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Breaking Winner-Takes-All: Iterative-Winners-Out
Networks for Weakly Supervised Temporal

Action Localization
Runhao Zeng, Chuang Gan , Peihao Chen, Wenbing Huang , Qingyao Wu , and Mingkui Tan

Abstract— We address the challenging problem of weakly
supervised temporal action localization from unconstrained web
videos, where only the video-level action labels are available
during training. Inspired by the adversarial erasing strategy
in weakly supervised semantic segmentation, we propose a
novel iterative-winners-out network. Specifically, we make two
technical contributions: we propose an iterative training strategy,
namely, winners-out, to select the most discriminative action
instances in each training iteration and remove them in the next
training iteration. This iterative process alleviates the “winner-
takes-all” phenomenon that existing approaches tend to choose
the video segments that strongly correspond to the video label
but neglects other less discriminative video segments. With this
strategy, our network is able to localize not only the most discrim-
inative instances but also the less discriminative ones. To better
select the target action instances in winners-out, we devise a
class-discriminative localization technique. By employing the
attention mechanism and the information learned from data,
our technique is able to identify the most discriminative action
instances effectively. The two key components are integrated
into an end-to-end network to localize actions without using the
frame-level annotations. Extensive experimental results demon-
strate that our method outperforms the state-of-the-art weakly
supervised approaches on ActivityNet1.3 and improves mAP
from 16.9% to 20.5% on THUMOS14. Notably, even with weak
video-level supervision, our method attains comparable accuracy
to those employing frame-level supervisions.

Index Terms— Weakly supervised learning, action localization,
winners-out, untrimmed video.

I. INTRODUCTION

ACTION localization has attracted more and more interest
in recent years, owing to its numerous potential appli-

cations in video retrieval, video surveillance and other areas.
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Given a video, this task aims to solve two problems simultane-
ously: (1) identifying the start time and end time of each action
instance in the video and (2) recognizing the category of each
action instance. Performing action localization is central to
video understanding especially for untrimmed videos, as they
usually contain both action and background instances and we
are interested in the actions only.

Early works mainly focus on classifying proposals gener-
ated by sliding windows with hand-crafted features [1], [2].
More recently, great progress has been achieved in action
localization [3]–[7] with the help of deep learning based image
or video analysis methods [8]–[18]. However, all these meth-
ods heavily rely on the temporal annotations: the category label
of each action item and its time interval. Clearly, manually
annotating actions frame by frame is not only time-consuming
but also subjective to the annotators, leading the annotations to
be severely biased. In this paper, we attempt to perform action
localization under the weakly supervised condition, where only
the video-level action labels are provided, but the action time
intervals and their exact labels are no longer required.

Weakly supervised learning has been studied in the domain
of still images. Taking the task of semantic segmentation for
example, it aims to predict the category of each pixel in a
given image. Since collecting the pixel-level annotations is
extremely costly, researchers seek to perform semantic seg-
mentation by using only the image-level class labels. To this
end, the Adversarial Erasing approach proposed by [19] has
achieved state-of-the-art results. Specifically, in this method,
the regions (or pixels) belonging to the target class of the given
image are iteratively selected to obtain the segmentation result
and the selected regions (or pixels) will be removed from the
image in the next training step.

Given its success, we are interested in employing such
a technique for our weakly supervised action localization
problem in videos. However, the large domain shift between
images and videos will incur the following challenges:

A. Videos Are Much More Complex Than Images

In [19], to train the classification network, the authors obtain
a feature vector for each input image by adding a global
mean pooling layer upon the last convolution layer. As shown
in Fig. 2 (a) and (c), the mean pooling is performed over pixels
spatially. Thus, the dimension of the feature vector equals the
number of channels in the last convolutional layer. To apply
this idea to action localization, one can treat the segments
(or frames) in videos as the pixels in images, and derive the
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Fig. 1. Illustration of the proposed winners-out strategy. For an input video,
we divide it into multiple segments evenly. Note that there often contain
some segments which may strongly correspond to the video label, preventing
us from localizing all the related actions (i.e., the winner-takes-all issue).
To break this issue, we propose to iteratively localize the most discriminative
segments and remove them from the training segment set. Specifically, at each
step, we select segments with the largest importance scores attained from
a classification network w.r.t the video label (e.g. Baseball). The selected
segments (see the red bars) will be removed from the video. Thus, these
“winners” segments are “out” in the next training step. Then, the classification
network is re-trained to localize other discriminative segments. With this
iterative process, the network learns to localize all the action instances in
one video, including the most discriminative and the less discriminative ones.

Fig. 2. Toy models of our proposed method and [19]. (a) In [19], since
the layer before the final f c layer outputs multiple feature maps, the feature
of each spatial location can be viewed as a vector. (b) Our attention module
assigns each feature vector with a weight. (c) and (d) illustrate the different
processes of calculating global feature. Here, Vi is the pixel/segment level
feature vector and Va is the aggregated image/video level feature. [19] applies
mean pooling over the feature vectors, while we apply weighted sum using the
attention weights. (e) [19] finally outputs one global feature vector. (f) We
concatenate multiple global features to obtain the final feature. The vector
in blue is the final global feature and the orange one is the classification
probability. Here, the number of classes is set to two for simplicity.

video-level feature by performing mean pooling over segment
features. However, as videos are far more complex than
images, mean pooling is unable to produce good features for
classifying videos. Because mean pooling treats each segment
equally, and it fails to select the discriminative segments for
representing the video. We explore the attention mechanism to
address this issue, given the success of attention mechanism

in natural language processing [20] and computer vision [21].
Particularly, we first assign each segment-level feature with an
attention weight and then perform weighted sum to obtain the
final global feature accordingly (see Fig. 2 (b) and (d)). With
the enhanced features, we train a classification network using
the winners-out strategy, which will be introduced in § III-B.

