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Auto-Embedding Generative Adversarial Networks
for High Resolution Image Synthesis
Yong Guo∗, Qi Chen∗, Jian Chen∗, Qingyao Wu, Qinfeng Shi, and Mingkui Tan†

Abstract—Generating images via generative adversarial net-
work (GAN) has attracted much attention recently. However,
most of the existing GAN-based methods can only produce low
resolution images of limited quality. Directly generating high
resolution images using GANs is nontrivial, and often produces
problematic images with incomplete objects. To address this issue,
we develop a novel GAN called Auto-Embedding Generative
Adversarial Network (AEGAN), which simultaneously encodes
the global structure features and captures the fine-grained details.
In our network, we use an autoencoder to learn the intrinsic high-
level structure of real images and design a novel denoiser network
to provide photo-realistic details for the generated images. In
the experiments, we are able to produce 512 × 512 images of
promising quality directly from the input noise. The resultant
images exhibit better perceptual photo-realism, i.e., with sharper
structure and richer details, than other baselines on several
datasets, including Oxford-102 Flowers, Caltech-UCSD Birds
(CUB), High-Quality Large-scale CelebFaces Attributes (CelebA-
HQ), Large-scale Scene Understanding (LSUN) and ImageNet.

Index Terms—Generative models, adversarial learning, low-
dimensional embedding, autoencoder.

I. INTRODUCTION

BUILDING a generative model that produces photo-
realistic images of high resolution has been a challenging

problem in the field of computer vision. Compared to low
resolution images, the high resolution images of promising
quality often provide richer information and benefit the train-
ing of deep neural networks (DNNs) in many real-world
applications, such as texture synthesis [11], [42], [21], [33],
super-resolution [15], [31], [51] and attribute editing [9],
[56], [17]. However, how to produce high-quality data when
increasing the image resolution still remains an open question.

Recently, generative adversarial networks (GANs) [6] have
achieved great success and become the workhorse of many
challenging tasks, including image generation [24], [1], [44]
video prediction [25], [20] and image translation [24], [10],
[59], [52]. Typically, GANs learn to generate data by playing
a two-player game: a generator attempts to produce samples
from a simple prior distribution (e.g., Gaussian distribution),
while a discriminator acts as a judge to distinguish the
generated data from the real one.

When generating images directly from the prior distribution,
the quality of the images generated by most of the existing
models can be quite limited, especially when synthesizing
very high resolution images. To be specific, deep generative
models often produce meaningless images that may contain
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Fig. 1. Samples generated by DCGAN (top) and AEGAN (bottom) of
different resolutions on the Oxford-102 Flowers dataset.

multiple distorted regions with blurred structure [23]. To
illustrate this issue, in Fig. 1, we compare generated samples
of different resolutions produced by the well-known model
DCGAN [24] and by our proposed method. From Fig. 1 top,
the low resolution images of size 64 × 64 and 128 × 128
preserve clear and complete object structure, including stamen,
petals, etc. However, for the higher resolutions of 256 × 256
or 512 × 512, DCGAN fails to produce meaningful samples
and yields very poor results compared to low resolutions.
Regarding this issue, it is necessary and important to explore a
new method to improve the performance of generative models
when increasing the image resolution.

The difficulties of generating high resolution images are
generally attributed to two reasons. The first is that it is hard
to directly learn a mapping between the prior distribution (i.e.,
input noise) and the distribution of high-dimensional real data,
due to the large distribution gap. Since high-dimensional data
often lie on some low-dimensional manifold [41], [28], [3],
we use low-dimensional embedding to uncover the image’s
structural information, which acts as a bridge to connect
the prior distribution with the distribution of real data. This
embedding is extracted by an autoencoder that is able to
reconstruct the real images while preserving clear photo-
structure. More critically, matching a low-dimensional embed-
ding representation can significantly ease the training of GANs
compared to learning high resolution images directly.

The second reason regarding this issue is that there is no
additional knowledge, such as label or semantic information
obtained from real data, to help the model training. Note that
the prior distribution is usually very simple, e.g., standard
Gaussian distributions or uniform distributions [6], and is
independent of the real data, which may lose the original
semantic information. In practice, GANs can easily lose the
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primary characteristics of data that are used by humans in
image recognition, resulting in meaningless images (see results
in Section IV). On the contrary, the extracted embedding,
which contains the spatial structural information, is able to
act as a kind of additional knowledge to improve the training.

By translating the input noise into an embedding and
decoding it into a corresponding synthetic image, however,
the model may introduce many noisy artifacts. To alleviate
this issue, we further develop an adversarial denoiser network
to enhance the photo-realism of the generated images. This
denoiser model takes synthetic images as input and forces
them to be perceptually indistinguishable from the real images
in terms of texture details. In practice, we feed the generated
images into the denoiser model to remove these artifacts and
provide photo-realistic details.

Based on the above intuitions, we propose the Auto-
Embedding Generative Adversarial Networks (AEGANs) for
high resolution image synthesis. Unlike the considered base-
lines, AEGAN is able to consistently generate perceptually
promising images at different resolutions (see Fig. 1 bottom).
Moreover, the proposed method significantly outperforms the
alternative approaches and produces photo-realistic 512× 512
images, which simultaneously capture the high-level photo-
structure and preserve the low-level details.

In this paper, we make the following contributions:

• We devise a novel Auto-Embedding Generative Ad-
versarial Net (AEGAN) that generates high resolution
images by learning a latent embedding extracted from
an autoencoder. AEGAN exploits the high-level photo-
structure and acts as a bridge to connect the distributions
of the input noise and real data. As a result, the proposed
method can produce much more meaningful images with
clear structure and rich details.

• We develop a new denoiser network that uses an encoder-
decoder network as the generator to remove artifacts and
provide photo-realistic details in the generated images.

• The proposed method is able to produce high resolution
images with promising quality. For example, when the
desired resolution is 512 × 512, the generated images
are of much higher quality than those obtained using the
considered methods.

