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Abstract. We propose a pipeline for automatically segmenting cortex
and nucleus in a 360-degree anterior segment optical coherence tomog-
raphy (AS-OCT) image. The proposed pipeline consists of a U-shaped
network followed by a shape template. The U-shaped network predicts
a mask for cortex and nucleus. However, the boundary between cortex
and nucleus is weak, so that the boundary of the prediction is an irreg-
ular shape and does not satisfy the physiological structure of nucleus.
To address this problem, in the second step, we design a shape tem-
plate according to the physiological structure of nucleus to refine the
boundary. Our method integrates both appearance and structure infor-
mation. The accuracy is measured by the normalized mean squared error
(NMSE) between ground truth line and predicted line. We achieve NMSE
7.09/7.94 for nucleus top/bottom boundary and 2.49/2.43 for cortex
top/bottom boundary.
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1 Introduction

Anterior segment optical coherence tomography (AS-OCT) can assist the diag-
nosis of many eye diseases, such as glaucoma and cataract [2]. The measurement
is made without contact and with low risk of infection. The role of AS-OCT in
research and clinical care continues to accelerate [3].

AS-OCT nuclear density measurement is a repeatable and reliable objective
cataract grading method, It is correlated with the Lens Opacity Classification
System Version III (LOCS III) grading [5,8]. The nuclear density is got by delin-
eates the lens nucleus and calculates the total average pixel intensity. If nucleus
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can be automatically segmented, cataract grading can be automatically acquired.
To the best of our knowledge, no previous work focus on automatically segment-
ing the nucleus in AS-OCT images.

In this paper, we propose a pipeline to automatically segment cortex and
nucleus in AS-OCT images. The proposed pipeline consists of a U-shaped net-
work followed by a shape template. The U-shaped network predicts a preliminary
mask for cortex and nucleus. However, the predicted boundary of nucleus is arbi-
trary because the boundary between cortex and nucleus is weak. To solve this
problem, we design a shape template based on the physiological structure of
nucleus to refine the boundary of nucleus. The basic idea of the refinement is
to find a template in the training set to replace the boundary of the predic-
tion. After the refinement, the boundary of nucleus satisfies the physiological
structure of nucleus.

We summarize the contributions of this work as follows:

– We propose a simple and effective pipeline to segment cortex and nucleus
by using a U-shaped network and a shape template. This method integrates
both structure information and appearance information.

– We design a shape template that imitates the intrinsic concentric layers struc-
ture of nucleus. By using the template to refine the boundary of nucleus, the
final prediction satisfies the physiological structure of nucleus.

2 Proposed Method

The proposed pipeline is shown in Fig. 1. First, we find the lens region using the
Canny edge detector and divide the lens region into three sub-regions: capsule
region, cortex region and nucleus region. We train a U-shaped network to predict
a mask for each region. However, the output of the U-shaped network has no
regular shape, especially for the nucleus which has a weak boundary. So we
design a shape template to model the structure of nucleus and use the template
to refine the boundary of nucleus.

2.1 Network Architecture

Motivated by [6]. We design a U-shaped network to predict a preliminary mask
for capsule, cortex and nucleus. The U-shaped network can obtain a high-
resolution mask with a clear boundary by using skip connections to restore the
information loss caused by pooling layers.

Our network mainly includes two modules: encoding module and decoding
module. The encoding module consists of six blocks. Each block contains two or
three convolutional layers, and each convolutional layer is followed by a rectified
linear unit (ReLU) and a 2× 2 max pooling operation with stride 2. The decod-
ing module is also composed of six blocks. Each block consists of a concatenation
with the corresponding feature maps from the contracting path, a spatial upsam-
pling of the feature maps with a factor of 2 followed by two convolutions and
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1. Input  Image 3. CNN 4. Shape Model   2. ROI 

Nucleus Template

Fig. 1. The proposed pipeline: 1, AS-OCT image. 2, Region of interest (ROI). We
locate the lens and divide the lens into three sub-regions according to the ground
truth annotations (blue lines), pink: cortex region, yellow: nucleus region, cyan: capsule
region. 3, U-shaped network with side-output predicts a mask for each region. 4, Shape
template refines the boundary of nucleus. (Color figure online)

a ReLU layer. At the final layer, a 1× 1 convolution maps each 24-dim feature
vector to the desired number of classes (here 4).