B. The Criteria for Selecting the Segments (or Frames) to
Remove Requires to Be Developed Specifically if the
Attention Mechanism Is Considered

To select which segment to remove, we should first analyze
the importance of each segment. In [19], the authors employ
CAM [22] to analyze the correlation between each pixel and
the target class. In CAM, the correlation of each pixel only
depends on the activation values (i.e., the feature vector) and
the weights in the last fully connected layer. Directly using
CAM in our method will neglect the attention weights, making
the correlation value not precise enough. To address this
issue, we propose a class-discriminative localization technique,
namely Class-specific Score Computing. In this technique,
the correlation for each segment is related to its attention
weight. Besides the attention weights, we also use the segment
feature and the weights that connect the video-level feature
and the action class in the final f c layer. Therefore, this
technique makes good use of category information learned
from the training stage and provides a better reference for
selecting the most discriminative action instances. Further-
more, we empirically find that employing multiple attention
modules will boost the performance. The final output of our
model is obtained by concatenating the outputs of all attention
modules (see Fig. 2 (f)). In this way, our proposed technique
is able to determine the removed segments by considering
attention weights from multiple attention modules, leading to
a more robust decision.

The main contributions of our paper are as follows:
(1) To the best of our knowledge, it is the first attempt

to employ the adversarial erasing mechanism in video analy-
sis. To narrow the gap between image segmentation and
video action localization, we introduce an iterative-winners-
out network with a training strategy, winners-out. Given the
video-level labels only, we successfully train the network to
localize actions in untrimmed videos.

(2) We propose Class-specific Score Computing (CSC),
a class-discriminative localization technique that can analyze
the importance of each action instance in the video. Compared
to CAM, CSC is able to localize actions in a more precise way.

(3) We integrate winners-out and CSC into an end-to-
end network and yield the state-of-the-art performance on
two datasets, i.e. THUMOS14 [23] and ActivityNet1.3 [24].
We significantly improve the current best results from 16.9%
to 20.5% on THUMOS14.

The remainder of this paper is organized as follows.
In Section II, we review recent works related to our
paper, which provides background knowledge to understand
the motivation of designing our iterative-winners-out net-
work. In Section III, we present details of the proposed
winners-out training strategy and the Class-specific Score
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Computing (CSC) technique. Also, we discuss how our
proposed iterative-winners-out network is related to existing
methods. The training and testing details are illustrated in
Section IV. Experiments and ablation studies are presented in
Section V and Section VI, respectively, before the conclusion
is drawn in Section VII.

II. RELATED WORK

A. Action Localization

Early works on this task employ hand-crafted features and
mainly focus on classifying proposals generated by sliding
windows [1], [2]. In recent years, deep learning based methods
have been extensively studied, and they can be grouped into
four categories. In the first category, methods perform frame
or segment-level classification, which needs merging steps to
obtain the temporal boundaries [5], [25], [26]. For instance,
Shou et al. [5] proposed to predict the category of each
frame using a convolution-deconvolution network and merge
the results using a greedy Gaussian-based strategy. Another
category of approaches employs a multiple-stage framework
involving proposal generation, classification and boundary
refinement [3], [4], [6]. Typically, Shou et al. [3] proposed
a multi-stage approach involving three segment-based 3D
ConvNets, one for generating proposals and the other two for
classifying proposals. Apart from the methods that neglect
the context information of the proposals, Dai et al. [27]
constructed features using the context around proposals.
Zhao et al. [6] introduced the completeness of proposals and
designed a pyramid structure to classify the proposals. In the
third category, the methods devise end-to-end architectures
integrating the proposal generation and classification [28].
Another class of approaches apply a recurrent neural network
to learn temporal features for localizing actions [7]. Though
these methods have achieved great results, they heavily rely
on temporal annotations to train the neural networks. Our
method is distinct from these approaches, for we only need
video labels rather than temporal annotations for training.

B. Weakly Supervised Action Localization

There are only a few approaches that tackle the action
localization problem with weak supervision. The work that
most related to ours are [29]–[31]. UntrimmedNet [29] uses
a network with an attention module for untrimmed video
classification and performs action localization using the atten-
tion weights (i.e., action instances have large attention scores
and background instances have small scores). However, this
method has two main shortcomings. 1) Due to relying on only
a classification objective, it often tends to choose the action
instances that strongly correspond to the video label, and thus
neglects other less discriminative ones. Specifically, only the
most discriminative instance is assigned with a high attention
score and other instances are with small scores. This is a severe
issue since only the most discriminative action instances will
be localized, which can be regarded as a “winner-takes-all”
phenomenon. In the meantime, using the softmax function will
further suppress the scores of the less discriminative instances.
2) Only one attention module is trained, while it is employed

