
Anonymous Model Pruning for Compressing Deep Neural Networks

Lechun Zhang1,2, Guangyao Chen2, Yemin Shi2, Quan Zhang2,

Mingkui Tan4,Yaowei Wang2,3, Yonghong Tian2,3,Tiejun Huang2,3

1School of ECE, Peking University Shenzhen Graduate School, Shenzhen, P.R. China
2Peking University, Institute of Digital Media, Beijing 100871, China

3Peng Cheng Laboratory, Shenzhen 518055, China
4South China University of Technology 518055,China

{lechunzhang,gy.chen,shiyemin,zquan,yhtian,tjhuang}@pku.edu.cn,

wangyw@pcl.ac.cn,mingkuitan@scut.edu.cn

Abstract—Many deep neural network compression algo-
rithms need to fine-tune on source dataset, which makes them
unpractical when the source datasets are unavailable. Although
data-free methods can overcome this problem, they often suffer
from a huge loss of accuracy. In this paper, we propose a novel
approach named Anonymous-Model Pruning (AMP), which
seeks to compress the network without the source data and
the accuracy can be guaranteed without too much loss. AMP
compresses deep neural networks via searching pruning rate
automatically and fine-tuning the compressed model under
the teacher-student diagram. The key innovations are that
the pruning rate is automatically determined, and the fine-
tuning process is under the guidance of uncompressed network
instead of labels. Even without the source dataset, compared
with existing pruning methods, our proposed method can still
achieve comparable accuracy with similar pruning rate. For
example, for ResNet50, our AMP method only incur 0.76%
loss in top-1 accuracy with 32.72% pruning rate.

Keywords-network compression; knowledge distillation;
pruning;

I. INTRODUCTION

The success of Deep neural networks(DNN) mainly re-

sults from deeper network design, larger amount of weights

and considerable scale of data, which make DNN hard

to deploy on resource constrained platforms. Therefore, it

is necessary to compress deep neural networks. However,

most of the model compression methods try to compress

deep neural networks and then retrain the model on orig-

inal labeled datasets (such as ILSVRC-12 [1]) to regain a

considerable accuracy. These kinds of methods may suffer

from data dependence and over-fitting. Furthermore, we

needn’t download the whole dataset for fine-tuning after

compression for two reasons: (1) a model cannot enrich

its knowledge on the pre-trained datasets, which makes the

original dataset redundant and less contributed; (2) pre-

training datasets contain a huge number of items, on which

fine-tuning is both space consuming and time consuming.

In this paper, we propose an Anonymous Model Prun-

ing and knowledge distillation pipeline to compress and

fine-tune convolution neural networks without the original

datasets. Firstly, we set an acceptable loss threshold for

each layer to prevent error accumulative. Secondly, we use

binary search to determine the pruning rate of each layer

keeping the loss under threshold. Meanwhile, pruning rate

and pruning loss are not linear correlated, and our algorithm

can better explore the redundancy of each layer. Experiments

on Alexnet [5] and ResNet50 [6] for ImageNet classification

demonstrate the effectiveness of our proposed method.

II. RELATED WORK

Knowledge Distillation is first proposed by [7], where

knowledge is transferred from high-capacity teacher to a

more compact network for efficient deployment. Not only

the ground truth component but also the dark knowledge

term, containing information on the wrong outputs, have

contribution on student network, which has been proved

in [4]. This suggests that knowledge distillation, originally

introduced to reduce parameters, can be applied to accuracy

recovery. A pioneering work extended knowledge distillation

to use both the outputs and intermediate representations,

which is produced by teacher network, to train the narrower

students [8]. In a different approach, the authors trained

shallow nets to mimic deep networks with L2 norm of the

difference between student’s and teacher’s logits [9].

Network Pruning is widely used in deep neural network

compression since [10]. They approved that weight pruning

is a valid way to reduce over-fitting and model complexity.

Then some researchers pruned the small-weight connections

and retrained the network to learn final weights for the

remaining connections [11].In order to prevent weights from

being wrongly pruned, soft-pruning has been proposed to

update the pruned weight and apply pruning algorithm

again to the new weights [12], [13]. Recently, filter level

pruning has been proposed to compress and accelerate deep

neural networks. A new formulation has been proposed for

pruning convolution kernels which used Taylor expansion

based importance criteria to prune filters [14]. We propose to

assign pruning rate automatically by binary search to make

network pruning simpler.

