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Abstract. Learning structural information is critical for producing an
ideal result in retinal image segmentation. Recently, convolutional neural
networks have shown a powerful ability to extract effective representa-
tions. However, convolutional and pooling operations filter out some use-
ful structural information. In this paper, we propose an Attention Guided
Network (AG-Net) to preserve the structural information and guide the
expanding operation. In our AG-Net, the guided filter is exploited as
a structure sensitive expanding path to transfer structural information
from previous feature maps, and an attention block is introduced to
exclude the noise and reduce the negative influence of background fur-
ther. The extensive experiments on two retinal image segmentation tasks
(i.e., blood vessel segmentation, optic disc and cup segmentation) demon-
strate the effectiveness of our proposed method.

1 Introduction

Retinal image segmentation plays an important role in automatic disease diagno-
sis. Compared to general natural images, retinal images contain more contextual
structures, e.g., retinal vessel, optic disc and cup, which often provide important
clinical information for diagnosis. As the main indicators for eye disease diag-
nosis, the segmentation accuracy of these information is important. Recently,
convolutional neural networks (CNNs) have shown the strong ability in retinal
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image segmentation with remarkable performances [1–4]. Existing CNN based
models learn increasingly abstract representations by cascade convolutions and
pooling operations. However, these operations may neglect some useful struc-
tural information such as edge structures, which are important for retinal image
analysis. To address this issue, one possible solution is to add extra expand-
ing paths to merge features skipped from the corresponding resolution levels.
For example, FCN [5] sums up the upsampled feature maps and the feature
maps skipped from the contractive path. And U-Net [6] concatenates them and
add convolutions and non-linearities. However, these works can not effectively
leverage these structural information, which may hamper the segmentation per-
formance. Therefore, it is desirable to design a better expanding path to preserve
structural information.

To address this, we introduce guided filter [7] as a special expanding path to
transfer structural information extracted from low-level feature maps to high-
level ones. Guided filter [7] is an edge-preserving image filter, and has been
demonstrated to be effective for transferring structural information. Different
from existing works which use the guided filter at the image level, we incorporate
the guided filter into CNNs to learn better features for segmentation. We further
design an attention mechanism in guided filter, called attention guided filter, to
remove the noisy components, which are introduced from the complex back-
ground by original guided filter. Finally, we propose Attention Guided Net-
work (AG-Net) to preserve the structural information and guide the expanding
operation. The experiments on vessel segmentation and optic disc/cup segmen-
tation demonstrate the effectiveness of our proposed method.
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Fig. 1. Architecture of proposed AG-Net. Our AG-Net is based on M-Net [3], which
is a multi-scale multi-label segmentation network. The block AG represents our atten-
tion guided filter and the operator C is the concatenation. In our AG-Net, the atten-
tion guided filter is used as a structural sensitive skip-connection to replace the skip-
connection and upsampling layer for better information fusion.
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2 Methodology

Figure 1 shows the architecture of proposed AG-Net, where M-Net [3] is uti-
lized as the backbone to learn hierarchical representations. We propose atten-
tion guided filter into the network, which contains the guided filter and attention
block to filter out the noise from the background and address the boundary blur
problem caused by upsampling. The details of our AG-Net are illustrated as
follows.

Linear Model

Resize

Bilinear Upsampling

+Mean FilterAttention Block Local Linear Model

I

O
O

T

lI

r

lA

hA

lB

hB
O~

Fig. 2. Illustration of the attention guided filter. The attention guided filter first pro-
duces the attention map T through the attention block, then calculates Al, Bl with
the attention map T , resized guidance feature map (Il), filtering feature map (O) and
hyperparameter r, ε. By using bilinear upsampling Al and Bl, we obtain Ah and Bh

for producing the final output Õ with I.