to assign scores for action instances across all action classes.
Since this attention module is class-agnostic, it is difficult
to capture the action patterns for all classes. Directly using
attention scores to localize action instances for all classes is
both imprecise and inefficient. To address the first issue of
[29], Nguyen et al. [31] replaced the soft-max function with
the sigmoid function, which predicts the attention weight of
each segment independently. HaS [30] proposed to hide each
segment with a fixed probability before feeding it into an
action localizer network to avoid the only concentration of
the most discriminative segment. But this mechanism does
not work well in videos. The reason may be that the most
discriminative segments cannot be hidden efficiently due to
the random probability, preventing the network from learning
the less discriminative features as much as possible. Instead,
we propose a training strategy to hide segments in the video
in a goal-oriented way.

C. Weakly Supervised Object Detection

Our work is related to weakly supervised object detection
[22], [32]–[36]. Bilen and Vedaldi et al. [32] solved the
weakly supervised object detection problem using an objective
for classification. Zhou et al. [22] proposed a technique called
CAM to perform object detection in an interesting way. In light
of the above methods, we tackle the weakly supervised action
localization problem by training a video classification network
and propose a class-discriminative localization technique in
video, which is related to CAM [22] and [37] in spirit.

III. OUR APPROACH

A. Problem Definition

We denote an untrimmed video set as {Vi , yi }N
i=1, where

N is the number of videos. Let yi ∈ {0, 1}C be the label
vector for the i -th video with C being the total number of
action classes in the video set. Here, each video may belong
to one class or multiple classes depending on how many
types of actions are included in the video. Each untrimmed
video Vi may contain a set of action instances �Vi =
{φqi = (ϕqi , ϕ

�
qi

, kqi )}Qi
qi=1, where Qi is the number of action

instances in Vi , and ϕqi , ϕ
�
qi

, kqi are starting time, ending
time and category of action instance φqi . The task of weakly
supervised action localization is to identify the positions of
action instances and recognize their categories simultaneously
in the input video. Note that only the video-level action labels
are available in the training while the temporal annotation of
each action instance is no longer required.

B. Winners-Out Strategy

With the video-level action labels at hand, we first train
a network using an objective for classification. Now we
clarify the formulation of the classification problem. Given an
untrimmed video Vi , we divide it into K segments with even
temporal interval and obtain a segment set Si = {si,k }K

k=1.
For video classification, we aim to integrate the segment-level
local feature to the video-level global feature and classify
it correctly. To this end, we use an attention module to
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Fig. 3. Examples of the “winner-takes-all” phenomenon. In each example,
we show the ground-truth on the top and the attention score of each segment at
the bottom. The scores of segments are originally discrete, but we interpolate
the scores between segments for better visualization quality. As shown in the
first example, in the case where the video contains only one action instance,
the attention score is able to localize the ground-truth via attention score.
However, in the case with multiple action instances, the most discriminative
segments will be assigned with the highest scores and the scores of the less
discriminative ones will be suppressed. Thus, this phenomenon prevents us
from localizing all the action instances in the video. (a) An example of single
ground-truth instance. (b) An example of multiple ground-truth instances.

assign different weights to different segment-level local fea-
tures. Specifically, we assign an attention weight ai,k to each
segment-level feature hi,k . Then, the video-level global feature
is calculated by

vi =
K∑

k=1

ai,k hi,k . (1)

In our preliminary experiments, we find that the attention
module works well for video classification but not for selecting
all the action instances in the untrimmed video, which is
also empirically found in [29]. During training, only the most
discriminative segment features will be selected to represent
the video, and neglecting the less discriminative segments will
only slightly hurt the classification performance. In this case,
the attention module is prone to focus only on the segments
with highly-discriminative features in order to optimize classi-
fication accuracy instead of identifying all relevant segments,
which leads to the “winner-takes-all” phenomenon (Fig. 3).

To break “winner-takes-all”, we propose a training strat-
egy, namely winners-out (WO). The core idea is to let the
“winners” (i.e., the most discriminative segments) be “out”
(i.e., removed from the training video) in the next training
step. In this way, the attention module is trained to focus on
not only the most discriminative segments but also the less
discriminative ones. Note that our “winners-out” strategy is
different from the “winners out rule” in [38], which is a rule
in the basketball game—giving the ball back to the team that
just scored. Meanwhile, our “winners-out” also differs from
“adversarial erasing” [19], regardless of their similar goal of
removing the most discriminative elements. The “adversarial

erasing” replaces the selected pixels with the mean value of
training images, while our “winners-out” directly removes the
selected segments from the video.

As shown in Fig. 4, WO iteratively performs two oper-
ations: training a classification network for localizing the
discriminative segments and removing the localized segments
in the videos. In particular, in the first operation, we train
the classification network with video segments. In the second
operation, we fix the parameters of the trained model and
calculate an importance score set λ

j
i = {λ j

i,k }K
k=1 for each class

j of the i -th video. Note that λ
j
i is produced by Class-specific

Score Computing rather than the attention weight, which
will be introduced in § III-D. For each video, we select
the segments whose scores belong to top-p of the largest
value in λ

j
i as “winners” and remove them from the training

segment set. Thus, the “winners” segments carrying the most
discriminative features of the action class are “out” in the next
training step. Then, the processed segment set will be used
to train the classification network in the next step. As the
discriminative segments have been removed and no longer
contribute to the classification prediction, the attention module
is naturally driven to select new discriminative segments to
maintain its classification accuracy level. We repeat the WO
process for several steps until the network cannot converge
well on the produced training segment set, i.e. no more
discriminative segments are left for performing reasonably
good classification.