II. RELATED WORK

A. Generative Adversarial Networks

Recently, Generative Adversarial Networks (GANs) [6]
have shown promising performance for generating natural
images, such as DCGAN [24], WGAN [1], WGAN-GP [7],
LAPGAN [4], etc. More recently, Chen et al. propose a
modification of generators in GANs, called Self-Modulation
framework [36] that improves the performance of the gen-
erated images by modulating the architectural features of
GAN generators. Moreover, GANs have also been applied to
range of other interesting applications, such as text to image
synthesis [26], [57], [40], [34], super-resolution [16], [47],
image inpainting [5], [50], [55] and so on.

B. High-Resolution Image Generation

Generating high resolution images has gained much atten-
tion in the last few years in light of the advances in deep
learning. To achieve this, one can compare the distribution
divergences of the real and the generated data in a low-
dimensional data space, such as StackGAN [57], StackGAN-
v2 [40], AGE [43] and AttnGAN [34].

In StackGAN, the low resolution image obtained from
Stage-I and the conditional text are used to produce high
resolution image through Stage-II GAN, just as is done in su-
per resolution. However, for unconditional image generation,
the conditional text is not necessary and can be discarded.
Moreover, the Stage-II GAN is trained by minimizing the
JS distance between real and fake data. Unlike StackGANs,
in addition to minimizing the JS divergence, we seek to
increase the fidelity of images while preserving the image
content by introducing a pixel-wise loss. StackGAN-v2 is
an extension of StackGAN that uses a cascade mechanism to
generate the image in gradually growing resolution. Based on
StackGAN-v2, AttnGAN introduces the attention mechanism
to improve the visual quality of the generated images. AGE
uses an autoencoder to project both the real data and the
generated data into a latent space. To compare the distribution
divergence, AGE aligns a simple prior distribution in the
latent space and the data distribution in the image space.
More recently, Zhang et al. design a SAGAN model [39] that
incorporates the self-attention mechanism into the generator
and discriminator. Based SAGAN model, Brock et al. propose
a BigGAN model [35] that improves the performance using a
suite of tricks for training.

C. Autoencoder GAN

Autoencoders have been widely used in GANs and a
plethora of attempts have been made to improve the training.
For example, the adversarial autoencoder (AAE) leverages an
autoencoder to match the distribution of latent embedding
with the prior. Boundary-equilibrium GANs [2] and energy-
based GANs [58] use an autoencoder as the discriminator
to stabilize the training. Warde-Farley et al. [49] combine
an autoencoder loss with the GAN loss by matching high-
level feature similarity. CycleGANs [59] and DualGANs [52]
construct a bidirectional loss with autoencoder and GAN for
data translation between two domains. The methods described
in [14], [27], which are based on autoencoders, combine a
Variational Autoencoder (VAE) with GAN using variational
inference to solve the intractability of the marginal likelihood
in GAN. Plug and play generative networks (PPGN) [38] com-
bines an autoencoder loss with a GAN loss and a classification
loss.

Very recently, Karras et al. [12] have proposed a new
progressively-growing training method that gradually adds one
more block per stage in both the generator and discriminator
networks. In this way, it can significantly improve the synthetic
image quality. However, this training method takes a long
time to converge (i.e., more than two days), while DCGANs
and our proposed AEGANs only require several hours for
training. Unlike other methods, in this paper, we use an
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autoencoder to transform high-dimensional data to a low-
dimensional embedding in the latent space. The extracted
embedding contains rich structural information of real images
and aids the training to produce images of promising quality.

III. THE PROPOSED METHOD

Considering that high-dimensional data often lie on some
low-dimensional manifold, we seek to exploit a low-
dimensional embedding extracted from large training data
to improve the performance of GANs. To this end, we
present a novel generative method called Auto-Embedding
Generative Adversarial Network (AEGAN). Corresponding to
the overall structure in Fig. 2, the detailed algorithm is shown
in Algorithm 1.

We propose to train GANs by matching the distribution of
the low-dimensional embeddings on a latent manifold (see
Step 1) instead of the distributions of pixel-level images,
which is very different from the existing GANs methods.
Specifically, we use the embeddings extracted from an autoen-
coder to bridge the distribution gap between the input noise
and real data. The embeddings often contain rich structural
information and help to generalize well with high resolu-
tion images. After using the autoencoder to extract the low-
dimensional embedding, we learn a GAN in the embedding
space to effectively exploit the structural information. More-
over, we devise a denoiser network to remove artifacts/noises
and refine the photo-realistic details (see Step 2). During
training, we can use a fine-tuning strategy (which, however,
is optional) to further improve the performance. As shown
in Fig. 2, the whole scheme mainly includes three important
components, namely an autoencoder, a generative module, and
a denoiser network. In this section, we will depict each part
of the method in the following subsections.

A. Learning Embedding by Autoencoder

In this paper, we seek to bridge the distribution gap between
the input noise and the real images using a latent embedding
extracted from an autoencoder. The autoencoder contains an
encoder H which maps the high resolution images into a
low-dimensional embedding and a decoder F which translates
the latent embedding back to high resolution images. Here,
the encoder is a fully convolutional network that extracts
the high-level features of the data, while the decoder is
a fully deconvolutional model that effectively recovers the
high resolution images. Given a collection of n real samples
{xi}ni=1, we minimize the following reconstruction loss:

LAE(θF , θH) =
1

n

n∑
i=1

‖F (H(xi))− xi‖1, (1)

where θH and θF denote the parameters of the encoder H
and the decoder F , respectively. Here, we use L1 loss instead
of the L2 loss to better capture the high-level and salient
features [53]. This feature becomes the embedding which is
able to uncover the primary characteristics of real data, e.g. the
structural information or image style. In this way, the learned
latent embedding has the potential to produce meaningful
images.

Algorithm 1 Training algorithm for AEGAN
Initialize: Real data {xi}ni=1; prior distribution p(z), z∈R100.