2.1 Attention Guided Filter

The attention guided filter recovers spatial information and merges structural
information from the various resolution levels by filtering the low-resolution fea-
ture maps with high-resolution feature maps. The inputs include a guidance fea-
ture map (I), and a filtering feature map (O). The output is a high-resolution fea-
ture map Õ. The attention feature map T is produced by an attention block. As
shown in Fig. 2, the attention guided filter firstly downsamples the guidance fea-
ture map I to obtain a low-resolution feature map Il, which has the same size of
the filtering feature map O. Then we minimize the reconstruction error between
Il and O to obtain the coefficients of the attention guided filter Al, Bl, which
correspond to Il. After that, by upsampling Al and Bl, the coefficients Ah and
Bh are obtained to generate the final high-resolution output Õ of the attention
guided filter. Concretely, the attention guided filter constructs a squared window
wk with a radius r for each position k. Let Ili be a pixel of Il, its output with
respect to wk is obtained by a linear transformation: Ôki = akIli + bk,∀i ∈ wk,
where ak and bk are the linear coefficients of the window wk.

To determine the linear coefficients (ak, bk), we minimize the difference
between Ôki and Oi for all the pixels in the window wk, which is formulated
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as the following optimization problem:

min
ak,bk

E(ak, bk) :=
∑

i∈wk

(T 2
i (akIli + bk − Oi)2 + λa2

k), (1)

where λ is a regularization parameter, and Ti is the attention weight at the
position i. The closed-form solution to Problem (1) is given as:

ak =
T 2

i IiOi − Nk × XiTiIi × TiOi

T 2
i I2i − Nk × XiTiIi × TiIi + λ

, bk =
TiOi − ak × TiIi

Ti

, (2)

where Nk is the number of the pixels in wk, Xi = Ti∑
i∈wk

Ti
, and (·) is the mean of

(·). Considering that each position i is involved in multiple windows {wk} with
different coefficients {ak, bk}, we average all the values of Ôki from different
windows to generate Ôi, which is equal to average the coefficients (ak, bk) of all
the windows overlapping i, as following,

Ôi =
1

Nk

∑

k∈Ωi

akIi +
1

Nk

∑

k∈Ωi

bk = Al ∗ Il + Bl, (3)

where Ωi is the set of all the windows including the position i, and ∗ is the
element-wise multiplication. After upsampling Al and Bl to obtain Ah and Bh,
respectively, the final output is calculated as Õ = Ah ∗ I + Bh.

Fig. 3. Schematic of the attention block. O and I are the inputs of attention guided
filter and T is the calculated attention map.

Attention Block is very essential in our method. Specially, the attention block
is used to highlight the foreground and reduce the effect of background. As shown
in Fig. 3, the attention block consists of three steps: (1) given the feature maps
O, Il ∈ R

C×H×W , a channel-wise 1 × 1 × 1 convolution is used to do a linear
transformation. Note that this can be referred to as the vector concatenation-
based attention [8], where the concatenated features are linearly mapped into a
latent space. (2) two transformed feature maps are combined with element-wise
addition with a ReLU layer. (3) a 1×1×1 convolution is applied as a additional
linear transformation with a Sigmoid activation to produce the final attention
map T .
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3 Experiments

In this paper, we evaluate our method in two major tasks of vessel segmentation,
and optic disc/cup segmentation from retina fundus images.

3.1 Vessel Segmentation on DRIVE Dataset

We conduct vessel segmentation experiments on DRIVE to evaluate performance
of our proposed AG-Net. The DRIVE [9] (Digital Retinal Images for Vessel
Extraction) dataset contains 40 colored fundus images, which are obtained from
a diabetic retinopathy screening program in Netherlands. The 40 images are
divided into 20 training images and 20 testing images. All the images are made
by a 3CCD camera and each has size of 565×584. We apply gamma correction to
improve the image quality, and resize the preprocessed images into 512 × 512 as
inputs. In the experiment, we train our AG-Net from scratch using Adam with
the learning rate of 0.0015. The batch size is set to 2. The radius of windows
r and the regularization parameter λ in attention guided filter are set to 2 and
0.01 respectively. Following the previous work [10], we employ Specificity (Spe),
Sensitivity (Sen), Accuracy (Acc), intersection-over-union(IOU) and Area Under
ROC (AUC) as measurements.