157

2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

978-1-7281-4272-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MIPR49039.2020.00040

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 01,2020 at 07:52:30 UTC from IEEE Xplore. Restrictions apply.

Figure 1. An overview of AMP algorithm. The gray parts represent network pruning. I. Use binary search to assign pruning rate for each layer. II. Use
knowledge distillation to fine-tune student network. When pruning the l-th layer, both �lF and �G will be used to guide backporpagation.

III. NOTATION AND PRELIMINARIES

Given a deep model Net T, which is pre-trained on

labeled dataset DS , we hope to obtain a compressed model

Net S. We denote the parameters of each layer as a 4-D

weight tensor and the feature maps of each layer as a 3-D

tensor. Let T (l) ∈ R
Nl×Cl×hl×zl and S(l) ∈ R

Nl×Cl×hl×zl

be the l-th layer weight tensor of the teacher and student

models with kernel size hl×zl, where Nl and Cl denote the

number of output and input channels. We denote ||v||2 as the

L-2 norm of vector v and S
(l)
i,:,:,: be the i-th channel of S(l).

The output of the l-th layer is denoted by S
(l)
O ∈ R

Nl×ho×zo ,

where ho and zo is the height and width of the feature maps.

For the teacher network Net T, the output of the l-th layer,

denoted by T
(l)
O j,:,:, can be defined in a similar way.

IV. ANONYMOUS MODEL PRUNING

A. Overview of Proposed Methods

An overview of our approach is presented in Figure 1.

Take the l-th layer of Net S for example. We first prune the

l-th layer of Net S by the pruning rate pl, initialized as p0.

p0 is shared by all layers. Then we calculate the L2 loss

of feature maps between the Net T and the Net S, which

is named �lF . Note that �lF calculated from p0 is defined

as �0F . Suppose tmax is the max pruning loss threshold to

constrain the pruning proportions. We set a hyperparameter

r to balance the pruning rate and model accuracy loss. So the

max loss threshold in the l-th layer is calculated by tlmax =
r ∗ �0F . Note that the whole training process shares the r.

Then the pruning rate pl of l-th layer is automatically

adjusted to a value as large as possible when the �lF is less

than tlmax. To find a best p for each layer, we use binary

search between 0 and 1. The process of training and binary

search progresses iteratively for each layer.

Here, the feature maps loss �lF restricts the pruning loss of

each layer thereby reducing the reconstruction error. And the

global pruning loss between Net S and Net T is defined as

�G, which helps Net S to mimic the final output of Net T.

Then we train Net S layer by layer to minimize the distance

between Net T. This process uses knowledge distillation

approach on another unlabeled dataset D2 instead of the

source dataset D1. Note that Net S and Net T share the

same structure and initial parameters at the beginning.

B. Pruning

We verify the feasibility of AMP on weight pruning and

channel pruning. Weight pruning can prune unimportant

weights precisely while channel pruning can bring conve-

nience to calculation acceleration and practical deployment.

1) Weight Pruning: Considering that smaller weights

have less impact on the model, we sort the weights of

one layer from small to large. With the pruning rate p, we

recurrently set the first p weights to zero in the forward pass

and then re-train this layer until binary search is finished.

This operation will be applied to each convolution layer

and fully connected layer respectively in order. For weight

pruning, �lF can be computed by

�lF = ||S(l)
O − T

(l)
O ||2

=
1

Cl+1

∑Cl

k=0
||S(l)

O k,:,: − T
(l)
O k,:,:||2

(1)

2) Channel Pruning: In contrast to weight pruning, chan-

nel pruning needs to evaluate the comprehensive perfor-

mance of one channel to determine whether to prune it

or not. We apply group-sparse regularization l2-norms to

zero-out filters with small l2-norm, which is also been

used in [15], [16]. In order to unify the two strategies, we

try to simulate the output of the pruned channels by null

matrices, thus making the output dimension of Net S and

Net T consistent. However, our experiments show that the

loss between null matrices and the corresponding layers of

Net T can not reduce through backpropagation, because the

158

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 01,2020 at 07:52:30 UTC from IEEE Xplore. Restrictions apply.