Step 1: Train autoencoder to learn low-dimensional embeddings
Update the encoder H and decoder F by minimizing the recon-
struction loss:

LAE(θF , θH) = 1
n

n∑
i=1

‖F (H(xi))− xi‖1
Step 2: Train GANs to produce high resolution images

for number of training iterations do
• Train GE and DE by optimizing the objective:

min
θGE

max
θDE

LE(θGE , θDE )

• Train φ and DR by optimizing the objective:
min
θφ

max
θDR

Lφ(θφ, θDR , θGE , θF )

end for
Step 3: End-to-end fine-tuning // optional
Update P={θGE ,θF , θφ, θH},D={θDE , θDR} by optimizing:
min
P

max
Q

LAE(θF )+LE(θGE , θDE )+Lφ(θφ, θDR , θGE , θF )

There are two advantages of extracting the embedding from
data using an autoencoder. Firstly, the autoencoder extracts
the high-level features which effectively preserve the primary
data characteristics, e.g., structural information [45], [30], to
reconstruct the original images. It is helpful to train a generator
on the extracted features to produce meaningful samples (see
results in Section IV). In practice, we set the embedding to
32 × 32 with 64 channels to represent the 512 × 512 RGB
images. In this sense, the dimensionality has been largely
reduced by over 10 fold in terms of the number of pixels.
Secondly, the generator only needs to learn a mapping from
the input noise z ∈ R100 to the extracted low-dimensional
embedding rather than the high-dimensional images, which
greatly facilitates the training of deep generative models.

B. Adversarial Embedding Generator

With the extracted embedding which contains image struc-
tural information, we seek to exploit it to improve the training
of GANs. We define a generative model to match the meaning-
ful embedding extracted from real data. The objective function
of the generative model is as follows:

LE(θGE , θDE ) =
1

n

n∑
i=1

logDE(H(xi))

+
1

n

n∑
j=1

log(1−DE(GE(zj))),

(2)

where H(y) denotes the extracted embedding from real im-
ages and z denotes the input noise sampled from a prior
distribution. We optimize GE and DE in an alternating manner
by solving the minimax problem:

min
θGE

max
θDE

LE(θGE , θDE ). (3)

During training, we fix the parameters of autoencoder and
train the GAN model to match the distribution of embeddings
in the latent space. Note that we share the decoder during
both extracting the high-level feature in the autoencoder and
recovering the synthetic high resolution images from the
generated fake embeddings. Ideally, with a well-trained model,
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Fig. 2. Overall architecture of the proposed method. An autoencoder is trained to encode the low-dimensional embedding of high-dimensional images. The
embedding will be used to guide the learning of the generative model from the input noise. A denoiser network is devised to enrich the details and denoise
the artifacts in the generated images. Blue squares denote the synthetic embedding and the red circles denote the extracted embedding of real data. The bold
lines in the figure indicate the main data stream to produce high resolution images.

we can map a noise vector to obtain a latent embedding with
photo-structure information, which can be then decoded into
a meaningful high resolution image.

C. Adversarial Denoiser Network
We observe that the decoded images often encounter visual

noisy artifacts after going through the pipeline of the GAN and
the decoder (see Figs. 2 and 10(b)). An inevitable problem is
how to remove these artifacts and provide photo-realism in
the generated images. We thus develop a denoiser network to
address this issue.

Actually, refining images using adversarial training has been
developed in [32], which uses a pixel-level method, i.e., a
chain of convolutional layers without striding or pooling to
refine the blurring regions. However, when producing high
resolution images, the synthetic images often contain severe
visual artifacts which are hard to be refined using such a
pixel-level method without scaling. To address this issue, we
develop a new denoiser model φ that contains multiple layers
of convolution and deconvolution operators. The structure is
shown in Fig. 2 (bottom).

The denoiser network φ follows the encoder-decoder design.
It is worth mentioning that the stride operation of convolution
can effectively extract the primary features of the data and
discard pixel-level noises [19]. To improve the fidelity of the
synthetic images, we introduce an adversarial loss to provide
photo-realistic details in the generated images. We implement
the DR as a convolutional network which outputs the prob-
ability of samples being positive. In addition to denoising

artifacts from the generated images, we also have to preserve
the content of generated images. To this end, a pixel-wise
loss is taken into account. As a result, we can simultaneously
preserve the image content and increase the perceptual fidelity
of the images. The training objective becomes

Lφ(θφ, θDR , θGE , θF )=
1

n

n∑
i=1

logDR(H(xi))

+
1

n

n∑
j=1

log(1−DR(φ(x̂j)))+λ ‖φ(x̂j)−x̂j‖1 ,

(4)
where x̂ = F (GE(z)) indicates the synthetic images before
feeding them into the denoiser network. During training, we fix
GE and θF and only update the adversarial denoiser network.
Similar to the embedding generative model, we also train the
denoiser model by solving the minimax problem:

min
θφ

max
θDR

Lφ(θφ, θDR , θGE , θF ). (5)

With the denoiser network, the noisy artifacts can be ef-
fectively removed from the generated images. As a result, the
proposed method is able to produce promising images with
high perceptual fidelity.

D. Training and Inference Method

The proposed method consists of three components, namely
the autoencoder, the embedding generative model and the
denoiser network. To effectively train the whole model, we
adopt a step-wise strategy to train all the components and then
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conduct end-to-end fine-tuning to obtain a new unified model.
The training procedure is shown in Algorithm 1.

We divide the training of the proposed AEGAN into three
steps. In the first step, we train the autoencoder by minimizing
the reconstruction loss to extract the low-dimensional embed-
ding. The learned embedding is able to capture the image
structural information and effectively recover the high reso-
lution images. In the second step, by fixing the autoencoder
model, we train an embedding generative model and a denoiser
network in an alternating manner. In the proposed model,
the autoencoder acts as a bridge that connects all the three
components.

However, when one of the components fails, there is no way
to correct it. To ensure the final performance and obtain a new
unified model, in the last step, we conduct end-to-end training
to fine-tune the whole model by optimizing the following joint
loss:

min
P

max
Q

LAE(θF , θH)+LE(θGE , θDE )+Lφ(θφ, θDR , θGE , θF ),

(6)
where P = {θGE , θF , θφ, θH} and Q = {θDE , θDR}. In each
iteration of the final step, we first update the discriminators
DE and DR using the gradients propagated from LE and Lφ,
respectively. We then backpropagate the signals of each loss
through the model and the gradient for each component will
accumulate. The fine-tuning step ensures the coherence of the
whole model and is able to achieve slightly better performance.
In practice, we observe that failure of the components rarely
occurs. Thus, the fine-tuning step is optional. Compared to
directly optimizing the objective in Eqn. (6), each separately
trained model can be viewed as a good initialization and can be
used to accelerate the training to obtain a new unified model.

