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ABSTRACT
We study the problem of text-based visual question answering
(T-VQA) in this paper. Unlike general visual question answering
(VQA) which only builds connections between questions and visual
contents, T-VQA requires reading and reasoning over both texts and
visual concepts that appear in images. Challenges in T-VQA mainly
lie in three aspects: 1) It is difficult to understand the complex logic
in questions and extract specific useful information from rich image
contents to answer them; 2) The text-related questions are also
related to visual concepts, but it is difficult to capture cross-modal
relationships between the texts and the visual concepts; 3) If the
OCR (optical character recognition) system fails to detect the target
text, the training will be very difficult. To address these issues, we
propose a novel Cascade Reasoning Network (CRN) that consists of
a progressive attention module (PAM) and a multimodal reasoning
graph (MRG) module. Specifically, the PAM regards the multimodal
information fusion operation as a stepwise encoding process and
uses the previous attention results to guide the next fusion process.
The MRG aims to explicitly model the connections and interactions
between texts and visual concepts. To alleviate the dependence on
the OCR system, we introduce an auxiliary task to train the model
with accurate supervision signals, thereby enhancing the reasoning
ability of the model in question answering. Extensive experiments
on three popular T-VQA datasets demonstrate the effectiveness
of our method compared with SOTA methods. The source code is
available at https://github.com/guanghuixu/CRN_tvqa.
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1 INTRODUCTION
Many practical images contain rich text information, such as prod-
uct descriptions and advertising images. Texts in such images gener-
ally convey valuable information and thus are of critical importance
in visual understanding tasks such as visual question answering
(VQA) [21]. Existing VQA methods [1, 11, 18, 27] tend to directly
capture the relationships among visual concepts via complex visual
attention mechanisms. However, these methods may lack the abil-
ity to read texts in the image and suffer from severe performance
degradation when answering text-related visual questions [38].

Compared with common VQA [12, 30], the text-based visual
question answering (T-VQA) is more practical as it has the ability
to aid visually impaired users in better understanding the informa-
tion of their surrounding physical world, such as identifying time,
temperatures and brand names [16]. In this sense, Singh et al. [38]
proposed a new dataset TextVQA that mainly contains text-related
questions, and they introduced a benchmark method (LoRRA) for
text-based VQA (T-VQA). LoRRA is equipped with an external OCR
(optical character recognition) model to recognize texts in images.
M4C [19] proposed enriching the feature embedding of texts (OCR
tokens) and exploring a multimodal transformer layer to fuse visual
and text information. Both LoRRA and M4C realize that texts play
an important role in answering text-related questions.
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What number is the player 
in red on the far right ?
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Texts: 
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Prediction: 29

Figure 1: Illustration of T-VQA challenges. To answer the
question on the right side, we first need to correctly under-
stand the complex logic in the question and the visual con-
tents (e.g., understand “the player in red” and read the num-
ber), which is nontrivial when the questions and/or image
contents are complex. For example, the OCR system may
fail to recognize the small number in the T-shirt. Moreover,
we need to establish a reasoning map to match the texts and
visual concepts, which is very challenging.

Nevertheless, several challenges still exist in T-VQA. The rich
visual content (including texts and visual concepts) provide indis-
pensable knowledge for answering the question and thus need to
be considered carefully. On the one hand, while images contain
rich information, texts and visual concepts detected from the image
are not always related to the question. As shown in Figure 1, quite
a few texts and objects can be detected, but not all are related to
the question. It takes considerable effort to understand the complex
logic of the question and extract specific useful information from
the redundant image content. On the other hand, it is crucial to
exploit both recognized texts and visual concepts in an input image
for T-VQA. Consider the question - ‘What number is the player in
red on the far right?’. Once texts and objects are obtained, a correct
match between ‘29’ and ‘the player in red on the far right’ is crucial
to ‘copy’ the exact text as the answer. In other words, only correctly
building semantic relationships between texts and visual concepts
can enable the model to give the correct answer. Last but not least,
the performance of the T-VQA model is highly dependent on the
accuracy of OCR systems. That is, even if the model has performed
reasoning and found the correct place in the image to ‘copy’ the
text, false detection of the OCR system still provides an incorrect
supervision signal during training (see also Figure 3).

In this paper, we propose a cascade reasoning network (CRN)
to address the above three challenges in the T-VQA task. Our CRN
mainly consists of a progressive attention module (PAM) and a
multimodal reasoning graph (MRG). It is difficult to identify spe-
cific useful information from complex image content at once. In
the PAM, we fuse multimodal features in turn and update them in
a progressive reasoning manner. To capture cross-modal relation-
ships between the updated features (i.e., text and visual features),
we design a heterogeneous graph, where the nodes are the updated
features, and the edge is the relative position between every two
nodes. In addition, we design a question-guided attention operation
to fuse the node representation itself and the cross-modal informa-
tion. As mentioned above, since the immaturity of the existing OCR
detection technology, even if the reasoning is correct, it is difficult
for the model to output the same prediction as the ground-truth.

