number of classes) demonstrate
the effectiveness of the proposed method.

1. Introduction
Deep neural networks (DNNs) have achieved state-of-the-art
results in many challenging tasks, including image classifi-
cation (Hu et al., 2018; Lu et al., 2021), neural language pro-
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Figure 1. The motivation for architecture adaptation. Left: Per-
formance comparisons of ResNets trained on different subsets of
CIFAR100. The optimal architecture varies among different subset
sizes. Right: Since data come in a growing manner and the data
distribution may dynamically change, one should adjust the model
architecture according to the shift of data distribution.

cessing (Devlin et al., 2019; Brown et al., 2020), and many
other areas (Cao et al., 2019; Zhang et al., 2020; Guo et al.,
2020a; Zeng et al., 2020). One of the key factors behind the
success of DNNs lies in the design of effective neural archi-
tectures, including 1) the manually designed architectures
such as ResNet (He et al., 2016) and MobileNet (Howard
et al., 2017); 2) the automatically designed architectures
such as (Zoph et al., 2018; Cai et al., 2019; Tan et al., 2019).
However, these methods often design a fixed architecture
for a specific task/dataset.

In real-world applications, data often come in a growing
manner. For example, intelligent edge devices (e.g., bil-
lions of mobile phones and surveillance cameras) and med-
ical imaging devices continue collecting new data every
day (Grantz et al., 2020; Liang et al., 2019). Specifically,
the newly collected data have the following two types: (1)
increasing data volume: the labels of new data have ap-
peared in previous data, and the growing do not change the
label space of data; (2) increasing number of classes: the
newly arriving data have different labels from previous data,
and thus the label space of data is growing. For both two
scenarios, the data distribution may dynamically change.
Since the optimal network architecture may vary under dif-
ferent data distributions (Zoph & Le, 2017), when applying
DNNs to growing data, one can (and should) dynamically
adjust the architecture for better performance (see Figure 1).

To achieve the above goal, one straightforward solution
is to redesign a network architecture when new data ar-
rive. However, the design of effective neural architectures
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substantially relies on human expertise. Moreover, human
design cannot fully explore the complete architecture space,
resulting in sub-optimal architectures (Zoph & Le, 2017).
Beyond manual design, one can also resort to automatic neu-
ral architecture search (NAS) techniques (Cai et al., 2019;
Tan et al., 2019). Nevertheless, such methods design a
new architecture for each instance of data growth separately
and from scratch, and ignore that previous architectures are
transferable, leading to inferior design efficiency. Moreover,
neither manual nor automatic design considers the necessity
of architecture adjustment to further improve the adaptation
efficiency. Intuitively, it is unnecessary to conduct adapta-
tion if newly arrived data are very similar to previous data.

To address the above limitations, we propose a neural ar-
chitecture adaptation method, called AdaXpert (Adaptation
eXpert), which consists of an architecture adjuster and an
adaptation condition. Specifically, we first adopt the Wasser-
stein distance to quantitatively measure the difference be-
tween current and previous data. Then, the adjuster takes
the previous architecture and data difference as inputs, and
generates a suitable architecture for the current data. Next,
the adjuster receives a reward for this adjustment, where the
reward is designed to compromise between the accuracy and
computational efficiency. The final adjusted architecture is
generated by a well-trained adjuster. It is worth mentioning
that our method aims to find a new optimal architecture for
current data rather than simply expand the previous architec-
ture to a larger one. The architecture adjustment is elastic,
e.g., the adjustment may remove redundant layers from the
previous architecture and increase the capacity (kernel size
and/or number of channels) of certain layers, as illustrated
in Figure 4. Moreover, we propose an adaptation condition
to determine the necessity of architecture adjustment. In
this way, we avoid unnecessary adjustments if the newly
arrived data are highly similar to the previous one, thereby
further improving the adjustment efficiency. Based on the
above considerations, our AdaXpert is able to adjust an ar-
chitecture automatically to obtain better performance on the
current data with as minimal computational cost as possible.
Our main contributions are summarized as follows:

• We propose a network adaptation method for growing
data. By considering the difference between the current
and previous data, our method adaptively adjusts the
model architecture to achieve better performance while
maintaining small computational cost.

• We propose an adaptation condition to determine the
necessity of architecture adjustment. With this con-
dition, our method avoids unnecessary adaptation for
highly similar data.

• Experiments on two data growth scenarios, i.e., increas-
ing data volume and the number of classes, demon-
strate the effectiveness and superiority of our method.

2. Related Work
Neural architecture search (NAS) has attracted increas-
ing attention to automatically design effective architectures.
The classical NAS problem (Zoph & Le, 2017) exploits the
paradigms of reinforcement learning (RL) to generate the
model descriptions of DNNs. RL-based methods (Pham
et al., 2018; Tan et al., 2019; Zoph et al., 2018) seek to
learn a controller with a policy to generate architectures.
Beyond RL, evolutionary-based (Real et al., 2019; Piergio-
vanni et al., 2019) and gradient-based (Liu et al., 2019; Xu
et al., 2020) algorithms also discover new architectures with
excellent performance. Recently, meta learning-based meth-
ods (Lian et al., 2020; Wang et al., 2020) focus on the few-
shot problem and automatically learn a meta-architecture
that is intended to adapt to new tasks quickly. Unlike NAS
that design a fixed architecture, we dynamically adjust the
network architecture to handle the problem of growing data.

Continual learning (CL) aims to transfer the knowledge
learned from previous tasks to future scenarios. To solve
a new task, replay-based methods (Rebuffi et al., 2017;
Chaudhry et al., 2019; Rolnick et al., 2019) selectively store
samples of previous tasks for the training on new tasks. To
mitigate the catastrophic forgetting issue, regularization-
based methods (Kirkpatrick et al., 2017; Liu et al., 2018;
Lange et al., 2020) introduce a regularization term in the loss
function, which requires the model to not change important
parameters of previous tasks. Another parallel task is online
learning (OL) (Hoi et al., 2018; Zhang et al., 2019), which
aims to learn a well-performed model based on a sequence
of training samples. With the data growth, CL aims to
overcome the forgetting issue on previous data and conduct
adjustments to achieve better performance on new data, and
OL focuses on the parameter learning of a certain model. In
this work, we seek to instantaneously adjust the architecture
on the entire dataset for each time of data growth.