We compare our AG-Net with several state-of-the-art methods, including
Li [11], Liskowski [12], and Zhang [10]. Li [11] remolded the task of segmenta-
tion as a problem of cross-modality data transformation from retinal image to
vessel map, and outputted the label map of all pixels instead of a single label
of the center pixel. Liskowski [12] trained a deep neural network on sample of
examples preprocessed with global contrast normalization, zero-phase whiten-
ing, and augmented using geometric transformations and gamma corrections.
MS-NFN [13] generates multi-scale feature maps with an ‘up-pool’ submodel
and a ‘pool-up’ submodel. To verify the efficacy of attention in guided filter
and transfer structural information, we replaced the attention guided filter in
AG-Net with the original guided filter, named GF-Net.

Table 1. Quantitative comparison of segmentation results on DRIVE

Method Acc AUC Sen Spe IOU

Li [11] 0.9527 0.9738 0.7569 0.9816 −
Liskowski [12] 0.9535 0.9790 0.7811 0.9807 −
MS-NFN [13] 0.9567 0.9807 0.7844 0.9819 −
U-Net [6] 0.9681 0.9836 0.7897 0.9854 0.6834

M-Net [3] 0.9674 0.9829 0.7680 0.9868 0.6726

GF-Net 0.9682 0.9837 0.7895 0.9856 0.6839

AG-Net 0.9692 0.9856 0.8100 0.9848 0.6965
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Table 1 shows the performances of different methods on DRIVE. Form the
results, we could have several interesting observations: Firstly, GF-Net performs
better than original M-Net, which demonstrates the superiority of the guided
filter compared to the skip connection for transferring structural information.
Secondly, AG-Net outperforms GF-Net by 0.0010, 0.0019, 0.0205 and 0.0126
in terms of Acc, AUC, Sen and IOU respectively. This demonstrates the effec-
tiveness of the attention strategy in attention guided filter. Lastly, unlike other
deep learning methods which crop images into patches, our method achieves
the best performance with the original preprocessed 20 images. We draw similar
observations from the results on the CHASE DB1 dataset, which are shown in
Table 2.

(a) (b) (c) (d) (e)

Fig. 4. (a) A test image from DRIVE dataset; (b) Ground truth segmentation; (c)
Segmentation result by M-Net; (d) Segmentation result by GF-Net; (e) Segmentation
result by AG-Net. From (c), M-Net neglect some edge structures which are very sim-
ilar to choroidal vessels. On the contrary, by exploiting attention guided as a special
expanding path, AG-Net gains better discrimination power and is able to distinguish
objects from similar structures. Moreover, GF helps to obtain clearer boundaries.

Figure 4 shows an example test, including the ground truth vessel and the
segmentation results obtained by M-Net, M-Net+GF and the proposed AG-
Net. M-Net+GF produces clearer boundaries than M-Net, which demonstrates
the effectiveness of the guided filter to better leverage structure information.
Compared with M-Net+GF, our proposed AG-Net produces more precise seg-
mentation boundaries, which verifies that the attention mechanism is able to
highlight the foreground and reduce the effect of background.

In terms of time consumption, we compare our AG-Net with M-Net which
is the backbone of our method. In our experiment, both algorithms are imple-
mented with Pytorch and tested on a single NVIDIA Titan X GPU (200 itera-
tions on DRIVE dataset). The running time is shown in Table 3.