In this sense, we further propose an auxiliary task to reduce the
model’s dependence on the OCR system and improve the model
reasoning ability. Specifically, if the prediction is highly similar to
the ground truth but not exactly the same, the model still obtains a
positive training signal, while existing methods ignore this. Last,
we show that all these components improve the model performance
on several T-VQA datasets.

In summary, our main contributions are as follows:

(1) We propose a novel cascade approach to fuse multimodal
information in turn. The results of previous attention can
provide guidance for the next reasoning phase.

(2) To fully exploit multimodal information, we also propose a
graph-based reasoning module that models the relationships
between texts and visual concepts.

(3) Equipped with the auxiliary task, our model learns a deeper
relationship between predictions and ground-truths. Exten-
sive experiments show that our method is superior to several
state-of-the-art methods.

2 RELATEDWORKS
VisualQuestionAnswering.VQAanswers a given question asked
about an image. It has attracted increasing interest since it was
first introduced by Malinowski et al. [29]. To better model the
relationship of each image region and question word, most stud-
ies [14, 22, 32, 47] employ an attention mechanism to learn attended
image features for a given question. Moreover, the co-attention
mechanism [28, 50] has been used to learn attention for both the
image and the natural language question. A bottom-up attention
mechanism [1, 46] is further proposed to focus on objects and other
salient image regions. Huang et al. [20] propose to model object
realtionship using graph convolutional networks.
Text-based VQA. VQA involving reading is gradually attracting
more attention because text content conveys rich semantic infor-
mation and abounds in real scenes, such as billboards, banners and
displays. Recently, TextVQA [38] and ST-VQA [6] were introduced
to facilitate studies of more general methods and pose difficult chal-
lenges for current VQA models. Specifically, TextVQA focused on
reasoning about texts in natural everyday scenes, while ST-VQA
introduced three tasks of increasing difficulty, differentiated ac-
cording to degrees of prior knowledge. OCR-VQA [31] is another
large-scale dataset for T-VQA, most questions of which are related
to book cover information.

To address text-based VQA, Multi-Output Model (MOM) [21]
incorporates an OCR sub-network that extracts texts and bound-
ing boxes. Singh et al. [38] proposed LoRRA which uses a copy
mechanism based on pointer generator networks to copy a word in
context as the answer. Inspired by the success of Transformer [43]
and BERT [10], M4C [19] treats all entities from each modality ho-
mogeneously with a transformer architecture and predicts answers
with a pointer-augmented multi-step decoder.
Relational Reasoning and Graph Networks. Relational reason-
ing has been widely explored in computer vision tasks [15], from
region classification [9] to visual question answering [8, 48, 49], and
further promoted after graph neural networks appeared [36]. Here
we only review related works that use graph networks in VQA and
related tasks. Santoro et al. [35] propose relation networks (RNs) to
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Figure 2: An overviewof the cascade reasoning network. Given an input image and question,we use theRosettaOCR system [7]
to recognize and represent texts (T), extract visual features (V) by Faster-RCNN [34], and extract question features (Q) using
BERT [10]. To answer the input question, we feed all features (Q,T,V) into the progressive attention module in turn and
update informative features gradually. Following that, we use a multimodal reasoning graph to dynamically model cross-
modal relationships from the updated features. Last, we apply an answering module to predict answers word by word.

consider relations across all pairs of objects, conditioned on a ques-
tion. To build contextualized representations for objects in a visual
scene, recent studies have introduced graph networks to iteratively
pass messages among linked object nodes [9, 18]. Wang et al. [44]
propose a language-guided graph attention network composed of
both node and edge attentions to explicitly represent objects, with
intra- and inter-class relationships. Li et al. [26] model explicit and
implicit inter-object relations via a graph attention mechanism to
learn question-adaptive relation representations. Compared with
the above multi-modality interaction modeling methods, we exploit
relative positions to establish cross-modal relationships.

3 CASCADE REASONING NETWORK
In this paper, we focus on text-based visual question answering
(T-VQA), which seeks to answer questions according to the texts
and visual concepts in images. To this end, we propose a cascade
reasoning network (CRN) to fuse multimodal information, as shown
in Figure 2. Specifically, after extracting multimodal features with
pre-trained models (see Sec. 3.1), the progressive attention module
(in Sec. 3.2) prioritizes combining question and text information and
then combines corresponding visual concepts for further reasoning.
The multimodal reasoning graph (in Sec. 3.3) uses topology to
explicitly reflect the interaction of texts and visual concepts. Last,
the answering module generates answers word by word in an auto-
regressive manner (see Sec. 3.4). We present CRN in detail in this
section.

3.1 Multimodal Feature Embedding
As shown in Figure 2, understanding the complex logic of ques-
tion and extracting text and visual features are prerequisites for
reasoning. In this section, we formally introduce how to extract
multimodal features with the help of the pre-trained models.

Following M4C [19], a question of 𝐾 words is fed into a pre-
trained BERT model [10] to obtain question embedding feature
Q = {q𝑖 }𝐾𝑖=1, where q𝑖 ∈ R

𝑑 is the embedding of the 𝑖-th question
word, and 𝑑 is the feature dimension.