Progressive neural networks. To improve the model ca-
pacity, CL methods (Rusu et al., 2016; Xu & Zhu, 2018;
Rosenfeld & Tsotsos, 2020) propose to dynamically expand
their network architectures. These methods fix the layers of
previous tasks and grow branches for new tasks. Moreover,
DEN (Yoon et al., 2018) first expands the architecture to a
large size for a new task, and then use a pruning method
to remove the unimportant weights. Recently, (Gao et al.,
2020) and (Li et al., 2019) combine NAS techniques to
design architectures for each task to achieve the goal of CL.
However, these methods ignore the distribution difference
between the current and previous data, and thus are hard
to determine a suitable model size of the adjusted architec-
ture. In this work, we dynamically adjust the architecture
based on previous architectures and the properties of grow-
ing data. Moreover, beyond the expansion, our adjustment
may remove redundant layers or add new layers.
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Figure 2. An illustration of our proposed AdaXpert. (a) At time-step t, given new incoming data Dnewt and a previous model αt−1, we
first determine whether to adjust the architecture. If necessary, the αt−1 is fed into the NAA module for architecture adaptation. (b) Our
controller takes the architecture of αt−1 and the distribution distance between current data Dt−1 ∪ Dnewt and previous data Dt−1 as
inputs, and outputs an adjusted architecture. The controller will then obtain a reward and thus can be trained via policy gradient methods.
Last, we adopt the well-trained NAA to generate the final adjusted architecture αt.

3. Proposed Method
3.1. Problem Definition

In this paper, we aim to dynamically adjust neural network
architectures along with the growth of data. Formally, we de-
note a series of new incoming data asDnewt ={(xti, yti)}nti=1,
t=1, ..., T , where xti∈X , yti∈{1, ..., Ct}, X is the input im-
age space, nt and Ct are the number of images and classes,
respectively. Moreover, we denote all the accumulated data
at time-step t as Dt = Dnew1 ∪ · · · ∪ Dnewt .

For the above growing datasets {Dt}Tt=1, their correspond-
ing data distributions may dynamically change, and thus the
optimal architecture for different Dt may also vary. How-
ever, existing methods usually design a fixed architecture for
a specific task/dataset, while a single fixed network architec-
ture may not be optimal for all {Dt}Tt=1. To achieve better
performance, one should design different architectures for
different Dt, i.e., dynamically adjust the model architecture
along with the growth of data.

To achieve the above goal, an intuitive way is to perform
neural architecture search for each Dt separately, to obtain
a corresponding architecture αt. However, this method
ignores that the previous αt−1 are transferable forDt, which
can improve the search efficiency of αt. Moreover, it is also
important to avoid unnecessary search processes when the
new incoming data are very similar to the previous data.

To address the above challenges, we propose a neural ar-
chitecture adaptation method, namely Adaptation eXpert
(AdaXpert), which aims to automatically design dynamic
networks with minimal expert intervention. The AdaXpert
mainly consists of two key components: (1) a reinforcement
learning based neural architecture adjuster (see Sect. 3.2),
which adaptively adjusts the previous model architecture
αt−1 to a new αt according to the properties of new incom-
ing data Dnewt ; (2) an adaptation condition that determines

the necessity of architecture adjustment (see Sect. 3.3),
thereby avoiding unnecessary adjustments. The detailed
pipeline of AdaXpert is summarized in Algorithm 1.

3.2. Dynamic Neural Architecture Adaptation

Given a previous deep model and new incoming data, we
aim to automatically adjust the model architecture to achieve
better performance while retaining small model computa-
tional cost (e.g., MAdds). To this end, we devise a Network
Architecture Adjuster (NAA) algorithm, which aims to con-
duct different adjustment strategies based on the distribution
difference between Dt−1 and Dt. Specifically, if new data
are very similar to the previous one, we only need to con-
duct a slight adjustment, i.e., keeping the MAdds growth
small for the adjusted architecture. Otherwise, we allow a
relatively large MAdds growth for the adjustment.

In the following, we address two key problems for architec-
ture adaptation: 1) how to measure the difference between
the current data Dt and the previous data Dt−1; and 2) how
to design the architecture adjuster.

Quantitative measurement of data difference. Different
architecture adaptation strategies should be conducted based
on the different extent between the current data and previous
data. To quantify such difference, we compute the distribu-
tion distance between current and previous data as follows.

Formally, given the current dataset Dt and the previous
datasetDt−1, we first feed these two datasets to the previous
model αt−1 to obtain their feature embeddings Mt ∈ Rm×q
and Mt−1 ∈ Rn×q, respectively. Here, m and n denote
the number of samples in Dt and Dt−1 respectively, and q
denotes the feature dimension. Then, Mt and Mt−1 can be
considered as two sample matrices that are sampled from
two unknown distributions Pt and Pt−1. To compute the
distance between Pt and Pt−1, one can use non-parametric
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Algorithm 1 The overall algorithm of AdaXpert.
Input: Incoming datasets {Dnewt }Tt=1; well-trained model α1 for
Dnew1 ; supernetN1 and controller π(·; θ1); threshold ε.

1: Let D1 = Dnew1 .
2: for t=2,...,T do
3: Let Dt=Dt−1∪Dnewt ,Nt=Nt−1 and θt=θt−1.
4: Compute accuracy difference Ht using Eqn. (4).
5: if Ht > ε then
6: UpdateNt and π(·; θt) on Dt using Algorithm 2.
7: Generate the adjusted architecture αt ∼ π(·; θt).
8: Retrain the adjusted architecture αt on Dt.
9: else

10: Let αt = αt−1.
11: end if
12: end for
Output: The adjusted architectures {αt}Tt=1.