related channels have been removed. Considering the output

of the pruned layer is inconsistent after pruning, we choose

the output of the layer next to the pruned layer to calculate

pruning loss. For channel pruning, �lF can be computed by

�lF = ||S(l)
O − T

(l)
O ||2

=
1

Cl+1

∑Cl

k=0
||S(l+1)

O k,:,: − T
(l+1)
O k,:,:||2

(2)

C. Knowledge Distillation

After network pruning, we use knowledge distillation [7]

to further compensate the performance degradation. For the

following considerations, we train all the layers together:

(1) the deep representations are more expressive [17], so

the error can accumulate while pruning the front layers; (2)

focusing on reducing the loss of pruned layer �lF may lead to

local optimal solutions. Conversely, parameters in the mid-

layers may suffer from non-convergence if merely under the

supervision of the output of teacher’s last layer. Therefore,

we constrain mid-layers as well as the last fully connected

layer, which can reduce the loss caused by pruning , and

prevent accumulated error at the same time.

V. EXPERIMENTS

A. Implementation details

We evaluate AMP on three popular deep neural networks:

AlexNet [5], VGG16 [18], Resnet50 [6] on ILSVRC-12 [1].

For training dataset, we randomly select a subset of Open

Images V4 [19] containing 7000 categories, in which each

category contains only 10 images. The dataset mainly con-

tains random images of the real world. Consequently, it has

the similar data distribution to ILSVRC-12. In the testing

phase, we record the accuracy of compressed model on their

source dataset. We use pre-trained models from Pytorch as

the initial teacher and student networks. The learning rate is

set to 0.0001 in the beginning and Adam [20] optimizer is

adopted. Empirically, we set p0 to 0.2 and λ to 1.

B. AMP with Weight Pruning

We prune each layer separately and evaluate the differ-

ences between the pruned network and the original network.

We find that the pruning loss and the pruning rate are not

strictly linear correlated. This reveals that the sensitivity of

each layer is different, which has also been proved by [21].

This inspires us that the nonlinear correlation between

pruning loss and pruning rate can be used to balance pruning

rate and network accuracy.

1) AlexNet on ILSVRC-12: We report the relationship

between hyperparameter r, compression rate and top-1 ac-

curacy loss in Table I. The batch size is set to 64 and

training epoch is set to 32. For equal spaced changes in

r, the growth of compression rate is nonlinear. When the

student network has already been pruned by 60.25%, the

remaining parameters in the student network are relatively

important and have more effect on performance. Therefore,

by increasing the same size of r, the pruning rate increases

by a small proportion. Compared with [22] which achieved

35% pruning rate with 2.2% accuracy damage, we prune

51.03% parameters with only 0.17% accuracy damage.

Table I
ALEXNET ON ILSVRC-12.

r Pruning Rate % Top 1%

0.0 - 56.522

1.0 20.63 56.384

1.05 51.03 56.352

1.10 60.25 56.208

1.15 64.95 55.720

2) ResNet50 on ILSVRC-12: ResNet50 consists of sev-

eral sub-modules, called residual block. We take a residual

block as a unit to apply the pruning algorithm. We report

the comparison of our method with other pruning algorithms

in Table II. Hyperparameter r in this experiment is set

to 1.2. The result of soft filter pruning [3] is not fine-

tuned after pruning, we choose this result because the fine-

tuned accuracy at the same pruning rate sharply dropped by

14.04% and the authors did not explain why. Considering

that the authors only listed the one-view accuracy, we don’t

compare with the abnormal data for the sake of fairness.

Since the pruning rate of our method is obtained auto-

matically by binary search within the given loss threshold,

we can’t precisely control the pruning rate. Therefore we

choose the closest pruning result to other methods, which

makes them comparable.

In the experiments, we also test the student network

immediately after weight pruning and get 68.450%, which

has -7.68% Δ accuracy. The accuracy of the student network

gradually increases in the training progress, which proves the

success of knowledge distillation process in AMP algorithm.

Table II
RESNET50 ON ILSVRC-12.