Given an image as input, we first use Faster R-CNN [34] to detect
visual objects and use an OCR system [7] to recognize texts (OCR to-
kens). For visual objects, the detection model extracts 𝑁 appearance
features {v𝑎

𝑖
}𝑁
𝑖=1 and the corresponding bounding boxes {v𝑏

𝑖
}𝑁
𝑖=1.

Here, we use a 4-d vector to encode the top-left position and bottom-
right position of the 𝑖-th bounding box, i.e., v𝑏

𝑖
= [𝑥𝑡𝑙

𝑖
, 𝑦𝑡𝑙
𝑖
, 𝑥𝑏𝑟
𝑖
, 𝑦𝑏𝑟
𝑖
].

We first project the above features into 𝑑-dimensional space (as
q𝑖 ∈ R𝑑 ) and apply layer normalization [4] to ensure that feature
representations of our model are on the same scale. To fuse ap-
pearance and location information, we calculate the visual object
features V = {v𝑖 }𝑁𝑖=1 as

v𝑖 = W1v𝑎𝑖 +W2v𝑏𝑖 , (1)

whereW1 andW2 are learnable parameters. For texts recognized in
the input images, rich representations help answer the text-related
questions. Following M4C [19], we use four different types of text
features, including 1) FastText feature t𝑓 , which is a pretrained
word embedding for the token; 2) PHOC (pyramidal histogram
of characters) feature t𝑝 , capturing what characters are present
in the token; 3) appearance feature t𝑎 extracted from Faster R-
CNN; and 4) the corresponding bounding box t𝑏 . Based on the
rich representations of OCR tokens, we calculate text features T =

{t𝑖 }𝑀𝑖=1 by

t𝑖 = W3t
𝑓

𝑖
+W4t

𝑝

𝑖
+W5t𝑎𝑖 +W6t𝑏𝑖 , (2)

whereW3 ∽ W6 are learnable parameters, and𝑀 is the number of
OCR tokens. Thus far, we have completed the multimodal feature
embedding and obtained question feature Q ∈ R𝑑×𝐾 , visual feature
V ∈ R𝑑×𝑁 , and text feature T ∈ R𝑑×𝑀 as shown in Figure 2.

3.2 Progressive Attention Module
To fuse multimodal features, we design a progressive attention mod-
ule (PAM), which is built on transformer layers. Transformer [43]
and BERT [10] have achieved great success in natural language
processing (NLP) and VQA. To clarify our method more clearly, we
briefly review the main idea of the Transformer.
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Self-attention mechanism. With the help of a self-attention
mechanism, Transformer allows input entities to connect and in-
teract with each other freely. Given a feature vector f ∈ R𝑑 , the
updating process of the feature vector adopting self-attention mech-
anism is formulated as

f̂ = softmax(
(W𝑄 f) (W𝐾 f)⊤√

𝑑
)W𝑉 f, (3)

whereW𝑄 ,W𝐾 ,W𝑉 are learnable parameters of self-attention, 1√
𝑑

is a scaling factor, and f̂ ∈ R𝑑 is the updated feature. In practice,
a standard transformer layer consists of L self-attention layers
and employs residual connection [17]. For convenience, we denote
the above updating process as Ψ(f ;W), whereW is the learnable
parameter of the transformer layer.

As a progressive reasoning method, the PAM first understands
the complex logic of questions and then finds the relevant visual
contents to answer the questions. Cascading multiple attention
layers allows the next attention to take advantage of the previous
attention and find more useful information for answering questions.
Now, we introduce the three levels (Q-QT-QTV) of PAM in detail.

Question Level. Intuitively, a comprehensive understanding of a
question is the first step to answering it. To represent rich informa-
tion of a given question, we apply a stack of L1 transformer layers
with the parameters WI. Specifically, QI = Ψ(Q; WI) is obtained
by applying self-attention to Q. In this reasoning phase (PAM1),
the model focuses on understanding the complex logic in questions
and mining potential information.

Question-Text Level. For T-VQA, most questions are concerned
with the texts in images. Since texts provide clear guidance for
answering text-related questions, we prioritize fusing the text and
question information. In practice, we also apply a stack of L2 trans-
former layers over the list of question features QI and text features
T = {t𝑖 }𝑀𝑖=1. In this phase (PAM2), the model fuses not only the
information of the same entities (e.g., t𝑖 ) but also the features of
different entities (i.e. QI and T). PAM1 uses a self-attention method
to find the keywords in the input question, and PAM2 tries to reason
about the answer by matching the keywords in the question with
the texts detected in the image (see also (d) in Figure 5). We apply
the attention operation to update features as

[QII,TII] = Ψ( [QI,T]; WII), (4)

where [, ] is a concatenation operation and WII is the learnable
parameter in PAM2.