Algorithm 2 Training of Network Architecture Adjuster.
Input: Datasets {Dt−1,Dt}; previous architecture αt−1, super-

net Nt and controller π(·) with the parameters θt; hyper-
parameters η and M .

1: Split Dt into training and validation sets {Dtrain, Dval}.
2: Fine-tuneNt on Dtrain.
3: Compute the WD (dt) between Dt−1 and Dt using Eqn. (1);
4: // train the controller model
5: for i=1,...,M do
6: Sample α′t∼π(αt−1, dt; θt).
7: Sample a batch of data from Dval.
8: Compute rewardR(α′t) based onNt using Eqn. (5).
9: Update θt ← θt + ηR(α′t)∇θt logπ(·).

10: end for
Output: SupernetNt and controller π(·; θt).

estimation methods to compute the Kullback–Leibler (KL)
divergence (Nguyen et al., 2007) or Wasserstein distance
(WD) (Sriperumbudur et al., 2010).

However, the above non-parametric estimation methods may
be computationally expensive. For example, computing the
KL divergence needs solving a quadratic programming prob-
lem. Luckily, our preliminary studies show that the sample
matrices Mt and Mt−1 approximately satisfy the multi-
variate Gaussian distribution (more details are put in the
supplementary). Therefore, in this paper, we assume that
Pt and Pt−1 are two multivariate Gaussian distributions,
and use the Maximum Likelihood Estimation method to ob-
tain their distribution parameters, i.e., Pt ∼ N (µt,Σt) and
Pt−1 ∼ N (µt−1,Σt−1). Then, we compute the Wasser-
stein distance (Takatsu et al., 2011) as follows:

W(Dt,Dt−1) =||µt − µt−1||22+

tr
(

Σt+Σt−1−2(Σ
1/2
t−1ΣtΣ

1/2
t−1)1/2

)
. (1)

Here, one can also use other metrics to compute the dis-
tribution distance, such as KL and Jensen-Shannon diver-
gence (Fuglede & Topsoe, 2004). More discussions about
WD are put in supplementary. Based onW(Dt,Dt−1), we
devise a data difference-aware controller to conduct differ-
ent architecture adjustments. Due to the highly non-convex
nature of our adjustment problem, we cast it into a Markov
Decision Process (MDP), and then train the controller using
reinforcement learning methods.

MDP reformulation for Neural Architecture Ad-
juster (NAA). Since the architecture adjustment process is
essentially a multi-step decision making process, we formal-
ize the adjustment process as an MDP. Formally, the MDP
can be defined as a tupleM=(S,A,P,R), where S is a fi-
nite set of states,A is a finite set of actions, P : S×A→S is
the state transition distribution,R : S×A→R is the reward
function. Moreover, a policy πθ determines an action given

the current state. In the context of NAA, as illustrated in Fig-
ure 2 for time-step t, we denote state as s = [αt−1, dt] ∈ S ,
where dt =W(Dt,Dt−1) is the distribution difference be-
tween the current and previous data. Given such a state s, a
policy (controller) takes a series of actions a = πθ(s) ∈ A
to determine each layer’s operation of the adjusted archi-
tecture α′t. Formally, the action space is defined based on
different types of architecture search space. Then, the con-
troller receives a reward r = R(α′t). More details about the
reward design can be found in Sec. 3.4.

Training of NAA. The goal of our NAA is to maximize
an expectation reward E[R(α)], represented by solving the
following optimization problem:

max
θ

Eπθ [R(α)]. (2)

Following policy gradient methods (Williams, 1992; Schul-
man et al., 2017), we update θ by ascending the gradient:

θ ← θ + ηR(α)∇θlogπθ(α). (3)

The training details of NAA are summarized in Algorithm 2.

3.3. When to Adapt Network Architecture

Given a previous model αt−1 and the current data Dt, it
should be considered whether the model architecture needs
adjustment. For example, given an optimal architecture α
that searched on the MNIST dataset, even if we receive
more incoming MNIST images, it is unnecessary to adjust
α since it is already optimal. This indicates the necessity
to consider the previous architecture’s feasibility when per-
forming architecture adaptation. Therefore, as shown in
Figure 2 (a), for each time new data arrives, we use an adap-
tation condition to determine the necessity of adjustment,
and therefore improve the adaptation efficiency.

Formally, at time-step t, given the previous model αt−1,
current data Dt and previous data Dt−1, we compute the
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following accuracy difference for further decision:

Ht = Φ(Dt−1;αt−1)− Φ(Dt;αt−1), (4)

where Φ(D;α) is some performance metric of model α on
dataset D. For classification models, we choose top-1 ac-
curacy as the metric. Note that for the growing data with
new class labels, the previous model will make wrong pre-
dictions, since the classifier can not predict the new labels.
Based on the above accuracy difference, one can determine
whether to adjust the previous architecture αt−1. Specifi-
cally, given Ht and its threshold ε, we only adjust the model
architecture when Ht > ε.

In our method, we exploit WD to measure the extent of data
difference, and adopts accuracy difference as the adaptation
condition of architecture adjustment. The reasons are as fol-
lows: (1) For adaptation condition, the accuracy difference
is more intuitive for humans. In contrast, since WD is a
distribution distance, it is hard to set a suitable threshold for
WD to determine the adjustment necessity. (2) To recognize
difference extent of data, WD has a stronger discrimination
ability than the accuracy difference. Specifically, for varying
label space, the accuracy difference is more determined by
the number of new data, while WD is computed according
to the underlying properties of the data itself.

3.4. Reward Design for NAA

The reward functionR(·) is very important for training our
NAA model. In this subsection, we will provide our rewards
function. For simplicity, we only illustrate the training of
NAA for a single round, and in other rounds, the NAA can
be trained in the same way. Given the current and previous
datasets Dt and Dt−1, we denote the WD between them as
dt =W(Dt,Dt−1). Then, for the current state s, the NAA
takes a series of actions to obtain an adjusted architecture
α′t. The final reward is computed as follows:

R(α′t)=V(α′t)−V(αt−1)− λ
dt

(C(α′t)−C(αt−1)
)
, (5)

where V(α) and C(α) denote the validation accuracy and
computational complexity of model α respectively, and λ
is a trade-off parameter. We adopt MAdds as our metric to
measure the computational complexity of α, and one can
also use other metrics, e.g., the inference latency.