Motivated by [1], we add a side-output layer which acts as a classifier that
produces a companion local output for early layers and also integrates different
level information. Cross-entropy loss is used for each side-output layer. There
are M side-outputs in the network. The loss function of the side-output layer is
given as:

Lside−output =
1
M

M∑

m=1

Lcross−entropy(y, y′), (1)

Lcross−entropy is the cross entropy loss:

Lcross−entropy = −
∑

i

(y′
i log(yi)), (2)



272 P. Yin et al.

yi is the predicted probability value for class i and y′
i is the true probability for

that class. The overall structure of the U-shaped network with side-outputs is
shown in Fig. 1.

2.2 Shape Template

As shown in Fig. 2 (left). The U-shaped network tends to misclassify the areas
similar to nucleus as nucleus because of the weak boundary between nucleus
and cortex. To solve the problem, we design a shape template based on the
physiological structure of nucleus to refine the boundary of nucleus. The basic
idea is to find the closest shape of nucleus in the training set to replace the
boundary of prediction.

Fig. 2. Blue lines are ground truth annotations. Left: AS-OCT image, region in white
rectangle shows weak contrast boundary. Mid: Prediction of ours U-shaped network,
the U-shaped network misclassify the regions similar to nucleus as nucleus, shown in
white rectangle. Right: Shape template refine the boundary of nucleus. (Color figure
online)

Fig. 3. Left: The structure of the lens, the lens fibres are arranged in concentric layers.
Right: The shape template of nucleus, pmiddle is the intersection between boundary
and alignment axis, bdis is the distance from center point c to point pmiddle, the middle
part of the template is shown in green. (Color figure online)

Lens fibers form the bulk of the lens. The lens fibers stretch lengthwise from
the posterior to the anterior poles and are arranged in concentric layers rather
like the layers of an onion when cutting horizontally [4], as shown in Fig. 3



Automatic Segmentation of Cortex and Nucleus in AS-OCT Images 273

(left). Motivated by the ray feature [7], the structure of concentric layers can be
represented by a center point and the distance between the center point and the
nearest point on the boundary, as shown in Fig. 3 (right). Different layers share
the same center point and different distances to the center point.

Fig. 4. Three nucleus templates of the top part (left) and the bottom part (right).
Different templates are shown in different colors.

The boundary of nucleus is represented by n points: Si = {xi, yi}. The center
point of nucleus is defined as c = (

∑ xi

n ,
∑ yi

n ). Then the boundary of nucleus
is encoded by c and the distance from c to the nearest point pθ on the boundary
of nucleus in direction θ:

f(I, c, θ) =
‖c − pθ‖

z
, (3)

where z = ‖c − pmiddle‖ = bdis is a normalization factor. pmiddle is the intersec-
tion of alignment axis and the boundary of nucleus as shown in Fig. 3 (right).
pmiddle is different in each image due to the eye movement between AS-OCT
images mentioned in [9]. Normalization not only ease the rotational misalign-
ment problem but also eliminates scale effects. We sample θ every 5 degrees. In
this way all the shapes are encoded by K points {θk, f(I, c, θk)}.

The training procedure is shown in Algorithm 1. The purpose of training is to
learn all possible shapes of nucleus. For each shape in the training set, we encode
it into K points {θk, f(I, c, θk)} and then cluster them into v templates. In the
experiments, we only learn the middle part of shape and use quadratic curve
fitting to get the other part because the shape of middle part is relatively stable.
The middle part is divided into a top part and a bottom part as shown in Fig. 3
(right). For each part, we cluster the corresponding shapes into v′ templates
using K-means. Figure 4 shows three normalized templates of the top part and
the bottom part.