Question-Text-Visual Level. Note that visual concepts (objects)
also provide a wealth of information to answer text-related ques-
tions. However, everything has two sides. Such rich visual infor-
mation requires our model to mine useful information during the
reasoning process and reduce or even eliminate the negative effects
of redundant information. In this sense, the attention results of the
previous two reasoning phases provide cues for selecting visual
features that are more relevant to both the question and the text.
Thus, we also apply a stack of L3 transformer ΨIII over three entities
(questions, visual objects and texts) as follows:

[Q̂, T̂, V̂] = Ψ( [QII,TII,V]; WIII), (5)

where [, ] is a concatenation operation andWIII is the parameter of
PAM3. As a result, we obtain the updated features Q̂ = {q̂𝑖 }𝐾𝑖=1 ,̂T =

{̂t𝑖 }𝑀𝑖=1, and V̂ = {v̂𝑖 }𝑁𝑖=1, where q̂𝑖 , t̂𝑖 , v̂𝑖 ∈ R
𝑑 .

3.3 Multimodal Reasoning Graph
Since both the texts (OCR tokens) and visual concepts (objects) are
significant for solving T-VQA, we seek to model the relationships
between them to obtain more informative features. Note that, both
the texts and objects are visual contents and exist in images as a
whole. However, using two different models (object detector and
OCR system) to extract features separately results in text features
and object features being independent and scattered. To alleviate
this issue, we use relative positions to re-establish the relationships
between the texts and objects in one image. In this way, the model
is able to understand the texts around visual objects.

Graph construction. To capture the relationships between the
visual objects and texts recognized in images, we build a directed
heterogeneous graph G= {N , E}, where {N} and {E} denote the
node set and edge set, respectively. Note that, our node set consists
of two types of nodes: the visual object nodes N𝑣 = {v̂𝑖 }𝑁𝑖=1 and
the text nodesN𝑡 = {̂t𝑖 }𝑀𝑖=1. The edge set E also includes two kinds
of edges: 1) E𝑣𝑖→𝑡 𝑗 is the edge from the 𝑖-th object to the 𝑗-th text;
2) E𝑡𝑖→𝑣𝑗 is the edge from the 𝑖-th text to the 𝑗-th object. We then
model the edge representation by the distance between objects
and texts in spatial location. Specifically, we denote the relation-

ship between v̂𝑖 and t̂𝑗 as 𝒆𝑣𝑖→𝑡 𝑗 =[
𝑥1
𝑗−𝑥𝑐𝑖
𝑤𝑖

,
𝑦1
𝑗−𝑦𝑐𝑖
ℎ𝑖

,
𝑥2
𝑗−𝑥𝑐𝑖
𝑤𝑖

,
𝑦2
𝑗−𝑦𝑐𝑖
ℎ𝑖

,

𝑤𝑗 ∗ℎ 𝑗

𝑤𝑖∗ℎ𝑖 ], where
[
𝑥𝑐
𝑖
, 𝑦𝑐
𝑖
,𝑤𝑖 , ℎ𝑖

]
is the center coordinate, width and

height of the 𝑖-th object, and
[
𝑥1
𝑗
, 𝑦1
𝑗
, 𝑥2
𝑗
, 𝑦2
𝑗
,𝑤 𝑗 , ℎ 𝑗

]
is the top-left

coordinate, bottom-right coordinate, width and height of the 𝑗-
th text, respectively. In this way, the MRG is constructed, where
G = {(N𝑣,N𝑡 ), (E𝑣→𝑡 , E𝑡→𝑣)} = {(V̂, T̂), ({𝒆𝑣→𝑡 }, {𝒆𝑡→𝑣)}.

Question-guided attention. Inspired by the bottom-up atten-
tion mechanism [1], we design a question-guided attention opera-
tion to fuse multimodal information between the text and visual
objects. Given the question feature Q̂ = {q̂𝑖 }𝐾𝑖=1 and edge feature
𝒆𝑡→𝑣 ∈ R5×𝑀×𝑁 , we first transform them into the same embedding
space. We then fuse the embedded features to derive the attention
transition matrix A ∈ R𝑁×𝑀 as follows:

q =

𝐾∑
𝑘=1

softmax(W7q̂𝑘 ) · q̂𝑘 , (6)

A𝑖,: = softmax(W8 𝒆𝑡→𝑣𝑖 +W9 q), (7)

where W7 ∼ W9 is learnable parameters, A𝑖,: ∈ R𝑀 denotes the
correlation between the 𝑖-th visual object and all text. Taking the
updating of the visual nodes v𝑖 as an example, we obtain the updated
feature by following operations:

�̂�𝑡→𝑣𝑖 =

𝑀∑
𝑗=1

A𝑖, 𝑗 W10 𝒆𝑡 𝑗→𝑣𝑖 ,

n𝑡→𝑣𝑖 = W11 T̂ A𝑖 , (8)
v̌𝑖 = W12 [v̂𝑖 , �̂�𝑡→𝑣𝑖 , n𝑡→𝑣𝑖 ],
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where W10 ∼ W12 are learnable parameters, �̂�𝑡→𝑣𝑖 ∈ R𝑑 is the
transition edge feature, and n𝑡→𝑣𝑖 ∈ R𝑑 denotes the transition
node feature. By fusing the node itself (̂v𝑖 ) and cross-modal features,
we obtain the updated visual node V̌ = {v̌𝑖 }𝑁𝑖=1. Similarly, we can
update the text node Ť = {ť𝑖 }𝑀𝑖=1. In practice, we do not observe a
significant improvement by stacking more layers in MRG; while
the parameters and computational cost shall increase significantly.
Therefore, we use a single layer MRG in this paper.