To obtain the validation accuracy V(α), one can train it from
scratch and then validate it on the validation set. However,
this will result in unbearable computational burdens. In
this paper, we exploit a weight sharing technique (Pham
et al., 2018) to construct a super network, i.e., a large com-
putational graph, where each network architecture shares
parameters. In this sense, once the super network is trained,
all architectures inherit their weights directly from the super
network, and then use these weights for further evaluation.

For the first item V(α′t)−V(αt−1) in Eqn. (5), we hope that
the adjusted architecture α′t would achieve higher valida-
tion accuracy than the original αt−1. For the second item
λ
dt
× (C(α′t)− C(αt−1)) in Eqn. (5), architectures with ex-

cessive computational cost are penalized, and the dt is used
to adaptively regularize the magnitude of the adjusted ar-
chitecture. If dt is small, i.e., the incoming data are very
similar to the original, the reward function will devote more
attention to constraining the computational complexity of
the adjusted architecture.

4. Experiments
In this section, we evaluate our AdaXpert with respect to two
data growth scenarios, i.e., data volume growth within the
same label space (Scenario I) and increasing label space
(Scenario II). Afterward, we conduct ablation studies to
verify the effectiveness of each component in our method.
Lastly, we compare architectures obtained by our adaptation
procedure with those obtained by existing methods. Code is
available at https://github.com/mr-eggplant/adaxpert0.

4.1. Experimental Settings

Datasets: We conduct our experiments on ImageNet, a
large-scale image classification dataset (Deng et al., 2009).
Based on ImageNet, we simulate two data growth scenarios
to verify the effectiveness of our proposed method. For con-
venience, we denote ImageNet-# as a subset of ImageNet,
where ‘#’ denotes the number of classes. For instance,
ImageNet-100 contains samples of the first 100 classes of
the entire ImageNet. We also name our dynamically ad-
justed architectures in a similar manner, e.g., AdaXpert-20
denotes the architecture obtained on ImageNet-20.

Search space for architecture adaptation: Here, we con-
sider the architecture space based on the inverted Mobile
Block (Howard et al., 2019). To be specific, the model is
divided into 5 units with gradually reduced feature map
spatial size and increased number of channels. Each unit
consists of 4 layers at most, where only the first layer has
stride 2 if the feature map size decreases, and all the other
layers have stride 1. In our experiments, we search for the
number of layers in each unit (chosen from {2, 3, 4}), the
kernel size in each layer (chosen from {3, 5, 7}), and the
width expansion ratio in each layer (chosen from {3, 4, 6}).
Compared methods: We compare our AdaXpert with three
categories of methods. (1) Manually designed networks, in-
cluding MobileNetV2, MobileNetV2 (1.4×) (Howard et al.,
2017), ResNet18, and ResNet50 (He et al., 2016). During
the entire data growth process, these models are trained
and evaluated with the same fixed architecture. (2) Neural
architecture search (NAS) methods. EfficientNet (Tan &
Le, 2019) and MnasNet (Tan et al., 2019) are searched on
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Table 1. Scenario I: Comparison on ImageNet-100 with different sizes of training set. We report Acc. (%, ↑) and #MAdds (Million, ↓).

Methods 10% training set 20% training set 40% training set 80% training set 100% training set

Acc. MAdds Acc. MAdds Acc. MAdds Acc. MAdds Acc. MAdds

MobileNetV2 52.72 300 64.02 300 72.08 300 78.36 300 79.60 300
MobileNetV2 (1.4×) 54.36 560 64.82 560 73.02 560 78.88 560 80.76 560
ResNet18 52.72 1,814 62.74 1,814 71.54 1,814 77.54 1,814 79.30 1,814
ResNet50 38.86 4,087 53.26 4,087 66.76 4,087 78.62 4,087 80.30 4,087

MnasNet-A1 50.30 323 61.14 323 71.46 323 78.82 323 79.66 323
EfficientNet-B0 50.56 398 62.90 398 72.32 398 79.42 398 80.38 398
Meta-NAS 51.00 559 60.00 559 69.30 559 77.08 559 77.48 559

D-EfficientNets 49.08 145 61.42 178 71.28 203 78.26 229 80.44 278
Progressive NN 54.60 149 61.72 181 71.38 203 78.78 244 80.02 261
DEN 54.60 149 63.50 258 72.20 315 78.85 439 80.84 515

AdaXpert (ours) 54.60 149 64.90 171 73.28 199 79.28 232 80.74 252

inverted Mobile Block search space (as ours) and achieve
state-of-the-art performance. We also compare our method
with Meta-NAS (Shaw et al., 2019), which first searches
a meta architecture on multiple tasks and then adapts it
to ImageNet. (3) Dynamic neural networks. Progressive
NN (Rusu et al., 2016) and DEN (Yoon et al., 2018) are two
methods that dynamically adjust the network architecture
from small to large with the growth of data. D-EfficientNets
is a width-multiplier method, where the networks are re-
scaled with different widths of EfficientNet-B0 (Tan & Le,
2019) to adapt the corresponding data. Please refer to the
supplementary for further implementation details.

4.2. I: Growing Data with Same Label Space

In this section, we conduct experiments on the data growth
scenario in which the data volume is growing while the label
space remains the same.

Simulation of growing data: We simulate the data volume
growth scenario on ImageNet-100 due to the high compu-
tational cost of evaluating all considered architectures on
ImageNet-1000. To be specific, the data come with different
ratios, i.e., {10%, 20%, 40%, 80%, 100%}, and the number
of classes remains unchanged for each data growth scenario.
Here, a dataset with a small ratio is a subset of another
dataset with a larger ratio.