We now illustrate the winners-out strategy more formally.
Given the training video set with N videos, we generate N
segment sets {Si }N

i=1, where Si = {si,k}K
k=1 is the segment

set of the i -th video. F = {Fi }N
i=1 represents the segment

sets selected by the winners-out approach. Let C be the set of
action categories. We iteratively produce the segment set Fi

for each training video Vi at each learning step. Concretely,
for Si , we calculate the j -th importance score set λ

j
i , in which

j ∈ yi and yi ⊆ C is the video-level label set of Vi . To enforce
the classification network to select less discriminative features,
we remove the segments whose scores belong to top-p of
the largest value in λ

j
i in the next training step. The whole

procedure is summarized in Algorithm 1.

C. Network Architecture With Group Attention Modules

The proposed winners-out strategy selects the most dis-
criminative segments w.r.t. the importance scores. Adopting
the attention weights as the importance scores are not precise
enough since it will neglect the knowledge learned from the
training stage. To this end, we propose a class-discriminative
localization technique to better evaluate the importance of
the video segments. Since this technique is related to the
attention module, we first illustrate the attention module
employed in our network. Formally, for an untrimmed video
V (the video index i is omitted for simplicity) and the
corresponding segment set S = {sk}K

k=1, we randomly extract
L frames in each segment and obtain the segment-level local
feature vector by hk = 1

L

∑L
l=1 ϕ( fk,l ), where ϕ(·) is the

feature extractor and fk,l is the l-th extracted frame of the
k-th segment. Then, we obtain a set of segment-level features
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Fig. 4. The proposed winners-out strategy for training the classification network. At Step t , we first train the classification network with the current training
segment set S . Then the category information learned from the training stage is employed to assign each segment with a class-specific importance score. The
segments whose scores belong to top-p of the largest value (see the red bars) will be selected as “winners” and removed from S , thus leading to the updated
training segment set. The updated segment set is then used to re-train the classification network and the segments selected at step t are “out” in the next
training step. The training segment set and the corresponding importance scores at each step are shown in the bottom.

Algorithm 1 Winners-Out Strategy for Training Neural Net-
works

H = (h1, h2, · · · , hK ). H has the size K -by-D, where D is
the dimensionality of the segment-level feature. The attention
module takes H as input and outputs a weight vector by

a = softmax(wHT + b), (2)

where w and b are the learn-able parameters of dimensionality
D and K . This vector representation a usually focuses on
a specific feature of action. However, there can be multiple
types of feature for one action. For example, the number
of people who are playing basketball in the video can be
different and the color of the playground also varies. To select
more types of action features, we need multiple attention

modules that focus on different characteristics of actions. As a
result, we employ group attention modules in our network.
Specifically, we extend w in Eq. (2) into an M-by-D matrix,
note it as W , and the attention vector a becomes a matrix A
with size M-by-K . Formally,

A = softmax(W HT + B), (3)

where B is a learn-able parameter with size M-by-K . Here,
the soft-max function is performed along the second dimension
of its input. We denote Am the m-th row of A, representing
the output attention weights of the m-th attention module.
To better initialize the parameters of the attention modules,
we use the shifting operation introduced in [39]. The weighted
feature vector produced by the m-th attention module is

vm = αm Am H√
M�αm Am H�2

, (4)

where αm is a learn-able scalar. Lastly, we obtain the
video-level feature by concatenating the outputs of all attention
modules:

g = [v1, v2, · · · , vM ]. (5)

The resulting global feature is a vector of dimensionality
M D. By feeding the global feature to the classifier, we obtain
the video-level prediction ŷ. In the case of video containing
action instances from multiple classes, we normalize the video
label vector y by ȳ = y/�y�1 to ensure that the sum of
probabilities is 1. Since we have multiple attention modules,
the attention matrix A can suffer from redundancy problems if
some modules focus on the same action pattern. Thus, we use
the penalization term suggested by [40] to encourage diversity
across different attention modules. Then the objective function
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is formulated as:

L(θ) = −
N∑

i=1

C∑
j=1

ȳ j
i log(ŷ j

i ) + β�AAT − I�2
F , (6)

where θ is the parameter of the neural network. Here, � · �F

is the Frobenius norm of a matrix and β is a hyper-parameter
to trade-off the cross-entropy loss and the penalization term.
We set β = 0.1 in all our experiments and find that it works
well across all of them.

D. Class-Specific Score Computing

With the network introduced above, we are able to train it
using the video-level labels. By training such a network for
untrimmed video classification, the attention modules learn to
select the discriminative features among segments. However,
as we claimed in § II, the attention weight is class-agnostic
and thus it is impractical to directly use the attention weight
for our winners-out strategy.