3.4 Answer Generation Module
The candidate answer set consists of two parts: 1) The fixed answer
set consists of 𝐶 words that appear frequently in the training set;
2) The dynamic answer set consists of𝑀 OCR tokens detected and
recognized from input images. Thus we develop an answer genera-
tion module (AGM), which consists of an L4-layer transformer and
two separate sub-classifier (𝜙1 and 𝜙2), corresponding to the fixed
answer set and the dynamic answer set respectively, as shown in
Figure 2. In practice, the AGM makes the final prediction word by
word for 𝑇 times, since the answer may contain multiple tokens.

In the sequence-to-sequence task [41], the learned word embed-
ding of previous outputs O ∈ R𝑑×𝑇 and the updated features (V̌,
Ť) are the inputs of the transformer layer. Here, we use the prefix
language modeling (LM) technique [33] to ensure that the input
entries only use previous predictions, and avoid peeping at subse-
quent answering processes. Formally, we use a transformer with
the parameterWIV to obtain updated features and especially the
predicted output Õ ∈ R𝑑×𝑇 by

[Ṽ, T̃, Õ] = Ψ( [V̌, Ť, LM(O)];WIV). (9)

At each step 𝑡 , we obtain the prediction scores ỹ𝑡 ∈ R𝐶+𝑀 by
concatenating the prediction scores of the fixed answer set and
dynamic answer set:

ỹ𝑡 = [𝜙1 (Õ𝑡 );𝜙2 (T̃, Õ𝑡 )], (10)

where [; ] is a concatenation operation. Specifically, given the cur-
rent output embedding Õ𝑡 , the classifier 𝜙1 is a two-layer feed-
forward network to predict the scores of words in the fixed answer
set. For the dynamic answer set, the OCR tokens recognized in
each image may be different, so it cannot be simply regarded as a
classification task (using a fixed classifier such as 𝜙1). More intu-
itively, since Õ𝑡 is the “target” answer embedding (predicted by our
model) at the current step, we use 𝜙2 to dynamically calculate the
similarity between Õ𝑧 and the text (OCR token) embeddings T̃. By
cascading the output of the two classifiers at step 𝑡 , we apply the
argmax operation to find the word with the highest score as the
predicted answer and obtain its corresponding word embedding,
which constitutes O𝑡 for the next prediction.

Specifically, the first tokenO0 is the word embedding of <Begin>
and the answering process will stop if the token <End> is pre-
dicted. Following [3, 24] in the sequence translation task, we use
the ground-truth as the previous output embedding O during train-
ing. In the inference process, O is initialized with <Begin> and
<PAD>, and our model predicts answers 𝑇 times autoregressively.
See also the Algorithms in the supplementary section for details of
the complete training and inference process.

What is the price of a bottle?

$069
Model 

Human

Texts: $069

fry's

monkey

price

bottle

water ...

$0.69

ANLS

Prediction

Prediction

Figure 3: More discussion on the T-VQA challenge. Since the
decimal point does not appear in the input image, it is dif-
ficult for the model to generate the target answer as hu-
man. However, existing methods only use a classification
loss (e.g., L𝑏𝑐𝑒 ) to train the model, and thus cannot handle
such an issue. To address this, we propose to directly im-
prove the ANLS (metric) score and achieve it via a policy gra-
dient loss L𝑝𝑔 .

3.5 Training Loss
Following previous works [19, 38], we use binary cross-entropy
loss to train our model. To ease the model’s dependence on the
OCR system, we introduce an auxiliary task in which if the model’s
prediction is highly similar to the target, the model can obtain an
auxiliary signal. Specifically, we use the reinforcement learning
technology to enhance the reasoning ability of our model. In this
way, the model learns not only the semantic information but also
the character composition of the predicted answer. Formally, we
define the overall training loss L as follows:

L = L𝑏𝑐𝑒 + 𝛼 L𝑝𝑔 , (11)

where L𝑏𝑐𝑒 and L𝑝𝑔 are the binary cross-entropy loss and the
policy gradient loss, and 𝛼 is a trade-off parameter.