Method Pruning Rate % ΔTop1 %

Data-Free Pruning [22] 35.08 -2.2

Soft filter pruning [3] 30 -1.54

ThiNet(70) [2] 30 -0.84

Soft weight sharing [13] 6.6 -2.02

Anonymous
Model Pruning 32.72 -0.76

C. AMP with Channel Pruning

we prune VGG-16 and evaluate the pruned model on

ILSVRC-12. Experimental results are shown in Table III.

At the same pruning rate, channel pruning does not achieve

competitive accuracy as weight pruning does. Therefore,

channel pruning preserves relatively less dimensional infor-

mation than weight pruning, and it is relatively difficult to

159

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 01,2020 at 07:52:30 UTC from IEEE Xplore. Restrictions apply.

Table III
PERFORMANCE OF AMP WITH CHANNEL PRUNING.

Network Pruning Rate % Top1% ΔTop1% Top5 % Δ Top5 % Pruned FLOPs % r
VGG-16 - 71.59 - 90.38 - - -
VGG-16 34.63 68.38 -3.21 88.80 -1.58 35.43 1.1
VGG-16 40.97 67.20 -4.39 87.95 -2.43 38.73 1.15
VGG-16 46.30 66.78 -4.81 88.02 -2.36 42.20 1.2

recover the network accuracy without training on the original

dataset.

VI. CONCLUSION

This paper proposes the Anonymous Model Pruning

(AMP) algorithm that can compress deep neural network

without the original dataset. We use binary search to find

the practical pruning rate automatically. All the experimental

results have revealed that AMP algorithm can achieve a

competitive result with other weight pruning methods even

without the source dataset. We think that our method will

help further research in data-independent model compres-

sion.

ACKNOWLEDGMENT

This work is supported in part by the National Key R&D

Program of China under Grant 2017YFB1002400, in part

by the National Natural Science Foundation of China under

Contract U1611461 and 61825101, in part by Shenzhen

Municipal Science and Technology Program under Grant

JCYJ20170818141146428.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in CVPR. Ieee, 2009, pp. 248–255.

[2] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning
method for deep neural network compression,” arXiv preprint
arXiv:1707.06342, 2017.

[3] Y. He, X. Dong, G. Kang, Y. Fu, and Y. Yang, “Progressive
deep neural networks acceleration via soft filter pruning,”
arXiv preprint arXiv:1808.07471, 2018.

[4] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and
A. Anandkumar, “Born again neural networks,” arXiv preprint
arXiv:1805.04770, 2018.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
NeurIPS, 2012, pp. 1097–1105.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016, pp. 770–778.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” Computer Science, vol. 14, no. 7, pp.
38–39, 2015.

[8] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio, “Fitnets: Hints for thin deep nets,” Computer
Science, 2014.

[9] J. Ba and R. Caruana, “Do deep nets really need to be deep?”
in NIPS, 2014, pp. 2654–2662.

[10] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain
damage,” in NIPS, 1990, pp. 598–605.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” Fiber, vol. 56, no. 4, pp.
3–7, 2015.

[12] F. Tung and G. Mori, “Clip-q: Deep network compression
learning by in-parallel pruning-quantization,” in CVPR, 2018,
pp. 7873–7882.

[13] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-
sharing for neural network compression,” arXiv preprint
arXiv:1702.04008, 2017.

[14] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource efficient
inference,” arXiv preprint arXiv:1611.06440, 2016.

[15] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning
structured sparsity in deep learning.” NIPS, 2016.

[16] Z. Hao, J. M. Alvarez, and F. Porikli, “Less is more: Towards
compact cnns,” in ECCV, 2016.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” TPAMI, vol. 35,
no. 8, pp. 1798–1828, 2013.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[19] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin,
J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, T. Duerig
et al., “The open images dataset v4: Unified image classifi-
cation, object detection, and visual relationship detection at
scale,” arXiv preprint arXiv:1811.00982, 2018.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

[22] S. Srinivas and R. V. Babu, “Data-free parameter pruning for
deep neural networks,” Computer Science, pp. 2830–2838,
2015.

160

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on September 01,2020 at 07:52:30 UTC from IEEE Xplore. Restrictions apply.