To better select the segments carrying discriminative fea-
tures of action, we propose a class-discriminative localization
technique, namely Class-specific Score Computing (CSC).
We denote z j

m the weight vector connecting the output of
the m-th attention module and the score of class j in the
fully-connected layer, and thus the input to the final soft-max
layer for class j is

ŷ j =
M∑

m=1

vm z j
m

=
M∑

m=1

αm Am H√
M�αm Am H�2

z j
m

=
M∑

m=1

(
αm√

M�αm Am H�2

K∑
k=1

am,k hk)z j
m

=
K∑

k=1

M∑
m=1

αmam,k√
M�αm Am H�2

hk z j
m, (7)

where am,k is the weight of the k-th segment generated by the
m-th attention module. From Eq. (7), we obtain the importance
score of the k-th segment to the j -th class:

λ
j
k = ReLU

(
M∑

m=1

αmam,k√
M�αm Am H�2

hk z j
m

)
. (8)

We apply a ReLU to the importance score since we are only
interested in the segment that has a positive influence on the
class of interest, i.e., segment which have a negative contribu-
tion to the classification score ŷ j will be ignored. Although we
have multiple attention modules and use penalization term in
Eq. (6) to encourage each attention module to learn different
types of action features, we still lack control over which
attention module learns information about which category of
action. As a result, we sum up the importance scores provided
by all the attention modules in Eq. (8).

With Eq. (8), our proposed method can be used to analyze
the importance of each segment and generate CSC scores to

the specific action class j via

λ j =
(
λ

j
1, λ

j
2, · · · , λ

j
K

)
. (9)

Then, at each winners-out step, the segments whose CSC
scores belong to top- p of the largest value will be removed.
In contrast to the attention weights, our CSC makes full use
of the category information and provides a better reference for
selecting the most discriminative segments.

E. Discussion

Contribution beyond [29], [30]. The core idea of [29]
is Eq. (1), where the simplest form of attention module is
adopted. Note that only one attention module is trained to
assign weight λ to each video segment h, which represents the
probability of that segment containing actions. In our network,
we use multiple attention modules as discussed in § III-C
and empirically show that using multiple attention modules
outperforms that with only a single attention module.

It is worth noting that, in [29] the final attention weight
of each segment is normalized to [0,1] by applying softmax
function to the original attention weights of all the segments in
that video (Eq. (2)). In this way, only a few segments will be
assigned with large weights and other segments will get scores
that are much smaller, and thus leading to the “winner-takes-
all” issue. In our method, though we use softmax function
to yield the normalized weight, we apply the winners-out
strategy to remove the winner segments after each training
step, preventing the network from only concentrating on the
most discriminative segment. Though [30] also tries to solve
the “winner-takes-all” problem, due to the lack of evaluating
the importance of each video segment, it hides the segments
randomly. However, this random strategy may bring two draw-
backs: 1) The hidden segments can be action or background
instances. It may force the network to output high response on
the background instances. 2) Randomly hiding is extremely
inefficient. It takes much more time to train the network.
In contrast, our proposed CSC technique is able to assign the
discriminative segment with a large score and thus the most
discriminative ones can be removed from the training video.
With this goal-oriented operation, we tackle the “winner-takes-
all” problem in both efficient and effective way.

IV. TRAINING AND TESTING

A. Training Details

The two key components, winners-out strategy and
Class-specific Score Computing, are finally integrated into
an end-to-end iterative-winners-out network. We extract
multi-modal features including appearance feature (RGB
frames) H rgb and motion feature (Optical flow) Hflow from
the input video. We use a classical two-stream architecture
and the overview of our network is shown in Fig. 5.

Multi-modal Concatenation. By feeding features into
the network, each stream outputs a video-level feature by
Eq. (3)-(5). Then, the RGB feature grgb and the flow feature
gflow are concatenated into the final video-level feature
gfinal = [grgb, gflow].
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Fig. 5. The network architecture of the two-stream iterative-winners-out network with group attention modules. We employ the two-stream architecture with
multiple attention modules for each stream. We first divide the input video into segments evenly and then obtain the segment-level feature set via the feature
extractor. Each attention module with the shifting operation takes the feature set as input and will output a weighted feature vector. We then concatenate the
outputs of all the attention modules in each stream. Finally, the outputs of two streams will be concatenated into a final video-level feature vector.

Algorithm 2 Winners-Out Testing

Multi-modal CSC scores. For each stream, we calculate
CSC scores via Eq. (8) and (9). Then, the final CSC scores
are obtained by the weighted sum of scores from two streams:

λ
j
final = λ

j
rgb + γλ

j
flow, (10)

where γ is a trade-off parameter.

B. Testing and Post-Processing

1) Winners-Out Testing: In the testing stage, for each video
V and the corresponding segment set S = {sk}K

k=1, we feed
segment-level features to the trained network and obtain the
video-level prediction scores. Since one video may have
multiple action labels, we choose q action classes with the
largest prediction scores as the predicted labels and note it
as ŷ. For each class j ∈ ŷ, we first initialize the testing

segment set S j = S and use CSC to calculate the importance
scores λ j at step t . We then select segments R whose scores
belong to top-p of the largest value in λ j and the selected
segments will be added to a segment set F j . In the meantime,
these segments will be removed from the testing segment
set and thus leading to S j = S j \ R for the next testing
step. Then, at step t + 1, S j will be fed into the network
and repeat the aforementioned process. Finally, we obtain the
selected segment sets {F j }( j ∈ ŷ). Since this process builds
upon winners-out, we name it Winners-out Testing. The whole
procedure is summarized in Algorithm 2.