Binary cross-entropy loss. Since an answer can exist on both
fixed and dynamic answer sets, it can be converted into a multi-
label classification problem. Thus we use a binary cross-entropy loss
function (L𝑏𝑐𝑒 ), which is more suitable for multi-label classification.
Formally, given the prediction Ỹ = {ỹ𝑡 }𝑇𝑡=1, the loss L𝑏𝑐𝑒 can be
defined as

L𝑏𝑐𝑒 = −
𝑇∑
𝑡=1

y⊤𝑡 log(𝜎 (ỹ𝑡 )), (12)

where 𝜎 is a sigmoid function and Y = {y𝑡 }𝑇𝑡=1 is the ground-truth.
Policy gradient loss. For the T-VQA task, the performance of

a T-VQA model depends highly on the OCR system. As shown in
Figure 3, since the false detection of target texts by the OCR system,
it is difficult for the model to obtain the correct answer like a human.
Note that, some predicted answers are highly similar to the ground-
truth, it means that the T-VQA model has achieved the correct
reasoning and found the right place to ‘copy’ the target text. Thus,
those predictions cannot simply be regarded as negative samples.
However, previous works do not consider this issue, thereby leading
to incorrect training feedback for the model. It is necessary to
distinguish the reason why the model cannot obtain the correct
answer, whether the reasoning ability of the model is insufficient,
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or the model is limited by the existing OCR detection technology.
As shown in Figure 3, since there is no corresponding ground-truth
in the candidate answer set, regardless of the model’s prediction,
the model can only obtain negative training feedback.

In this sense, ANLS1 (average normalized Levenshtein similar-
ity), a metric of the T-VQA task, is more suitable for this situation,
since it focuses on character comparisons between the predicted
answer and the ground truth. Thus, we use the ANLS score as the
auxiliary signal to train our model. Formally, given the prediction
score Ỹ and ground-truth Y, we define a function 𝜑 to calculate the
ANLS score 𝑆ANLS = 𝜑 (Ỹ,Y).

Since the ANLS calculator 𝜑 (·) is non-differentiable, we use
the policy gradient method [42] to iteratively update the model
parameters \ . To this end, we formalize the prediction process to a
Markov Decision Process. Specifically, at the 𝑡-th prediction step,
we take all previous 𝑡−1 generated tokens as the state 𝑠𝑡 , and
take the current predicted token as the action 𝑎𝑡 . Here, the action
probability is 𝑃 (𝑎𝑡 ) = softmax(ỹ𝑡 ) and 𝑎∗𝑡 = argmax𝑎 (𝑃 (𝑎𝑡 )). For
a given prediction sequence 𝜏 = (𝑠1, 𝑎1, ..., 𝑠𝑇 , 𝑎𝑇 ), we use the ANLS
score (𝑆ANLS) as the reward 𝑅(𝜏). Then, the goal of our model is to
maximize an expectation reward E[𝑅(𝜏)], represented by solving
the following optimization problem:

min
\

−E𝑃 (𝜏 ;\ ) [𝑅(𝜏)] . (13)

To solve the above optimization problem via gradient descent, fol-
lowing policy gradient methods [37, 45], we obtain the gradients
by differentiating the following loss function:

L𝑝𝑔 = −E𝑃 (𝜏 ;\ ) [log𝑃 (𝜏 ;\ )𝑅(𝜏)], (14)

≈ − 1
𝐵

𝐵∑
𝑏=1

log𝑃 (𝜏𝑏 ;\ )𝑅(𝜏𝑏 ), (15)

where 𝐵 is the batch size.

4 EXPERIMENTS
We verify the effectiveness of our method on three popular T-VQA
datasets, i.e., TextVQA [38], ST-VQA [6] and OCR-VQA [31]. In the
following, we first briefly introduce three datasets and evaluation
metrics in Sec. 4.1. We then compare our method with the SOTA
methods (e.g., M4C [19]) on three benchmarks in Sec. 4.2. After that,
we investigate the effect of each component in Sec. 4.3. Last, we
demonstrate our proposed method by providing some visualization
results and analysis in Sec. 4.4. More implementation details can be
found in the supplementary material.

4.1 Datasets and Evaluation Metrics
TextVQA is a recently proposed dataset for T-VQA that requires
reading texts in images to answer questions [38]. Collected from the
Open Images v3 dataset [23], TextVQA includes 28,408 images with
45,336 questions, and the average question length is 7.18 words.
For each image, there are 1-2 questions and each question has 10
answers.

ST-VQA is a parallel dataset for the T-VQA task, which also
requires reading and reasoning about scene text [6]. It comprises
23,038 images and 31,791 question/answer pairs collected from

1For more details, see ST-VQA [5] and Levenshtein edit distance [25].

Table 1: Comparison on the TextVQA dataset. “LoRRA” is
the benchmark on the TextVQA dataset and “M4C” is the
SOTA method for the T-VQA task.

Model Acc (%) ANLS
Val Test Val

LoRRA [38] 27.40 27.63 0.368
DCD [51] 28.96 31.44 -
MM-GNN [13] 31.44 31.10 -
MSFT VTI [39] 32.92 32.46 -
M4C [19] 39.40 39.01 0.529
Ours 40.39 40.96 0.547

six different datasets to reduce dataset bias. In particular, each
image of ST-VQA contains at least 2 text pieces, which increases
the difficulty of answering questions. It is worth noting that most
questions of the ST-VQA can be unambiguously answered with
the text recognized in the image. This means that the performance
depends on the accuracy of the OCR system. Moreover, ST-VQA
introduces three novel tasks, namely strongly contextualized (Task
1), weakly contextualized (Task 2) and open vocabulary (Task 3),
which gradually increase in difficulty.