The refinement procedure is shown in Algorithm 2, s is the boundary of
nucleus predicted by the U-shaped network. We calculate the center point c′,
alignment axis and p′

middle of s. The next step is to find a template closest to
s. For each template Tv, we finetune the template by multiply Tv by z, where
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Algorithm 1. Training shape template
Input: Training shape Si = {xi, yi}
Output: V templates Tv = {fv(I, c, θ)}
for Each shape Si in training set do

Center point: c = (
∑ xi

n
,
∑ yi

n
)

Calculate alignment axis and pmiddle of Si

Encode Si into K points {θk, fi(I, c, θk)}
end
Extract the middle part of the shape
Using K-Means to get V templates {fv(I, c, θ)}

Algorithm 2. Fitting shape template
Input: V templates Tv = {fv(I, c, θ)}, unrefined shape s = {xj , yj}
Output: Refined shape s′

Calculate center point c′, alignment axis and p′
middle of s

for Each template Tv do
T ′
v = Tv ∗ z, where z = ‖c′ − p′

middle‖
for offset ← {−10, −9, ..., 9, 10} do

B = T ′
v+offset

Calculate the similarity between s and B
end

end
Find the template B′ = B with maximum similarity
The refined shape s′ = B′

z = ‖c′ −p′
middle‖. After the multiplication, pmiddle of Tv is coincide with p′

middle

of s. Then we add an offset to Tv. The positive offset means the template move
to outer layer. For each transformed template B, we calculate the similarity
between B and s. We find a most similar template B′ to replace s. B and s can
be represent by K points: {θk, fB(I, c, θk)} and {θk, fs(I, c, θk)}. The similarity
between B and s is defined as:

Similarity(B, s) = ΣK
k=1| fB(I, c, θk) − fs(I, c, θk) |. (4)

3 Performance Evaluation and Discussion

We acquire the data from CASIA-2000 anterior SS-OCT produced by Tomey Co.
Ltd. The dataset contains 20 eyes from 10 people, 8 images per eye. We select
7 people (120 images) for training and 3 people (40 images) for testing. All
the images are annotated by one experienced ophthalmologist. The accuracy is
measured by the normalized mean squared error (NMSE) between the predicted
shape Sp = {xi, yi} and the ground truth Sg = {xj , yj}, it is defined as

NMSE =

∑
ng

√
(xi − xj)2 + (yi − yj)2

ng
, (5)
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where ng is the number of annotation points. The results are shown in Table 1.
Nucleus top is the top boundary of nucleus. Nucleus bottom is the bottom bound-
ary of nucleus. The same thing is conducted for the cortex.

The U-shaped network is trained from scratch. The initial learning rate is
0.001. The network is trained for 70 epochs. The origin image size is 2130× 1864,
we resize the image into 1024 × 1024. For shape template, we learn 40 templates
for nucleus top and 40 templates for nucleus bottom from the training set. The
offset range of template is set to [−10, 10]. As shown in Table 1, the U-shaped
network is better than U-Net [6] and M-Net [1] because of the larger reception
field. Side-output layer adds the supervision to mid layers and eases the difficulty
to train the network. Side-output layer also integrates different scale information
and obviously improve the results. However, multi-scale structure such as M-Net
shows no improvement. The shape template refines the boundary of nucleus pre-
dicted by the U-shaped network with side-output. The entire refinement process
can be seen as finding the most similar template in the training set to replace
the boundary of nucleus. Using shape template to refine the nucleus boundary
not only improves the performance but also makes the prediction consistent with
the physiological structure of nucleus. More results are shown in Fig. 5.

Table 1. Accuracy of the segmentation

Method Nucleus top Nucleus bottom Cortex top Cortex bottom

U-Net [6] 12.4 12.8 3.19 2.73

M-Net [1] 15.75 13.04 3.03 2.82

U-shaped Net (ours) 8.57 9.83 2.45 2.74

Side output (ours) 8.28 8.96 2.49 2.43

Shape template (ours) 7.09 7.94

Note: Shape template only refines the boundary of nucleus

Fig. 5. Example results. From left to right: Input image, ground truth, prediction of the
U-shape Network, prediction after side-output layer, prediction after the refinement.
Blue lines are ground truth annotations. (Color figure online)
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4 Conclusions

In this paper, we use a U-shaped network to produce a preliminary mask and we
design a shape template to refine the mask. The experiments show the effective-
ness of our method. After the refinement, the result satisfies the physiological
structure of the lens.
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