2) Post-Processing: For each class j , we connect the adja-
cent segments in F j to form the action proposals. In action
localization, the proposal is a one-dimensional time interval
that potentially contains multiple segments, with the class
labels and scores. We define the proposal by [kstart, kend],
where kstart and kend denote for the index of the first segment
and the last segment within the proposal, respectively. Thus,
each proposal is composed of (kend − kstart + 1) segments.
We assign each proposal with a score as the mean CSC score
of all the segments within the proposal:

k=kend∑
k=kstart

λ
j
k,final

kend − kstart + 1
. (11)

This value corresponds to the proposal score for class j .
Finally, we take the generated proposals as our action local-
ization results.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) THUMOS14 [23]: is composed of four parts: training,
validation, testing and background sets. The training set is
the UCF-101 dataset with 13320 trimmed videos of 101 cat-
egories. The validation set and test set contain 1010 and
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1574 untrimmed videos, respectively. The background set
contains 2500 videos. The temporal action localization task
of THUMOS14 dataset, which contains videos over 20 hours
from 20 sports classes, is challenging and widely used. Fol-
lowing the common setting in [23], we apply 200 videos
in the validation set for training. Here, we only adopt the
video-level labels to ensure the weakly supervision contrac-
tion. The performance is evaluated on the testing set that
contains 213 videos.

2) ActivityNet [24]: is a standard benchmark for action
localization in untrimmed videos and it provides rich and
diverse action categories. We evaluate our method on Activ-
ityNet1.3, which is the largest and also the most challenging
version. It involves 200 activities and contains around 10K
training videos and 5K validation videos. Each video has an
average of 1.65 action instances with temporal annotations.
As a standard practice, we train on the training videos and
test on the validation videos. Note that we only use video-level
labels for the weakly supervised setting.

3) Evaluation Metrics: We use the mean Average Preci-
sion (mAP) as the comparison metric. Following the con-
ventional evaluation set-ups, we report the mAP at different
IoU thresholds. A predicted proposal is correct if it gets the
same category as ground-truth and its temporal IoU with
this ground-truth instance is larger than the IoU threshold.
On THUMOS14, the IOU thresholds are chosen from [0.1,
0.2, 0.3, 0.4, 0.5]; on ActivityNet1.3, the IOU thresholds are
determined over [0.5, 0.75, 0.95].

B. Implementation Details

For each input video, we set K to 400 for a fair comparison
with [29]. We also conduct ablation study in § VI-E to explore
other choices of K . We set L to 3 in our experiments. We
choose the Inception architecture [41] with Batch Normaliza-
tion, namely BN-Inception, to be the feature extractor. The
feature extractor is pre-trained on Kinetics dataset [42] and is
froze when training on the target dataset. The input for the
RGB and Flow stream is 1-frame RGB image and 5-frame
stacks of TV-L1 [43] optical flows, respectively. M and p
are set to 18 and 30, respectively. The initial learning rate
is 0.001 and will be decreased to its 1

10 every 20 epochs.
The dropout ratio is set as 0.8. γ in Eq. (10) is set to 10.
Through experiments, we find that removing 30 segments
at each winners-out step produces the best results. In the
testing stage, we choose the top-2 classes to perform action
localization and set the number of winners-out steps to 10 for
all the videos. Our network is trained by back-propagation and
stochastic gradient descent (SGD) [44].

C. Comparison With State-of-the-Arts

1) ActivityNet1.3 Dataset: We compare our method with
state-of-the-arts, including supervised and weakly supervised
methods. Ours-A uses the same feature extractor (i.e., I3D
network [14] pre-trained on Kinetics dataset) as [31] and
K is set to 400 for fair comparisons. Ours-B and Ours-C
use BN-Inception network (denoted by 2D) pre-trained on
Kinetics as the feature extractor with K = 400 and

TABLE I

COMPARISON WITH STATE-OF-THE-ART ACTION LOCALIZATION METH-
ODS ON ACTIVITYNET1.3 VALIDATION SET. WE SHOW THE EXPER-

IMENTAL SETTINGS OF OUR MODEL IN THE FORM OF (FEATURE

EXTRACTOR-NUMBER OF SEGMENTS-PRETRAINING DATASET)

TABLE II

COMPARISON WITH STATE-OF-THE-ART ACTION LOCALIZATION METH-
ODS ON THUMOS14 TESTING SET. WE SHOW THE EXPERIMEN-

TAL SETTINGS OF OUR MODEL IN THE FORM OF (FEATURE

EXTRACTOR-NUMBER OF SEGMENTS-PRETRAINING DATASET)

K = 200, respectively. The results are shown in Table I.
Ours-A outperforms Nguyen et al. [31] in most IoU thresholds
under the same experimental settings. When IoU = 0.95,
we improve the result from 2.6% to 4.8%. Ours-B achieves
results that are comparable to [31] with a weaker feature
extractor. Ours-C achieves the state-of-the-art performance
in all IoU thresholds. Interestingly, even with weak supervi-
sion only, our method outperforms [25] (22.5%) and R-C3D
(26.8%) [4] when IoU is set to 0.5. Note that R-C3D [4] and
[25] apply frame-level annotations for training while we only
use the video-level labels as supervision.