OCR-VQA is a large-scale dataset for the T-VQA task. It contains
207,572 images with 1,002,146 template questions, which are con-
cerned with the information on book covers, such as titles, author
names, genres (types) of books, years and editions. Each question
has a single ground-truth answer, and the average answer length is
3.31 words. Compared with the aforementioned T-VQA dataset, the
book cover background is messy and the texts may change greatly,
including font size, language type and fancy characters.

Evaluation metrics. Following TextVQA [38], we use a com-
mon VQA accuracy (Acc) [2] as an evaluation metric. In particular,
ST-VQA proposes a new evaluation metric, ANLS (average nor-
malized Levenshtein similarity) [6], which focuses on character
comparisons between the predicted answer and the ground truth
answer. Note that if the ANLS score is below the threshold of 0.5, it is
truncated to 0 before averaging. We also report ANLS on TextVQA.

4.2 Overall Results
In this section, we report our experimental results on TextVQA [38],
ST-VQA [6] andOCR-VQA [31]with two evaluationmetrics, namely,
Acc (accuracy) and ANLS. Higher values are better for both metrics.

TextVQA.Quantitative results on TextVQA are shown in Table 1.
We compare with three baselines including LoRRA, DCD [51] and
M4C, where LoRRA is the benchmark on TextVQA, DCD is the
TextVQA 2019 challenge winner, and M4C is the SOTA method for
the T-VQA task. Our model outperforms all considered methods
both on the validation set and test set. Our method significantly
outperforms LoRRA by approximately 13% in Acc, and 0.18 in ANLS.
Moreover, our model also significantly outperforms DCD in terms
of Acc. Our method surpasses the SOTA method M4C by 1% and
2% in terms of Acc on the validation set and test set, respectively.

ST-VQA.As shown in Table 2, we report the ANLS of ourmethod
on three tasks on the ST-VQA dataset, where ANLS is the official
evaluation metric for this dataset. Impressively, our model achieves
SOTA results for three tasks and is significantly better than other
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Table 2: Comparison on the ST-VQA dataset. “VTA” is the ST-
VQA Challenge2 winner and “M4C” is the SOTA method for
the T-VQA task.

Model ANLS
Task 1 Task 2 Task 3

SAN+STR [5] 0.135 0.135 0.135
MM-GNN [13] - 0.203 0.282
VTA [5] 0.506 0.279 0.282
M4C [19] - - 0.462
SMA [40] 0.508 0.310 0.466
Ours (w/o Policy) 0.554 0.443 0.470
Ours 0.678 0.482 0.483

Table 3: Comparison on theOCR-VQAdataset. “BLOCK” and
its variants are the benchmarks on the OCR-VQA dataset.
“M4C” is the SOTA method for the T-VQA task.

Model Acc (%)
Val Test

BLOCK [31] - 42.0
BLOCK+CNN [31] - 41.5
BLOCK+CNN+W2V [31] - 48.3
M4C [19] 63.5 63.9
Ours 64.09 64.48

methods on task 1 and task 2. Compared with the ST-VQA challenge
champion VTA, our model achieves significant improvement on all
three tasks. Our model also outperforms M4C3 on task 3. Compared
with the SOTA method SMA, our model is advantageous, especially
on task 1 and task2. The results on the ST-VQA tasks are able to
reflect the generalization ability of the model more realistically,
since the test images are collected from six different image datasets
(including ImageNet, VizWiz, and COCO-text).

OCR-VQA. As shown in Table 3, we report the accuracy of
our model on the OCR-VQA dataset. Compared with the baseline
method BLOCK [31], our model achieves significant improvements,
where Acc improves by approximately 16%. Our method also out-
performs M4C both on the validation and test sets.

4.3 Ablation Studies
In this section, we conduct ablation experiments to demonstrate
the effectiveness of our model on the TextVQA dataset.

As shown in Table 4, we report the ablation results of our method
in terms of the two aforementioned metrics. In rows 1-3, we mainly
evaluate the PAM, where each row corresponds to a reasoning
phase of PAM. The performance of our model will decrease by 0.4%
if the Q (PAM1) is not executed. It is worth noting that QT (PAM2)
plays a key role in ourmethod. As shown in row 2, skipping the “QT”
results in a great performance decrease on the validation and test
sets. Indeed, texts recognized in the image are crucial for answering
text-related questions. Furthermore, removing the QTV (PAM3)
also leads to performance degradation, and the accuracy of the

2https://rrc.cvc.uab.es/?ch=11&com=tasks
3M4C did not report its results on task 1 and task 2.

Table 4: Ablation study on the TextVQAdataset. The last row
is our whole model and “×” denotes without a module or
operation of “Ours”.