Comparison with state-of-the-art methods. As shown
in Table 1, our method achieves the best or comparable
accuracy in all cases, suggesting its effectiveness. More
critically, the computational cost (i.e., MAdds) of our model
is significantly lower than that of other methods, verifying
that the proposed reward function enables the considera-
tion of model efficiency. Specifically, our model achieves
comparable accuracy with DEN (80.74 vs. 80.84) while the
computational cost is much lower (252 M vs. 515 M). Simi-
lar phenomenons are widely observed in Table 1, indicating
that our method achieves a better accuracy/computational
efficiency trade-off than other state-of-the-art approaches.

4.3. II: Growing Data with Increasing Label Space

In this section, we conduct experiments on a data growth
scenario in which the label space is growing, i.e., the new
data have more classes than previous data. This scenario is
more challenging since the distribution of new data may be
remarkably different (i.e., new classes) from that of previous
data. The experimental datasets are constructed as follows.

Simulation of growing data: In this experiment, we use
the entire ImageNet-1000 to construct our growing datasets.
Similar to Scenario I, the dataset grows five times and each
subset contains the first {10, 20, 40, 80, 100, 200, 1000}
classes of the entire ImageNet, respectively. Similarly, the
data of the latter case contain all the data of the former case.

Comparison with state-of-the-art methods: As shown
in Table 2, our method is able to achieve comparable per-
formance while requiring much lower computational cost.
Specifically, for ImageNet-1000, our method outperforms
all the baseline methods in terms of accuracy. For ImageNet-
100, our method outperforms manual-designed networks
such as ResNet50, while requiring x15.7 fewer MAdds
(257M vs. 4087M). Notably, when the number of classes is
small, ResNet18 is significantly better than ResNet50. How-
ever, the situation turns around as the number of classes
increases, which verifies our motivation that the optimal
architecture may vary under different data distributions.

4.4. Ablation Studies

Effectiveness of the adaptation condition in Eqn. (4).
We conduct experiments to further demonstrate the effective-
ness of our adaptation condition for architecture adjustment.
Specifically, we first prepare a base datasetDb (20% training
set of ImageNet-100 on Scenario I) and a model trained on
Db. To demonstrate the necessity of architecture adaptation,
we consider two different datasets, i.e., Ds (with a small dif-
ference from Db) and Dl (with a large difference from Db).
To constructDs, we apply data augmetation techniques over
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Table 2. Scenario II: Comparison on ImageNet-1000 with different number of classes. We report Acc. (%,↑) and #MAdds (Million, ↓).

Methods 10 classes 20 classes 40 classes 80 classes 100 classes 200 classes 1000 classes

Acc. MAdds Acc. MAdds Acc. MAdds Acc MAdds Acc. MAdds Acc. MAdds Acc. MAdds

MobileNetV2 81.80 300 85.10 300 81.10 300 76.92 300 79.60 300 80.83 300 72.00 300
MobileNetV2 (1.4×) 81.00 560 85.70 560 81.30 560 77.85 560 80.76 560 81.90 560 74.70 560
ResNet18 82.80 1,814 85.90 1,814 81.90 1,814 75.60 1,814 79.30 1,814 79.89 1,814 72.12 1,814
ResNet50 69.60 4,087 81.80 4,087 78.85 4,087 76.52 4,087 80.30 4,087 82.89 4,087 77.15 4,087

MnasNet-A1 80.60 323 84.60 323 80.80 323 77.03 323 79.66 323 81.95 323 75.20 323
EfficientNet-B0 81.40 398 86.00 398 82.10 398 77.70 398 80.38 398 82.49 398 76.30 398
Meta-NAS 81.20 559 85.50 559 80.75 559 75.03 559 77.48 559 80.53 559 74.30 559

D-EfficientNets 81.00 145 84.20 178 80.40 203 76.63 229 80.44 278 82.03 319 76.30 398
Progressive NN 81.20 149 86.10 181 81.10 203 76.43 244 80.02 261 82.20 329 77.53 427
DEN 81.20 149 86.10 258 81.35 315 77.60 439 80.84 515 82.09 549 72.99 672

AdaXpert (ours) 81.20 149 86.40 176 81.90 195 77.68 242 80.52 257 82.12 293 78.13 395

Table 3. Ablation studies on the adaptation condition. We report
the accuracy of No-adjusted and Adjusted models on new current
datasets Db ∪ Ds and Db ∪ Dl, respectively.

Dataset Ht (Eqn. 4) No-adjusted (Acc. %) Adjusted (Acc. %)

Db ∪ Ds 0.65 64.90 65.04 (+0.14)

Db ∪ Dl 7.76 72.54 73.58 (+1.04)

Table 4. Comparison with nas-for-each (NFE) on ImageNet-100.
NFE means “search from scratch for each time of data growth”.

Metric Method 20% data 40% data 80% data 100% data

Acc. (%) NFE 64.80 73.46 78.88 80.62
AdaXpert (ours) 64.90 73.28 79.28 80.74

MAdds (M) NFE 294 302 313 311
AdaXpert (ours) 171 199 232 252

Search Cost
(GPU days)

NFE 0.8 1.0 1.3 1.5
AdaXpert (ours) 0.8 0.6 0.6 0.7

the base dataset Db. To construct Dl, we use samples from
another 20% training set of ImageNet-100.

As shown in Table 3, we report the accuracy differences
(based on Eqn. 4), adjusted/no-adjusted model accuracy on
new current data Db ∪ Ds and Db ∪ Dl, respectively. From
the results, for similar new data, it is unnecessary to adjust
the previous model architecture since the improvement is
limited (i.e., Acc: 64.90 vs 65.04). In contrast, adjusting the
previous architecture for new different data is able to gain a
larger performance improvement (i.e., Acc: 72.54 vs 73.58).
In this sense, it is important to use an adaptation condition
to determine whether adjustments are needed for new data.