2) THUMOS14 Dataset: We compare our proposed
iterative-winners-out network with state-of-the-art supervised
and weakly supervised action localization methods in Table II.
Ours-A, B, C have the same settings as those on Activ-
ityNet except that K in Ours-C is set to 800. For fair
comparisons, we add a model Ours-D in which the feature
extractor is the same as that is used in UntrimmedNet [29],
i.e., a model pre-trained on ImageNet [45]. With the same
I3D feature and number of segments, Ours-A significantly
outperforms Nguyen et al. [31] when the IoU thresholds
are set to 0.5. Although the feature extractor in Ours-B is
weaker than that in [31], Ours-B still achieves a comparable
performance. Ours-C improves the previous state-of-the-art
result from 16.9% to 20.5% when IoU = 0.5. Ours-D achieves
better performance than UntrimmedNet under the same set-
tings, verifying the effectiveness of our winners-out strategy.
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TABLE III

COMPARISON OF MAP (IOU = 0.5) IN DIFFERENT WINNERS-OUT STEPS

TABLE IV

COMPARISON OF MAP (IOU = 0.5) USING WINNERS-OUT IN THE

TRAINING AND TESTING STAGES

Note that UntrimmedNet uses 1010 videos in the validation
set for training, while we use 200 videos of the validation set.

VI. ABLATION STUDIES

A. Understanding of Winners-out Steps

Here, we perform experiments to understand the contri-
bution of each WO step. From Table III, the action local-
ization performance indeed increases as more WO steps
are performed. As the most discriminative segments have
been removed from the video, the classification network is
encouraged to select other discriminative segments. However,
performing WO for too many steps will hurt the performance
since it may select negative segments.

We visualize the segments selected by each WO step
in Fig. 6. In the example of “Mowing the lawn”, the network
tends to focus on the scene containing the human, the lawn
mower, and the grass in the first WO step. In the second
WO step, since the most discriminative segments are removed
from the video, the network concentrates on the segments
with incomplete visual components (e.g., the other half of the
actor is outside the scope of the camera). In the third WO
step, the network chooses the segment where only the grass is
contained to represent the whole video. It is obvious that the
negative segments have been selected due to over removing.
Other examples in Fig. 6 are consistent with this observation.

B. The Effectiveness of Winners-Out Strategy

To evaluate the effectiveness of WO strategy, we conduct
several contrast experiments: (1) Train and test regularly; (2)
Train regularly and test with WO; (3) Train with WO and test
regularly; (4) Train and test with WO. The results are listed
in Table IV. The performance is significantly improved from
14.2% to 17.0% and 23.1% to 27.0% on two datasets when
WO strategy is used in the training and testing stages simul-
taneously. It is evident that the winners-out strategy serves
as a very important component in our proposed method and
brings significant gains. (2) and (3) outperform (1) by 0.6%
and 0.2% on THUMOS14, respectively. The improvement is
not significant when using WO in the training and testing
stages individually. The reason may be that the “winner-takes-
all” phenomenon exists in both the training and testing stages.

TABLE V

COMPARISON BETWEEN CAM AND CSC ON THUMOS14, MEASURED BY
ACTION LOCALIZATION MAP

Fig. 6. The “winner” segments at different winners-out steps. Each row
shows an example of the training videos and each column shows the segment
with the highest CSC score at different WO steps. Here, we choose the center
frame of the segment for visualization. Segments in WO-Step3 are the failure
cases due to performing WO for too many steps.

In setting (2), training without our WO strategy leads to a
network that only focuses on the most discriminative segments.
Even if we employ WO in the testing stage, the difference
between the less discriminative action features and the back-
ground features are not significant enough to separate them.
In setting (3), the network is able to break the “winner-takes-
all” phenomenon with the help of WO strategy in the training
stage. However, performing testing for only one iteration could
only select the most discriminative segments and thus produce
a 0.2% improvement only. Overall, these results demonstrate
that the winners-out strategy is able to break the “winner-takes-
all” effectively, and employing it in both stages simultaneously
leads to the state-of-the-art results.

C. The Effectiveness of CSC

1) CSC v.s. CAM: As discussed in § I, compared to CAM,
our proposed CSC takes the attention weight of each segment
as additional information. To verify this, we compare CSC
with CAM under the same setting. Here, we remove the
attention modules and perform average pooling over segment
features to obtain the global feature. Following [39], we also
replicate the global feature for M times. From Table V, CSC
outperforms CAM under all IoU thresholds. The CAM method
performs average pooling to obtain the global representation,
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TABLE VI

ACTION LOCALIZATION RESULTS ON THUMOS14 WITH A DIFFERENT
NUMBER OF ATTENTION MODULES, MEASURED BY MAP@IOU = 0.5

and each pixel/segment is treated equally. In contrast, the atten-
tion module in our CSC predicts a higher attention weight on
the segment that is more discriminative. In this way, CSC is
able to select the discriminative segments more precisely and
boost the action localization performance eventually.