For inference, we sample a vector z ∈ R100 from a
prior distribution to produce a latent embedding. We then
feed the latent embedding into the decoder F to produce a
corresponding high resolution image. Finally, we take the gen-
erated images into the denoiser model. Through the pipeline
of matching the random noise to a high resolution image,
AEGAN is able to generate 512 × 512 RGB images with
promising quality in terms of both quantitative and qualitative
results.

E. Model Architecture

We build the embedding generator GE and the decoder
F with a stack of up-sampling blocks (i.e., a strided de-
convolutional layer followed by a residual blocks [8]). The
number of blocks is determined by the upscaling factor of
the feature maps. In the experiment, we add 3 and 4 up-
sampling blocks in GE and F , respectively. For the encoder
H , we build the model with a stack of down-sampling blocks
to encode RGB images to the low-dimensional embeddings.
Each down-sampling block contains a strided deconvolutional
layer followed by a residual blocks [8]. Similar to the design
of the decoder F , we also add 4 down-sampling blocks in H .
For the discriminators DR and DE , we build the model with
a stack of strided convolution layers to down-sample the input
images or embeddings. We add a Batch Normalization [60]
and a ReLU [61] layer behind each convolutional layer. The

denoiser network φ follows the encoder-decoder design. The
input generated images are fed into several down-sampling
modules (i.e., a strided convolutional layer followed by a Batch
Normalization and a LeakyReLU [62] layer) until it has a
size of 512. A series of up-sampling modules (i.e., strided
deconvolutional layer followed by a Batch Normalization and
a ReLU layer) are then used to generate 512×512 RGB high-
resolution images. The strides of all the strided convolutional
and deconvolution layer are set to 2 and 1/2, respectively.

F. Implementation Details

We follow the experimental settings used in [24] to train the
proposed AEGAN in PyTorch. There is no preprocessing or
data augmentation of the training samples other than resizing
all the training images to 512 × 512 RGB images. In all
the experiments, we set the embedding to 32 × 32 with 64
channels to represent the 512×512 RGB images. The weights
are initialized from a normal distribution with zero-mean and
standard deviation of 0.02. The hyperparameter λ in Eqn. (4)
is set to λ = 100. We use ReLU activation in the upsamplers,
such as the embedding generator in GANs and the decoder in
the autoencoder, while using LeakyReLU in the downsamplers
including discriminators in GANs and the encoder in the
autoencoder. The slope of the leak in LeakyReLU is set to 0.2.
In the training, we use Adam [13] with β1 = 0.9 to update
the model parameters. In the first training step, we use a fixed
learning rate of 10−5 to train the autoencoder. For the second
step, we follow the same settings used in DCGAN [24] and
set the learning rate to 0.0002. At the final step, we adjust
the learning rate to 10−7 for end-to-end fine-tuning. During
training, we set the minibatch size to 16. For the three steps
in Algorithm 1, we train the corresponding models with 100
epochs, 200 epochs and 100 epochs, respectively.

IV. EXPERIMENTS

In the experiments, we focus on generating high resolu-
tion images of 512 × 512. To evaluate the performance of
the proposed method, several generative models are adopted
for comparison, including DCGAN [24], WGAN-GP [7],
AGE [43], StackGAN [57], StackGAN-v2 [40] and Progres-
sive GAN [12].

For the comparison methods, we use the official source
codes and the original settings specified in their papers. Specif-
ically, we train DCGAN, WGAN-GP, AGE and StackGAN-v2
for 200, 3906, 150 and 600 epochs, respectively, following the
default settings in the original papers. We train StackGAN for
220 epochs, i.e., 120 for Stage-I and 100 for Stage-II. For
Progressive GAN, we start with 4× 4 resolution and train the
model at each resolution using 1200k images, i.e., 600k for
fade-in and 600k for stabilizing.

For convenience, we organize the experiments as follows.
Firstly, we introduce some details about the benchmark
datasets and the evaluation metrics in Section IV-A. Then, we
compare the performance of our method with several baselines
on five benchmark datasets and show both quantitative and
qualitative comparisons in Section IV-B and IV-C.
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TABLE I
COMPARISONS OF VARIOUS GENERATIVE MODELS IN TERMS OF FID, INCEPTION SCORE AND MULTI-SCALE STRUCTURAL SIMILARITY (MS-SSIM) ON
OXFORD-102, CUB, CELEBA-HQ, LSUN AND IMAGENET DATASETS. WE USE 10, 000 SAMPLES FOR TESTING. HIGHER INCEPTION SCORE AND LOWER

FID INDICATE BETTER IMAGE QUALITY. LOWER MS-SSIM SCORES INDICATE HIGHER DIVERSITY.

Methods
FID

Oxford-102 CUB CelebA-HQ LSUN ImageNet
Bedroom Classroom Conference Volcano Promontory

DCGAN [24] 76.19 184.09 37.87 145.32 401.64 292.05 128.01 246.60
WGAN-GP [7] 139.90 171.33 55.93 132.05 161.10 130.97 154.29 169.72

AGE [43] 311.33 261.15 94.42 175.49 245.45 230.90 280.91 292.74
StackGAN [57] 168.79 155.98 36.63 161.62 243.63 285.33 161.95 158.43

StackGAN-v2 [40] 88.18 90.64 33.17 71.09 446.44 78.27 78.72 89.35
Progressive GAN [12] 65.31 87.57 18.64 36.02 108.40 42.52 30.01 41.39

AEGAN (ours) 64.51 83.74 18.83 34.97 108.52 41.16 28.47 33.24
Inception Score

DCGAN [24] 3.27±0.08 4.43±0.09 \ 3.25±0.06 1.02±0.01 1.92±0.02 2.14±0.05 1.83±0.02
WGAN-GP [7] 3.52±0.07 4.51±0.15 \ 3.63±0.03 2.86±0.06 3.37±0.06 2.66±0.04 1.71±0.03