Comparison with search from scratch. To further verify
the superiority of AdaXpert, we also compare it with “search
from scratch for each time data growth (namely NAS-for-
Each, NFE)”. From Table 4, our AdaXpert achieves better ef-
ficiency. At the 100% data snapshot, the architecture perfor-
mance obtained by AdaXpert is superior to NFE, this mainly
benefits from the following two aspects: 1) The AdaXpert

200 250 300 350 400 450 500 550 600 650
MADDs (million)

73

74

75

76

77

78

Te
st

 a
cc

ur
ac

y 
(%

) MnasNet-A3
OFA

M-V3-Large
(1.0×)

M-V3-Large
 (1.4×)

DNA-c

NASNet-A

MobileNetV2

DARTS

P-DARTS
PC-DARTS

FBNet-C
ProxylessNAS

AtomNAS

SPOS

AdaXpert-100

AdaXpert-200

AdaXpert-1000

AmoebaNet-A

ShuffleNetV2

GeedyNAS-A

M-V3-Large
(1.2×)

Our AdaXpert

MobileNetV3-Large

Figure 3. Comparison between AdaXpert and state-of-the-art NAS
methods on ImageNet. ‘AdaXpert-#’ denotes our architecture
searched on ImageNet-#.

exploits the previously learned knowledge to conduct the
current learning. Similar ideas in GAN (e.g., Progressive
GAN (Karras et al., 2018)) and NAS (e.g., PNAS (Karras
et al., 2018) and CNAS (Guo et al., 2020b)) have proven to
be pretty effective. 2) The AdaXpert considers the different
extent between current and previous data, and thus to adap-
tively control the computational cost of adjusted models.

4.5. Comparison on ImageNet-1000

Our proposed method can also be regarded as a neural
architecture search (NAS) method, which progressively
searches for the optimal architecture on growing datasets.
In this section, we compare our intermediate architectures,
i.e., AdaXpert-100, AdaXpert-200 and AdaXpert-1000,
with existing NAS methods to further verify the effective-
ness of our method. Here, AdaXpert-# is searched on
ImageNet-#. We re-train each AdaXpert-# model on the
whole ImageNet-1000, as well as baseline methods.
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Table 5. Comparison of different architectures on ImageNet-1000. Our AdaXpert-# architectures are searched on different subsets of
ImageNet and then evaluated on the entire ImageNet dataset. ”–” means unavailable results.

Architecture Test Accuracy (%) #MAdds (M) Search Time Search Method Search SpaceTop-1 Top-5 (GPU days)

ResNet-18 (He et al., 2016) 69.8 89.1 1,814 –
manual design –MobileNetV2 (1.4×) (Sandler et al., 2018) 74.7 – 585 –

ShuffleNetV2 (2×) (Ma et al., 2018) 73.7 – 524 –

NASNet-A (Zoph et al., 2018) 74.0 91.6 564 1,800 RL-based NASNetAmoebaNet-A (Real et al., 2019) 74.5 92.0 555 3,150 evolution

DARTS (Liu et al., 2019) 73.1 91.0 595 4 gradient-based
DARTSP-DARTS (Chen et al., 2019) 75.6 92.6 577 0.3 gradient-based

PC-DARTS (Xu et al., 2020) 75.8 92.7 597 3.8 gradient-based

MobileNetV3-Large (Howard et al., 2019) 75.2 – 219 – RL-based

Mobile Block

FBNet-C (Wu et al., 2019) 74.9 – 375 9 gradient-based
MnasNet-A3 (Tan et al., 2019) 76.7 93.3 403 ∼3,791 RL-based
ProxylessNAS (Cai et al., 2019) 75.1 92.3 465 8.3 gradient-based
SPOS (Guo et al., 2020c) 74.4 91.8 323 12 evolution
OFA-GPU (Cai et al., 2020) 76.4 – 397 51.7 evolution
OFA-CPU (Cai et al., 2020) 78.7 – 356 51.7 evolution
AtomNAS (Mei et al., 2020) 75.9 92.0 367 – gradient-based
DNA-c (Li et al., 2020) 77.8 93.7 466 25 greedy search
GreedyNAS-A (You et al., 2020) 77.1 93.3 366 8 greedy search

AdaXpert-100 (ours) 76.1 92.7 257 2.5
RL-based Mobile BlockAdaXpert-200 (ours) 77.1 93.3 293 3.5

AdaXpert-1000 (ours) 78.1 93.7 395 7
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Figure 4. An illustration of the adjusted architectures of our AdaX-
pert. K and E denote kernel size and expansion ratio, respectively.

As shown in Table 5 and Figure 3, our AdaXpert-1000
achieves 78.1% in terms of top-1 accuracy, which outper-
forms existing human-designed architectures and mostly
considered state-of-the-art NAS models with different
search spaces. Surprisingly, our intermediate models,
AdaXpert-100 and AdaXpert-200, also achieve comparable
performance with most of the baseline methods in top-1 ac-
curacy, but with fewer MAdds. One of the possible reasons
is that we exploit previous architectures and measure data
distributions’ difference of growing data, while general NAS
methods search architectures from scratch. We also provide

the visualization of our adjusted architectures in Figure 4.
According to the data difference of each data growth, out
AdaXpert adopts different architecture adjustment strategies.
Although the model capacity generally increases as the data
grow, it is observed that some redundant layers may be re-
moved and some other layers’ kernel size and expansion
ratio may be reduced.

5. Conclusion
In this paper, we have proposed a new neural architecture
adaptation method to efficiently adapt suitable neural archi-
tectures for growing data. Unlike existing methods that ne-
glect the knowledge from previous architectures, our method
exploits the previous architecture and the data difference
extent between current and previous data for achieving effec-
tive adaptation. Moreover, we have devised an adaptation
condition to avoid unnecessary adjustments, thus further
improving the network adaptation efficiency. Experimen-
tal results show that our method achieves state-of-the-art
performance while enjoying less computational cost in two
data growth scenarios (increasing data volume or number
of classes). More critically, compared with the architec-
tures searched on the entire ImageNet dataset by existing
NAS methods, our architectures are able to achieve compa-
rable accuracy/computational cost with fewer training data
(i.e., the subset of ImageNet). In future work, it would be in-
teresting to extend our method to adapt neural architectures
for the growing data from diverse data domains.
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In the supplementary, we provide more implementation details and more experimental results of our proposed AdaXpert.
We organize the supplementary material as follows.