2) CSC v.s. Attention: Compare to [29], our proposed
CSC further integrates the activation of each segment and
the weights of f c layer besides the attention weights. Here,
we perform experiments to verify this. For a fair comparison,
the only modification is replacing CSC scores with attention
weights. We find that WO with CSC significantly outperforms
that with attention weights (17.0% v.s. 15.7%). We also visual-
ize action localization results on THUMOS14 and ActivityNet
1.3 in Fig. 7 to figure out how this improvement is obtained.
Fig. 7 (a) shows an example with many action instances.
Despite this huge challenge, our proposed CSC is able to
localize most of the action instances and their boundaries.
Though the model using the attention weights is able to find
some of the action instances, it always fails to recognize
the boundaries of actions. This demonstrates that considering
the activation of each segment and the weights of f c layer
makes it easier to identify the start time and end time of the
action instance, which is important in this task. In Fig. 7 (c),
we show an example where the appearance of the video frames
are similar; nevertheless, our CSC still localizes the target
action precisely. When employing attention weights, one of
the detection results matches the ground-truth action instance.
However, the attention weights fail to distinguish the action
and background instances which are similar in appearance
and thus produce some negative results. We can see that
benefiting from the category information learned from the
training stage, CSC provides a more precise reference for
selecting discriminative action instances.

D. The Effectiveness of Group Attention Modules

1) The Number of Attention Modules: Since we employ
group attention modules in our model, we conduct an ablation
study to explore how does M affect the performance. We show
the results in TableVI. The action localization mAP first
increases with more attention modules. This is consistent with
the results in [39] that using more attention modules is able
to capture more types of action patterns. Our model performs
well when M is 18 and 20. However, when M is larger than
20, the mAP decreases. A possible reason is that the network
will be hard to train with more parameters. In our experiments,
we set M to 18 unless otherwise specified.

2) Group Attention v.s. Single Attention: From Table VI,
our method achieves better results when using group attention
modules (M > 1). The reason may be that training only
one attention module to learn the action patterns for multiple

Fig. 7. Visualization of action localization results. Horizontal axis stands
for time. The blue boxes denote the ground-truth action instances and the
green boxes stand for the predicted results of our model using CSC and
attention weights. (a) and (b): There are multiple action instances in the input
video; nevertheless, our method with CSC is able to localize most of the
actions and recognize the boundaries simultaneously. However, using attention
weights always fails to detect the boundaries of actions. (c) and (d): The
frames of the input video remain similar. Our CSC is able to localize the
segments containing actions precisely while using attention weights brings
negative results. (a) Example 1: Cliff Diving in THUMOS14. (b) Example 2:
Long Jump in THUMOS14. (c) Example 3: Baseball Pitch in THUMOS14.
(d) Example 4: Baseball Pitch in ActivityNet.

classes is difficult. As a result, the capability of the single
attention module is limited. In contrast, with our design of
group attention modules, each attention module can focus on
limited types of action patterns instead of learning general
patterns for all actions. Furthermore, the final output of our
model is obtained by concatenating the outputs of multi-
ple attention modules. This design brings better video-level
representations and enables our proposed CSC to determine
the removed segments by considering attention weights from
multiple attention modules, leading to more robust decision.

3) Comparison Between Our Attention Module and [39].:
In our model, we modify the attention module in [39] by
removing the parameter β. The parameter β is a learnable
scalar added on the attended features and is unrelated to the
segment features. Thus, it will not affect the importance of
each segment in our proposed CSC. In other words, Eq. (8)
will not change when β is added. We conduct an experiment
where β is added to our attention module and show the results
in Table VII. The performance difference is small compared
to our original model, demonstrating that removing β does not
harm the performance while enjoying fewer parameters.
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TABLE VII

ACTION LOCALIZATION RESULTS ON THUMOS14 WITH THE PARAME-
TER β , MEASURED BY MAP AT DIFFERENT IOU THRESHOLDS

Fig. 8. Action localization results with different number of segments K ,
measured by mAP@IoU = 0.5. (a) THUMOS14. (b) ActivityNet1.3.

E. The Number of Video Segments

The proposed iterative-winners-out network aims to select
segments to form the action instances. Concerning how does
K affect the action localization results, we perform experi-
ments with different K and show the results in Fig. 8. Our
model achieves the best result by using 800 segments on
THUMOS14 and 200 segments on ActivityNet. As discussed
in [49], each video on THUMOS14 has 15 action instances on
average and 71% of actions are shorter than 2% of the video
length. Therefore, more segments help locate the short actions
on THUMOS14. In contrast, each video on ActivityNet has
only 1.5 instances on average and more than 64% frames are
actions. Fewer segments are able to alleviate the effects of false
negative segments and thus boost the localization performance
on ActivityNet 1.3.

VII. CONCLUSIONS

We have addressed the weakly supervised action
localization problem by developing an iterative-winners-
out network that is inspired by the Adversarial Erasing
semantic segmentation network. Our method features two
key components that address the shortcomings of existing
approaches. One is the winners-out training strategy, the other
one is a class-discriminative localization technique, namely
Class-specific Score Computing (CSC). When given the
video-level action labels only, our method learns to localize
the discriminative action instances for each action class. Our
proposed method yields state-of-the-art performance on two
standard benchmark datasets THUMOS14 and ActivityNet1.3.
One future direction to enhance our network could be
considering more advanced feature representation methods.
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