AGE [43] 2.33±0.06 2.70±0.03 \ 3.41±0.05 2.58±0.03 2.80±0.02 1.66±0.02 1.78±0.02
StackGAN [57] 3.38±0.07 4.13±0.08 \ 2.99±0.06 1.84±0.03 1.83±0.01 2.64±0.07 2.18±0.04

StackGAN-v2 [40] 3.92±0.08 4.45±0.08 \ 3.02±0.09 1.79±0.02 3.57±0.07 1.97±0.05 2.12±0.03
Progressive GAN [12] 3.83±0.10 4.80±0.18 \ 3.50±0.03 3.56±0.11 3.56±0.08 2.73±0.03 2.14±0.04

AEGAN (ours) 3.98±0.07 4.85±0.09 \ 3.57±0.07 3.41±0.03 3.61±0.05 2.82±0.02 2.21±0.03
MS-SSIM

DCGAN [24] 0.3196 0.4295 0.3414 0.2578 0.9608 0.5725 0.3391 0.3541
WGAN-GP [7] 0.2710 0.3404 0.2868 0.1903 0.1136 0.1554 0.3031 0.2804

AGE [43] 0.2829 0.3568 0.2878 0.1993 0.1908 0.2031 0.3379 0.3647
StackGAN [57] 0.2674 0.3286 0.3504 0.3368 0.5994 0.4786 0.3199 0.3300

StackGAN-v2 [40] 0.2379 0.3193 0.2948 0.3021 0.7073 0.2711 0.4328 0.4023
Progressive GAN [12] 0.2184 0.2927 0.2934 0.1861 0.1483 0.1477 0.3087 0.2912

AEGAN (ours) 0.2310 0.3125 0.2927 0.1794 0.1532 0.1435 0.3011 0.2785

Fig. 3. Visual comparison of 512× 512 images generated using different methods on the Oxford-102 (top) and CUB (bottom) datasets.

A. Datasets and Evaluation Metrics

We evaluate the proposed method using a wide variety
of benchmark datasets, including Oxford-102 Flowers [22],
Caltech-UCSD Birds (CUB) [46], High-Quality Large-scale
CelebFaces Attributes (CelebA-HQ) [18], [12], Large-scale
Scene Understanding (LSUN) [54] and ImageNet [29].
Oxford-102 Flowers contains 8189 images of flowers from
102 fine-grained classes and CUB contains 200 bird species
with 11, 788 high resolution images in total. The images in
Oxford-102 Flowers have resolutions of over 500×500 while
CUB contains images with resolution ranging from 300 to 500.
The CelebA-HQ dataset,which is generated from the original
CelebA dataset [18], contains 30K celebrity face images at
1024 × 1024 resolution. In our experiments, we resize the
training samples to 512 × 512 resolution. LSUN contains

approximately one million images at the resolutions ranging
from 300 to 500. ImageNet contains 1,000 classes and 1.28
million images with the resolutions ranging from 200 to 700
(the average image resolution is 469×387). Due to the setting
of unconditional image generation, we train all the methods
on each category separately. For each dataset, we resize all
the images to 512× 512 resolution during training.

For quantitative evaluation, we use Frechet Inception Dis-
tance (FID) [37], Inception Score [7] and MS-SSIM [23], [48]
to evaluate the generated samples. FID is a widely used metric
for implicit generative models, as it correlates well with the
visual quality of generated samples. Inception Score can be
used to measure both image quality and image diversity over
a large number of samples. In general, larger Inception Score
value indicates the better performance. MS-SSIM measures
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Fig. 4. Visual comparison of 512 × 512 face examples produced by different generative models on CelebA-HQ dataset. The samples generated by each
method are chosen randomly.

Fig. 5. Visual comparison of high resolution images of face generated by various methods on the CelebA-HQ dataset. We compare the detailed structure and
texture including the eyes, nose, and mouth. The top row shows the results of different baselines; the bottom row shows the results of the proposed AEGAN.

the diversity of the generated samples and the resulting values
range from 0.0 to 1.0. Higher MS-SSIM values correspond to
perceptually more similar images. In the experiments, we use
10, 000 images to calculate these scores. For Inception Score,
10 splits are used to compute the standard deviations.

B. Quantitative Comparisons

In this section, we compare the performance of different
methods on 5 benchmark datasets in terms of FID [37],
Inception Score [7] and MS-SSIM [23], [48]. The results are
shown in Table I.

On the Oxford-102 and CUB datasets, the proposed AE-
GAN model obtains slightly worse results than Progressive
GAN [12] in terms of MS-SSIM but achieves the best FID
and Inception Score. On the CelebA-HQ dataset, AEGAN
still obtains comparable performance with the strong baseline

Progressive GAN. These results demonstrate that the proposed
method is able to produce images of promising quality while
maintaining a large diversity.

For the more challenging datasets LSUN and ImageNet,
we train AEGAN and the considered baseline methods on
each category separately. On LSUN, we compare the results
in 3 categories, including Bedroom, Classroom and Confer-
ence. However, on ImageNet (containing 1000 categories in
total), training 1000 models is infeasible and impractical. For
convenience, we choose two of them, i.e., Promontory and
Volcano, to evaluate the performance of our proposed method.
From Table I, AEGAN outperforms the considered baseline
methods in most categories in terms of FID, Inception score
and MS-SSIM. These results demonstrate the superiority of
the proposed method in high resolution image synthesis.
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Fig. 6. Visual comparison of high resolution examples generated using different methods on the ImageNet dataset. For convenience, we choose two categories,
i.e., Promontory and Volcano, to show the results.

Fig. 7. Visual comparison of 512 × 512 images produced by different generative models on the LSUN datasets. We randomly choose samples generated
using each method for careful observation.

C. Qualitative Comparisons

In this section, we compare the visual quality of the images
generated by the proposed AEGAN and several baseline meth-
ods on 5 benchmark datasets, including Oxford-102, CUB,
CelebA-HQ, LSUN and ImageNet.