• In Section A, we provide more implementation details of our proposed AdaXpert.

• In Section B, we provide the evaluation details for all compared network architectures.

• In Section C, we provide more experimental results for the threshold selection of our adaptation condition.

• In Section D, we demonstrate the effectiveness of Wasserstein distance on measuring the data difference.

• In Section E, we provide the sensitivity analysis w.r.t. the trade-off parameter λ (in Eqn. (5)).

A. Implementation Details of AdaXpert
During the whole data growth process, we maintain a supernet Nt and a controller π(·; θt). For each time data growth, we
first fine-tune the previous supernet on current data Dt to obtain Nt. After that, the controller π(·; θt) is trained by using the
evaluation signals provided by the supernet Nt. We introduce the training details of them as follows.

Supernet: For growing Scenario I (in the main paper), we update the supernet 180 epochs for the 0.2 and 0.4 size of
ImageNet-100, and we update the supernet 60 epochs for the 0.8 and 1.0 size of ImageNet-100. For growing Scenario II, we
update the supernet 180 epochs for ImageNet-20 and ImageNet-40, and 60 epochs for others. Following (Guo et al., 2020),
we train the supernet by uniformly sampling sufficient architectures and train them sequentially. For each data growth, the
supernet is fine-tuned with a learning rate of 0.045, a weight decay of 5× 10−5 and a momentum of 0.9.

Controller: The controller takes the previous architecture αt−1 and the difference extent dt (in Eqn. (1)) between data
as inputs, and then outputs an adjusted architecture α′t. In the following, we first introduce the architecture design of the
controller and then its training details.

For the controller design, we first use a two-layer fully connected network (FCN) to extract features of the input architecture.
Meanwhile, to represent the extent of data difference, following (Pham et al., 2018), we build a learnable embedding vector
for different dt. We then concatenate the architecture embedding and data-difference embedding, and send them to the
controller model. We adopt an LSTM to build the controller model. Since the architecture can be represented by a sequence
of tokens (Zoph & Le, 2017; Pham et al., 2018), the controller is able to adjust the network architecture by sequentially
predicting the token sequences, including depth, width, and kernel size. Here, we incorporate FCN parameters and the
learnable embedding vectors into the parameters of the controller and train them jointly.

For each time the growth of data, we train the controller model for 6k iterations. We use Adam with a learning rate of
2× 10−4 and a weight decay of 5× 10−4 as the optimizer. We also add the controller’s sample entropy to the reward, which
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is weighted by 2× 10−4. The trade-off parameter λ in Eqn. (5) is set to 0.5× 10−4 and 2.5× 10−4 for Scenarios I and II,
respectively. Here, the value of λ is only tuned for the first adjustment (e.g., on ImageNet-20) and then fixed for all the
subsequent adjustments. In this way, although the λ for subsequent adjustments may not be optimal, the experimental results
show that this has already achieved promising performance. We believe that a careful and efficient tuning of λ may further
improve the performance of AdaXpert, which we leave to our future work.

B. Details of Architecture Evaluation
Evaluation on “subsets” of ImageNet-1000. For fair comparisons, we train all architectures (including our AdaXpert) on
the subset of ImageNet-1000 via the same setting and then test them on the corresponding test set. To be specific, we train
each architecture for 180 epochs with a batch size of 256. We apply an SGD optimizer with a weight decay of 5× 10−5

and a momentum of 0.9. Moreover, the learning rate starts with 0.1 and is divided by 10 at the 80 and 130 epoch. All
architectures are evaluated using Tesla V100 GPUs.

Evaluation on “entire” ImageNet-1000. We report the performance of all compared methods on ImageNet-1000 according
to their original papers. For AdaXpert models, we evaluate them using the evaluation methods provided by (Lu et al.,
2020). Specifically, to accelerate the evaluation, we initialize our model weights with a pre-trained and publicly available
once-for-all network (Cai et al., 2020) and then fine-tune it for 85 epochs. The fine-tune training adopts an RMSProp
optimizer with a decay of 0.9 and momentum of 0.9. We set the batch normalization momentum to 0.99 and weight decay to
1e-5. We use a batch size of 512 and an initial learning rate of 0.012 that gradually reduces to zero via the cosine annealing
schedule. The regularization settings are similar as in (Tan & Le, 2019): we use augmentation policy (Cubuk et al., 2020),
drop connect ratio 0.2, and dropout ratio 0.2.

C. Threshold Selection for Adaptation Condition
In this section, we show more results on our adaptation condition (in Eqn. (4)) to help algorithm engineers to choose a
suitable threshold ε for determining the necessity of architecture adjustment. Same to the main paper, experiments are
conducted on two considered scenarios, i.e., increasing data volume (Scenario I) and the number of classes (Scenario II).

For Scenario I, we report the value of Ht (Eqn. (4)) of ResNet18, MobileNetV2 and our AdaXpert that are well-trained on
the 0.2 training set of ImageNet-100. The Ht is then computed between the 0.2 and {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} size
of ImageNet-100. For Scenario II that label space is growing, we report the Ht of the above models that are well-trained on
ImageNet-20. Then, the Ht is computed between the ImageNet-20 and ImageNet-{30, 40, 50, 60, 70, 80, 90, 100}. The
Left and Right of Figure I show the results of Scenario I and II, respectively. With the growth of new data, the previous
models suffer more severe accuracy difference. Based on these results, one can choose a suitable threshold to determine
whether to adjust the model architecture, according to the task at hand. In this paper, we set the threshold ε to 0.02.