3.2 Optic Dice/Cup Segmentation on ORIGA Dataset

Optic Dice/Cup Segmentation is another important retinal segmentation task. In
this experiment, we use ORIGA dataset, which contains 650 fundus images with
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Table 2. Quantitative comparison of segmentation results on CHASE DB1

Method Acc AUC Sen Spe IOU

Li [11] 0.9581 0.9716 0.7507 0.9793 −
Liskowski [12] 0.9628 0.9823 0.7816 0.9836 −
MS-NFN [13] 0.9637 0.9825 0.7538 0.9847 −
U-Net [6] 0.9723 0.9837 0.7715 0.9858 0.6366

M-Net [3] 0.9729 0.9845 0.7922 0.9851 0.6483

GF-Net 0.9734 0.9853 0.8089 0.9845 0.6572

AG-Net 0.9743 0.9863 0.8186 0.9848 0.6669

Table 3. Quantitative comparison of the time consumption

Method Train time (s) Test time (s/image)

M-Net 1800 0.0691

AG-Net 2800 0.0158

168 glaucomatous eyes and 482 normal eyes. The 650 images are divided into 325
training images (including 73 glaucoma cases) and 325 testing images (including
95 glaucoma cases). We crop the OD area and resize it into 256×256 as the input.
The training setting of our AG-Net is as same as in vessel segmentation task.
We compare AG-MNet with several state-of-the-art methods in OD and/or OC
segmentation, including ASM [14], Superpixel [15], LRR [16], U-Net [6], M-Net
[3], and M-Net with polar transformation (M-Net + PT). ASM [14] employs the
circular hough transform initialization to segmentation. Superpixel method in
[15] utilizes superpixel classification to detect the OD and OC boundaries. The
methods in LRR [16] obtain good results, but it only focus on OC segmentation.

Following the setting in [3], we firstly localize the disc center, and then crop
640 × 640 pixels to obtain the input images. Inspired by M-Net+PT [3], we
provide the results of AG-Net with polar transformation, called AG-MNet+PT.
Besides, to reduce the impacts of changes in the size of OD, we construct a
method AG-MNet+PT∗, which enlarges 50 pixels of bounding-boxes in up,
down, right and left, where the bounding boxes are obtained from pretrained
LinkNet [17]. We employ overlapping error (OE) as the evaluation metric, which
is defined as OE = 1 − AGT

⋂
ASR

AGT

⋃
ASR

, where AGT and ASR denote ground truth
area and segmented mask, respectively. In particular, OEdisc and OEcup are the
overlapping error of OD and OE. OEtotal is the average of OEdisc and OEcup.

Table 4 shows the segmentation results, where the overlapping errors of other
approaches come directly from the published results. Our method outperforms
all the state-of-the-art OD and/or OC segmentation algorithms in terms of the
aforementioned two evaluation criteria, which demonstrates the effectiveness of
our model. Besides, Our AG-Mnet performs much better than original M-Net
under the same situation, which further demonstrates our attention guided filter
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Table 4. Quantitative comparison of segmentation results on ORIGA

Method OEdisc OEcup OEtotal

ASM [14] 0.148 0.313 0.231

SP [15] 0.102 0.264 0.183

LRR [16] − 0.244 −
U-Net [6] 0.115 0.287 0.201

M-Net [3] 0.083 0.256 0.170

M-Net+PT [3] 0.071 0.230 0.150

AG-Net (ours) 0.069 0.227 0.148

AG-Net+PT (ours) 0.067 0.217 0.142

AG-Net+PT∗ (ours) 0.061 0.212 0.137

is beneficial for the segmentation performance. More visualization results could
be found in Supplementary Material.

4 Conclusions

In this paper, we propose an attention guided filter as a structure sensitive
expanding path. Specially, we employ M-Net as the main body and exploit our
attention guided filter to replace the skip-connection and upsampling, which
brings better information fusion. In addition, by introducing the attention mech-
anism into the guided filter, the attention guided filter can highlight the fore-
ground and reduce the effect of background. Experiments on two tasks demon-
strate the effectiveness of our method.
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