Figs. 3 and 4 show that, when producing high resolution
images of 512 × 512, DCGAN tends to produce colorful
but meaningless images that contain many isolated regions.
WGAN-GP [7] and AGE [43] are able to capture the rough
structure and produce meaningful images. However, the gen-
erated samples appear very blurred and lack photo-realistic
details. Note that StackGAN is originally devised to gener-
ate images by taking the input text as a condition. In this
experiment, since there is no additional information acting
as the condition, the transition of StackGAN from the first
stage to the second one will be incoherent. As a result,
the model fails to effectively capture the style and texture
information. Compared to Progressive GAN [12], AEGAN is

able to produce promising images with sharper object structure
and richer details than the other methods.

On CelebA-HQ, we also compare some detailed regions of
the generated images in Fig. 5. Specifically, we compare the
detailed structure and texture in the generated face images,
such as eyes, nose, and mouth. The top row shows the images
generated by the five considered baselines and their detailed
regions, and the bottom row shows a set of samples generated
by AEGAN. Compared to the considered baselines, AEGAN is
able to produce promising images with sharper facial structure
and finer details.

When generating more complex images on LSUN and
ImageNet, AEGAN is able to produce meaningful images of
better perceptual quality compared to the baseline methods.
Figs. 6 and 7 show that none of the baseline methods except
Progressive GAN, is able to produce visually acceptable scene
images. The images generated by Progressive GAN also lack
some structural and textural information. However, most of
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TABLE II
DEMONSTRATION OF THE EFFECT OF DENOISER NETWORK ON OXFORD-102 DATASET. WE COMPARE AEGAN WITH 6 BASELINE METHODS WITH AND

WITHOUT THE DENOISER MODULE IN TERMS OF FID, INCEPTION SCORE AND MS-SSIM.

Methods FID Inception Score MS-SSIM
original with denoiser original with denoiser original with denoiser

DCGAN [24] 76.19 73.02 3.27± 0.08 3.45± 0.05 0.3196 0.3445
WGAN-GP [7] 139.90 135.73 3.52± 0.07 3.74± 0.09 0.2710 0.2859

AGE [43] 311.33 287.94 2.33± 0.06 3.56± 0.09 0.2829 0.3108
StackGAN [57] 168.79 153.67 3.38± 0.07 3.86± 0.10 0.2674 0.2715

StackGAN-v2 [40] 88.18 87.30 3.92± 0.08 3.94± 0.10 0.2379 0.2404
Progressive GAN [12] 65.31 65.07 3.83± 0.10 3.87± 0.09 0.2184 0.2237

AEGAN 64.51 3.98 ± 0.07 0.2310

Fig. 8. Results of latent space interpolation by AEGANs on the CelebA-HQ dataset. For each row, we conduct linear interpolation between two data points
sampled from the prior distribution p(z). The leftmost and rightmost columns are the generated images of AEGAN, and the columns 2 to 9 show the
interpolated images.

(a) Failure case. (b) AEGAN results.

Fig. 9. Demonstration of the possible failure case without end-to-end fine-
tuning on the Oxford-102 dataset.

the images generated by AEGAN capture the salient features
of the specific category and obtain objects with complete and
sharp structure, e.g. the structure of beds and the shape of
desks. This is attributed to the extracted high-level embedding.
The images generated by AEGAN are more photo-realistic
than the images generated by the considered baselines in all
categories. These results demonstrate the effectiveness of the
proposed AEGAN in producing high resolution images.

V. FURTHER EXPERIMENTS

In this section, we conduct further analyses and discussions
of our proposed method. In Section V-A, we perform an abla-
tion study of the end-to-end fine-tuning step. In section V-B,
we discuss the effect of our proposed denoiser networks. In
Section V-C, we investigate the effect of embedding dimension
on the performance of AEGAN. In Section V-D, we conduct an
experiment of latent space interpolation. Finally, we compare
the training time of our AEGAN to baselines in Section V-E.

A. Ablation Study on End-to-end Fine-tuning

In this section, we investigate the effect of the final fine-
tuning step (the third step in Algorithm 1) in generating high
resolution images by ablation study. The experimental results

are shown in Table III. From Table III, the model with fine-
tuning achieves slightly better performance than the model
without fine-tuning.

We note that there is a risk of model failure in the first
two steps. Fortunately, the end-to-end fine-tuning is able to
effectively address this issue, thereby producing a new unified
model with better performance. To verify this, we show some
examples of a failure case in Fig. 9. However, the failure
rarely occurs in practice. The end-to-end fine-tuning helps to
guarantee the performance of our method.

B. Effect of Denoiser

In this section, we investigate the effect of the denoiser mod-
ule on the performance of high resolution images synthesis.
To this end, we add the denoiser module to all the considered
baselines and compare the results obtained using these meth-
ods with or without the denoiser module. The experimental
results are shown in Table III. From Table III, the denoiser
module is able to improve the performance of different meth-
ods in terms of both FID and Inception Score, demonstrating
the effectiveness of the proposed denoiser network. Moreover,
AEGAN consistently outperforms the baseline methods with
or without the denoiser network.

C. Effect of Embedding Dimension

In this section, we investigate the effect of embedding
dimension on the performance of AEGAN. Actually, the
dimension of the extracted embedding indicates the representa-
tion ability of latent space. Although the representation ability
will become more powerful with the increase of dimension, the
computational complexity will increase accordingly. There-
fore, a smaller dimension is preferable when the representation
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TABLE III
PERFORMANCE COMPARISON OF AEGAN WITH OR WITHOUT THE

END-TO-END FINE-TUNING ON OXFORD-102 DATASET.

Samples
Methods AEGAN without fine-tuning AEGAN with fine-tuning

FID 64.56 64.51
Inception Score 3.91 ± 0.08 3.98 ± 0.07

MS-SSIM 0.2342 0.2310

(a) 8× 8× 64 (b) 32× 32× 64

Fig. 10. Decoded images from different embedding dimensions.

ability of the embedding is sufficient. Here, we test smaller
embedding dimensions of 8 × 8 with 64 channels in the
autoencoder. The results are shown in Fig. 10.