It worth mentioning that for the Scenario II of increasing label space, the model performance must degrade. However, in this
case, the users still need this adaptation condition to measure whether the degradation greater than a given threshold ε (in
Eqn. 4) and then determine whether to adjust.
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Figure I. An illustration of accuracy difference (Ht in Eqn. (4)) for different growing data. The Left and Right represent the increasing
data volume and the number of classes, respectively.
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D. More Discussions on Wasserstein Distance
To compute distribution distance, one can use many metrics including Jensen-Shannon (JS) divergence (Fuglede & Topsoe,
2004), Wasserstein distance (WD) (Sriperumbudur et al., 2010) and etc. In this paper, we choose WD as our metric since
1) it is an effective metric to establish a geometric tool for comparing probability distributions, and it has been widely
used in deep learning (e.g., GAN) and 2) it has a little stronger discrimination ability to recognize difference extents than
JS divergence in our case. In this section, we compare WD with JS on two considered scenarios, i.e., increasing data
volume (Scenario I) and the number of classes (Scenario II). (1) For Scenario I, based on our architecture searched on 0.2
training set of ImageNet-100, we compute the distance dt between 0.2 training set and {0.4, 0.6, 0.8, 1.0} training set. (2)
For Scenario II, based on our architecture obtained on ImageNet-20, we compute the distance between ImageNet-20 and
ImageNet-{40, 60, 80, 100, 200}.
Computation details of WD and JS. As described in Sect. 3.2, we first feed current dataDt and previous dataDt−1 into the
previous model αt−1, and then obtain their corresponding feature matrices Mt ∈ Rm×q and Mt−1 ∈ Rn×q, respectively.
Here, m and n denote the number of samples in Dt and Dt−1 respectively, and q denotes the feature dimension. We
assume that Mt and Mt−1 are from two multivariate Gaussian distributions Pt and Pt−1, and use the Maximum Likelihood
Estimation method to estimate its distribution parameters, i.e., Pt ∼ N (µt,Σt) and Pt−1 ∼ N (µt−1,Σt−1). Based on the
above, the WD (Takatsu et al., 2011) between Dt and Dt−1 is computed as follows:

W(Dt,Dt−1) = ||µt − µt−1||22 + tr
(

Σt+Σt−1−2(Σ
1/2
t−1ΣtΣ

1/2
t−1)1/2

)
, (A)

and the JS disvergence (Fuglede & Topsoe, 2004) is computed by:

JSD(Dt,Dt−1) =
1

2

(
KL(Pt||

Pt+Pt−1
2

) + KL(Pt−1||
Pt+Pt−1

2
)
)
, (B)

where KL(Pt||Pt−1) =

∫ +∞

−∞
Pt(x)log(

Pt(x)

Pt−1(x)
)dx.

Here, Pt is the probability density function of Pt.

Comparison between WD and JS. As shown in Figure II, both WD and JS are able to recognize the difference extent
between current and previous data. In general, the more different the current data from previous data, the larger WD and
JS are. For the Scenario II that label space is growing, WD show stronger discrimination ability than JS (see Figure II
(right)). To be specific, the JS between ImageNet-20 and ImageNet-{100, 200} closes to 1 and thus fails to well recognize
the difference extent between them. In contrast, the WD is still able to recognize the difference between ImageNet-100 and
ImageNet-200.
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Figure II. Comparison between WD and JS divergence.

Effectiveness of Wasserstein Distance in AdaXpert. In our method, we conduct different architecture adjustment strategies
based on the Wasserstein distance (WD) between current and previous data. This enables our adjustment to achieve better
model accuracy with moderate computational overhead. We compare our method with AdaXpert w/o WD, i.e., the goal
of reward function is only to maximize the model accuracy. Specifically, we conduct experiments on ImageNet-100 on
Scenario I. As shown in Table A, with the data growth, ‘AdaXpert w/o WD’ is prone to obtain a larger network for the
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Table A. Effectiveness of Wassertein distance in AdaXpert. ‘AdaXpert w/o WD’ denotes AdaXpert without considering data difference
(WD) in the reward function.

Metric Method 20% data 40% data 80% data 100% data

Acc. (%) AdaXpert w/o WD 65.12 73.76 79.10 80.96
AdaXpert 64.90 73.28 79.28 80.74

MAdds (M) AdaXpert w/o WD 279 284 298 302
AdaXpert 171 199 232 252

current data. However, the network performance is comparable with our method in most cases. This further demonstrates
the necessity of considering the data difference with WD to conduct the adjustment.

Discussion on Gaussian Assumption. In this paper, we compute the WD between current and previous data by assuming
that they are from two multivariate Gaussian distributions. Here, we empirically demonstrate the reasonability of this
assumption. Based on our AdaXpert-20 that well-trained on ImageNet-20, we compute the sample matrix of ImageNet-40
(as described in Sect. 3.2) and randomly sample 6 dimensions to visualize its statistical histogram. As shown in Figure III,
the sample features of each dimension approximately satisfy a Gaussian distribution. To achieve more accurate computation
of WD, one can also use the non-parametric estimation methods (Sriperumbudur et al., 2010) as described in Sect. 3.2.
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Figure III. Statistical histograms of data matrix on 6 randomly sampled dimensions.

E. Parameter Sensitivity of λ in Eqn. (5)
In this section, we evaluate our method with different trade-off parameter λ in Eqn. (5) from {2.0, 2.5, 3.0, 3.5}e−4. The
experiments are conducted on adjusting AdaXpert-20 to AdaXpert-40. We report the validation accuracy and #MAdds of
the adjusted architectures in Figure IV (Left) and (Right), respectively.

From the results, with the increase of λ, our AdaXpert tends to find an architecture with fewer MAdds. However, the search
accuracy (i.e., validation accuracy) achieves the best when λ = 2.5e−4. Compared with λ = 2e−4, λ = 2.5e−4 achieves
better search performance while with fewer #MAdds. This result further demonstrates that a small model is able to achieve
better accuracy than a large model in a certain dataset. In this sense, one can design well-performed architectures and
meanwhile keep the model MAdds as few as possible.
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Figure IV. Training curves of our AdaXpert under different trade-off parameter λ.
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