# PAM MRG Policy Acc (%) ANLS
Q QT QTV Val Test Val

1 × √ √ √ √
39.97 40.58 0.541

2
√ × √ √ √

39.78 40.19 0.544
3

√ √ × √ √
40.33 40.23 0.542

4
√ √ √ × √

40.19 39.82 0.537
5

√ √ √ √ × 39.55 38.89 0.535
Ours

√ √ √ √ √
40.39 40.96 0.547

Table 5: Ablation study with respect to different text (OCR
token) features.

Text Feature Acc (%) ANLS
FastText 36.72 0.493
FastText+bbox 36.72 0.499
FastText+bbox+FRCN 39.62 0.539
FastText+bbox+FRCN+PHOC (Ours) 40.39 0.547
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Figure 4: The training loss and validation accuracy under dif-
ferent epochs on the TextVQA dataset.

model in the test set is reduced by 0.7%. Without MRG (multimodal
reasoning graph), the performance of our model on the test set
decreases by 1%. Impressively, removing policy gradient loss leads
to 1-2% performance degradation on the validation set and test set.
As shown in the last row, our model achieves the best results. See
more ablation studies about the PAM in the supplementary section.

As shown in Table 5, we conduct more ablation experiments for
different types of text features, which are mentioned in Sec. 3.1.
By introducing “FRCN”, the appearance features of the recognized
text, our model improves the accuracy by 3% and achieves a higher
ANLS score. As shown in (c) and (f) of Figure 5, “FRCN” provides
the appearance information of the text (e.g., size and color), which
is essential for understanding the text. Moreover, “ PHOC ” provides
the character composition information of the text, which is useful
for solving questions related to characters (see (d) in Figure 5).

Moreover, we compare our method with M4C [19] in terms of
the training loss and validation accuracy. As shown in Figure 4,
the training loss of our method tends to converge after 15∼20k
iterations. For the validation accuracy, our method (“w policy”)
achieves the best performance. Moreover, our method without the
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(b) What volume is on the 
     far right?

M4C: 5
Ours: 6

GT: 6

(a) What is in red text?

M4C: allure homme sport
Ours: sport

GT: sport

(c) What are the titles of 
      these dvds?

M4C: south fourth park
Ours: south park

GT: south park

(d) What was Mr. Green‘s 
      first name?

M4C: charles
Ours: basil

GT: basil 

(g) What is the brand of this 
glass?

Ours: airpacific
GT: air pacific

ANLS: 0.91

(e) What date is on the 
lower left poster?

Ours: 2013.10.27(sun)
GT: 2013.10.27

ANLS: 0.66

(f) What time is it on this 
phone?

Ours: 03.03
GT: 03:03

ANLS: 0.8

(h) What brand of beer is 
this?

Ours: koj
GT: skoj

ANLS: 0.75

Figure 5: Visualization results on the TextVQA validation set. For better visualization, the blue box in each image shows the
texts most relevant to the input question. The prediction results of our model and M4C (the SOTA model for the T-VQA task)
are represented in blue and green. In the last row, we report the ANLS score of our prediction. In particular, we use red fonts
to identify parts that are inconsistent with the ground-truth.

policy gradient loss (“w/o policy”) still outperforms M4C with the
help of the PAM and the MRG.

4.4 Visualization Analysis
In this section, we show some visualization examples of our model
on the TextVQA dataset in Figure 5. A complete understanding
of the texts is helpful for answering text-related questions. Such
understanding includes not only semantic information, but also
some basic attributes of the text, such as color in (a). For (b), our
model has more advantages in answering questions related to lo-
cation, and M4C is easily misled by the salient text. Note that, the
texts recognized in images are redundant and interfere with each
other, such as (c) and (d). In this case, our model is more robust than
M4C. With the progressive attention module, our model gradually
extracts useful information to answer questions.

In the last row of Figure 5, we show some failure cases of the
model, aiming to intuitively explain the motivation of the L𝑝𝑔 . For
(e), the prediction of our model is more detailed than the ground-
truth. For (f), the model identifies the number on the phone but
mistakes the colon as a comma. In (g), the prediction is one space
less than the ground-truth, which is caused by the OCR system
detecting the target texts as one word. Due to the angle of the image
in (h), it is difficult for the model to see all the letters of the whole
brand. The failure of these samples is largely due to the immaturity
of the existing detection technology. Even so, our model still reasons
correctly and then predicts answers highly similar to the targets.

We also provide more visualization results in the supplementary
material.

5 CONCLUSIONS
In this paper, we propose a novel cascade reasoning network to
solve the T-VQA task. The CRN mainly consists of a progressive
attention module (PAM) and a multimodal reasoning graph (MRG).
The PAM uses a progressive approach to gradually fuse multimodal
information, while MRG uses a heterogeneous graph to model the
rich semantic relationship between the texts and visual objects in
the image.We also found that the performance of themodel depends
on the OCR system. To mitigate this effect, we design an auxiliary
task to help the model learn richer feedback information from
the failed samples for model training. Our model achieves SOTA
performance on three T-VQA benchmark datasets. Quantitative
analysis of extensive ablation studies also proves that our model
has great potential.
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