Fig. 10 shows that, when we map the input noise to such
a small embedding, the final decoded images contain much
more visual artifacts than the standard setting in previous
experiments, i.e., 32 × 32 with 64 channels. These results
demonstrate that to synthesize a high resolution image, we
must use a sufficiently large embedding space to represent the
information of style and structure.

D. Results of Latent Space Interpolation

In this section, we conduct an experiment in which we
investigate the landscape of the latent space. Following the
settings in [24], we conduct linear interpolations between
two data points in the latent space and feed them into the
generative models. The generated samples are shown in Fig. 8.
In Fig. 8, there are no sharp transitions and the generated
images change smoothly. These results demonstrate that the
proposed AEGAN generalizes well to unseen data rather than
simply memorizing the training samples.

E. Comparison of Training Time

In this section, we compare the training time of the con-
sidered methods. We train all the methods except Progressive
GAN on single TITAN X Pascal GPU. For Progressive GAN,
we train the model on two GPUs with a batch size of 32 for
each of GPU (i.e., 64 in total). The training times and the
corresponding FID scores are shown in Fig. 11.

From Fig. 11, the proposed AEGAN achieves the best FID
score of 65.41 and only requires 17 hours for training, which is
much more efficient than WGAN-GP and Progressive GAN.
These results demonstrate the effectiveness of the proposed
method in terms of both image generation performance and
training efficiency.
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Fig. 11. Performance vs training time of different GAN methods on Oxford-
102 dataset.

VI. CONCLUSION

In this paper, we have proposed a novel scheme for high
resolution image synthesis. In contrast to traditional GAN
methods, we use low-dimensional embedding to bridge the
distribution gap between input noise and real data. Further-
more, we also devise a denoiser network that removes the
noisy artifacts and provides low-level photo-realistic details in
the generated images. The proposed method produces images
with sharp structures and rich photo-realistic details, and
significantly outperforms the considered generative models.
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International Conference on Machine Learning, 2017.

[2] David Berthelot, Tom Schumm, and Luke Metz. BEGAN: Bound-
ary Equilibrium Generative Adversarial Networks. arXiv preprint
arXiv:1703.10717, 2017.

[3] Yudong Chen, Zhihui Lai, WaiKeung Wong, Linlin Shen, and Qinghua
Hu. Low-rank Linear Embedding for Image Recognition. IEEE
Transactions on Multimedia, 2018.

[4] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep Generative
Image Models using an Laplacian Pyramid of Adversarial Networks. In
Advances in neural information processing systems, pages 1486–1494,
2015.

[5] Brian Dolhansky and Cristian Canton Ferrer. Eye In-painting with
Exemplar Generative Adversarial Networks. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 7902–7911, 2018.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[7] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville. Improved Training of Wasserstein GANs. Ad-
vances in Neural Information Processing Systems, 2017.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[9] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin
Chen. Arbitrary Facial Attribute Editing: Only Change What You Want.
arXiv preprint arXiv:1711.10678, 2017.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image Translation with Conditional Adversarial Networks. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[11] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture Synthesis
with Spatial Generative Adversarial Networks. NIPS Workshop on
Adversarial Training, 2016.

http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1711.10678


11

[12] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progres-
sive Growing of GANs for Improved Quality, Stability, and Variation.
International Conference on Learning Representations, 2018.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Representations,
2015.

[14] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther. Autoencoding beyond Pixels using a Learned Simi-
larity Metric. International Conference on Machine Learning, 2016.

[15] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, et al. Photo-realistic Single Image Super-
resolution using a Generative Adversarial Network. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[16] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani,
Johannes Totz, Zehan Wang, et al. Photo-realistic Single Image Super-
resolution using a Generative Adversarial Network. In CVPR, volume 2,
page 4, 2017.

[17] Hui-Jin Lee, Ki-Sang Hong, Henry Kang, and Seungyong Lee. Photo
Aesthetics analysis via DCNN Feature Encoding. IEEE Transactions on
Multimedia, 19(8):1921–1932, 2017.

[18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning
Face Attributes in the Wild. In Proceedings of International Conference
on Computer Vision (ICCV), 2015.

[19] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image Restoration
using Very Deep Convolutional Encoder-decoder Networks with Sym-
metric Skip Connections. In Advances in Neural Information Processing
Systems, pages 2802–2810, 2016.

[20] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep Multi-scale
Video Prediction beyond Mean Square Error. International Conference
on Learning Representations, 2016.

[21] Patrick Ndjiki-Nya, Martin Koppel, Dimitar Doshkov, Haricharan Lak-
shman, Philipp Merkle, Karsten Muller, and Thomas Wiegand. Depth
Image-based Rendering with Advanced Texture Synthesis for 3D Video.
IEEE Transactions on Multimedia, 13(3):453–465, 2011.

[22] Maria-Elena Nilsback and Andrew Zisserman. Automated Flower Clas-
sification over a Large Number of Classes. In Computer Vision, Graphics
& Image Processing, 2008. ICVGIP’08. Sixth Indian Conference on,
pages 722–729. IEEE, 2008.

[23] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional
Image Synthesis with Auxiliary Classifier GANs. International Confer-
ence on Machine Learning, 2017.

[24] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Adversarial
Networks. International Conference on Learning Representations, 2016.

[25] MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu,
Ronan Collobert, and Sumit Chopra. Video (language) Modeling: a
Baseline for Generative Models of Natural Videos. arXiv preprint
arXiv:1412.6604, 2014.

[26] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, and Honglak Lee. Generative Adversarial Text to Image
Synthesis. In Proceedings of The 33rd International Conference on
Machine Learning, volume 3, 2016.

[27] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and
Shakir Mohamed. Variational Approaches for Auto-Encoding Generative
Adversarial Networks. arXiv preprint arXiv:1706.04987, 2017.

[28] Sam T Roweis and Lawrence K Saul. Nonlinear Dimensionality
Reduction by Locally Linear Embedding. science, 290(5500):2323–
2326, 2000.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[30] Ruslan Salakhutdinov and Geoff Hinton. Learning a Nonlinear Em-
bedding by Preserving Class Neighbourhood Structure. In Artificial
Intelligence and Statistics, pages 412–419, 2007.

[31] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P
Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time
Single Image and Video Super-resolution using an Efficient Sub-pixel
Convolutional Neural Network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1874–1883, 2016.

[32] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda
Wang, and Russ Webb. Learning from Simulated and Unsupervised Im-
ages through Adversarial Training. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[33] Yipeng Sun, Xiaoming Tao, Yang Li, Linhao Dong, and Jianhua Lu.
Hems: Hierarchical Exemplar-based Matching-synthesis for Object-
aware Image Reconstruction. IEEE Transactions on Multimedia,
18(2):171–181, 2016.

[34] Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He,
Tao Xu, and Pengchuan Zhang. Attngan: Fine-grained Text to Image
Generation with Attentional Generative Adversarial Networks. 2018.

[35] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. arXiv preprint
arXiv:1809.11096, 2018.

[36] Ting Chen, Mario Lucic, Neil Houlsby, and Sylvain Gelly. On
self Modulation for Generative Adversarial Networks. arXiv preprint
arXiv:1810.01365, 2018.

[37] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans Trained by a Two Time-scale Update
Rule Converge to a Local Nash Equilibrium. In Advances in Neural
Information Processing Systems, pages 6626–6637, 2017.

[38] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and
Jeff Clune. Plug & Play Generative Networks: Conditional Iterative
Generation of Images in Latent Space. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[39] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena.
Self-attention Generative Adversarial Networks. arXiv preprint
arXiv:1805.08318, 2018.

[40] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang,
Xiaolei Huang, and Dimitris Metaxas. Stackgan++: Realistic Image
Synthesis with Stacked Generative Adversarial Networks. arXiv:
1710.10916, 2017.

[41] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. science,
290(5500):2319–2323, 2000.

[42] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempit-
sky. Texture Networks: Feed-forward Synthesis of Textures and Stylized
Images. In International Conference on Machine Learning, pages 1349–
1357, 2016.

[43] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Adversarial
Generator-Encoder Networks. Association for the Advance of Artificial
Intelligence, 2018.

[44] Cao, Jiezhang and Guo, Yong and Wu, Qingyao and Shen, Chunhua
and Tan, Mingkui. Adversarial Learning with Local Coordinate Coding.
International Conference on Machine Learning, 2018.

[45] Laurens Van Der Maaten. Learning a Parametric Embedding by
Preserving Local Structure. RBM, 500(500):26, 2009.

[46] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge
Belongie. The caltech-UCSD Birds-200-2011 Dataset. 2011.

[47] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,
Chen Change Loy, Yu Qiao, and Xiaoou Tang. ESRGAN: Enhanced
Super-resolution Generative Adversarial Networks. arXiv preprint
arXiv:1809.00219, 2018.

[48] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale Structural
Similarity for Image Quality Assessment. In Signals, Systems and
Computers, 2004. Conference Record of the Thirty-Seventh Asilomar
Conference on, volume 2, pages 1398–1402. Ieee, 2003.

[49] David Warde-Farley and Yoshua Bengio. Improving Generative Ad-
versarial Networks with Denoising Feature Matching. International
Conference on Learning Representations, 2017.

[50] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao
Li. High-resolution Image Inpainting using Multi-scale Neural Patch
Synthesis. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, page 3, 2017.

[51] Min-Chun Yang and Yu-Chiang Frank Wang. A Self-learning Approach
to Single Image Super-resolution. IEEE Transactions on multimedia,
15(3):498–508, 2013.

[52] Zili Yi, Hao Zhang, Ping Tan Gong, et al. DualGAN: Unsupervised Dual
Learning for Image-to-image Translation. International Conference on
Computer Vision, 2017.

[53] Wotao Yin and Yin Zhang. Extracting Salient Features from Less Data
via L1-minimization. SIAG/OPT Views-and-News, 19(1):11–19, 2008.

[54] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao.
Lsun: Construction of a Large-scale Image Dataset using Deep Learning
with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

[55] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S
Huang. Generative Image Inpainting with Contextual Attention. arXiv
preprint, 2018.

[56] Xin Yu, Basura Fernando, Richard Hartley, and Fatih Porikli. Super-
resolving Very Low-resolution Face Images with Supplementary At-

http://arxiv.org/abs/1412.6604
http://arxiv.org/abs/1706.04987
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1810.01365
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/1809.00219
http://arxiv.org/abs/1506.03365


12

tributes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 908–917, 2018.

[57] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang,
Xiaogang Wang, and Dimitris Metaxas. StackGAN: Text to Photo-
realistic Image Synthesis with Stacked Generative Adversarial Networks.
International Conference on Computer Vision, 2017.

[58] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based Gen-
erative Adversarial Network. International Conference on Learning
Representations, 2017.

[59] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. International Conference on Computer Vision, 2017.

[60] Ioffe, Sergey and Szegedy, Christian. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. Interna-
tional Conference on Machine Learning, 2015.

[61] Nair, Vinod and Hinton, Geoffrey E. Rectified Linear Units Improve
Restricted Boltzmann Machines. International Conference on Machine
Learning, 2010.

[62] Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y. Rectifier
Nonlinearities Improve Neural Network Acoustic Models. International
Conference on Machine Learning, 2013.


	I Introduction
	II Related Work
	II-A Generative Adversarial Networks
	II-B High-Resolution Image Generation
	II-C Autoencoder GAN

	III The Proposed Method
	III-A Learning Embedding by Autoencoder
	III-B Adversarial Embedding Generator
	III-C Adversarial Denoiser Network
	III-D Training and Inference Method
	III-E Model Architecture
	III-F Implementation Details

	IV Experiments
	IV-A Datasets and Evaluation Metrics
	IV-B Quantitative Comparisons
	IV-C Qualitative Comparisons

	V Further Experiments
	V-A Ablation Study on End-to-end Fine-tuning
	V-B Effect of Denoiser
	V-C Effect of Embedding Dimension
	V-D Results of Latent Space Interpolation
	V-E Comparison of Training Time

	VI Conclusion
	References

