
Supplementary Materials for “Closed-loop Matters: Dual Regression Networks
for Single Image Super-Resolution”

Yong Guo∗, Jian Chen∗, Jingdong Wang∗, Qi Chen, Jiezhang Cao, Zeshuai Deng,
Yanwu Xu†, Mingkui Tan†

South China University of Technology, Guangzhou Laboratory, Microsoft Research Asia, Baidu Inc.
{guo.yong, sechenqi, secaojiezhang, sedengzeshuai}@mail.scut.edu.cn,

{mingkuitan, ellachen}@scut.edu.cn, jingdw@microsoft.com, ywxu@ieee.org

We organize our supplementary materials as follows. First, we provide the derivation of generalization error bound for

the dual regression scheme in Section A. Second, we provide more details on the architecture of the proposed DRN model

in Section B. Third, we provide more implementation details on the training method for the SR tasks with paired data and

unpaired data in Section C. Fourth, we conduct more ablation studies on the proposed dual regression scheme in Section D.

Last, we report more visual comparison results in Section E.

A. Theoretical Analysis
In this section, we will analyze the generalization bound for the proposed method. The generalization error of the dual

learning scheme is to measure how accurately the algorithm predicts for the unseen test data in the primal and dual tasks.

Firstly, we will introduce the definition of the generalization error as follows:

Definition 1 Given an underlying distribution S and hypotheses P ∈ P and D ∈ D for the primal and dual tasks, where
P = {Pθxy(x); θxy ∈ Θxy} and D = {Dθyx(y); θyx ∈ Θyx}, and Θxy and Θyx are parameter spaces, respectively, the
generalization error (expected loss) is defined by:

E(P,D) = E(x,y)∼P [LP (P (x),y) + λLD(D(P (x)),x)] , ∀P ∈ P, D ∈ D.

In practice, the goal of the dual learning is to optimize the bi-directional tasks. For any P ∈ P and D ∈ D, we define the

empirical loss on the N samples as follows:

Ê(P,D) =
1

N

N∑
i=1

LP (P (xi),yi) + λLD(D(P (xi)),xi) (1)

Following [14], we define Rademacher complexity for dual learning in this paper. We define the function space as Hdual ∈
P × D, this Rademacher complexity can measure the complexity of the function space, that is it can capture the richness of

a family of the primal and the dual models. For our application, we mildly rewrite the definition of Rademacher complexity

in [14] as follows:

Definition 2 (Rademacher complexity of dual learning) Given an underlying distribution S , and its empirical distribution
Z = {z1, z2, · · · , zN}, where zi = (xi,yi), then the Rademacher complexity of dual learning is defined as:

RDL
N (Hdual) = EZ

[
R̂Z(P,D)

]
, ∀P ∈ P, D ∈ D,

where R̂Z(P,D) is its empirical Rademacher complexity defined as:

R̂Z(P,D) = Eσ

[
sup

(P,D)∈Hdual

1

N

N∑
i=1

σi(LP (P (xi),yi) + λLD(D(P (xi)),xi))

]
.

where σ = {σ1, σ2, · · · , σN} are independent uniform {±1}-valued random variables with p(σi = 1) = p(σi = −1) = 1
2 .
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Generalization bound. Here, we analyze the generalization bound for the proposed dual regression scheme. We first start

with a simple case of finite function space. Then, we generalize it to a more general case with infinite function space.

Theorem 1 Let LP (P (x),y) + λLD(D(P (x)),x) be a mapping from X × Y to [0, C], and suppose the function space
Hdual is finite, then for any δ > 0, with probability at least 1− δ, the following inequality holds for all (P,D) ∈ Hdual:

E(P,D) ≤ Ê(P,D) + C

√
log |Hdual|+ log 1

δ

2N
.

Proof 1 Based on Hoeffding’s inequality, since LP (P (x),y) + λLD(D(P (x)),x) is bounded in [0, C], for any (P,D) ∈
Hdual, then

P
[
E(P,D)− Ê(P,D) > ε

]
≤ e−

2Nε2

C2

Based on the union bound, we have

P
[
∃(P,D) ∈ Hdual : E(P,D)− Ê(P,D) > ε

]
≤

∑
(P,D)∈Hdual

P
[
E(P,D)− Ê(P,D) > ε

]

≤|Hdual|e−
2Nε2

C2 .

Let |Hdual|e−
2Nε2

C2 = δ, we have ε = C

√
log |Hdual|+log 1

δ

2N and conclude the theorem.

This theorem shows that a larger sample size N and smaller function space can guarantee the generalization. Next, we will

give a generalization bound of a general case of an infinite function space using Rademacher complexity.

Theorem 2 Let LP (P (x),y)+λLD(D(P (x)),x) be a mapping from X×Y to [0, C] with the upper bound C, and the
function space Hdual be infinite. Then, for any δ>0, with probability at least 1−δ, the generalization error E(P,D) (i.e.,
expected loss) satisfies for all (P,D)∈Hdual:

E(P,D) ≤ Ê(P,D)+2R̂DL
Z (Hdual)+3C

√
1

2N
log

(
1

δ

)
, (2)

where N is the number of samples and R̂DL
Z is the empirical Rademacher complexity of dual learning. Let B(P,D) be the

generalization bound of the dual regression SR, i.e. B(P,D)=2R̂DL
Z (Hdual)+3C

√
1

2N log
(
1
δ

)
, we have

B(P,D) ≤ B(P ), (3)

where B(P ), P∈H is the generalization bound of standard supervised learning w.r.t. the Rademacher complexity R̂SL
Z (H).

Proof 2 Based on Theorem 3.1 in [14], we extend a case for LP (P (x),y) + λLD(D(P (x)),x) bounded in [0, C], and we
have the generalization bound in (2). According to the definition of Rademacher complexity, we have R̂DL

Z (Hdual)≤R̂SL
Z (H)

because the capacity of the function space Hdual∈P×D is smaller than the capacity of the function space H∈P . With the
same number of samples, we have B(P,D)≤B(P ).

Theorem 2 shows that with probability at least 1 − δ, the generalization error is smaller than 2RDL
N + C

√
1

2N log( 1δ ) or

2R̂DL
Z + 3C

√
1

2N log( 1δ ). It suggests that using the function space with larger capacity and more samples can guarantee

better generalization. Moreover, the generalization bound of dual learning is more general for the case that the loss function

LP (P (x),y) + λLD(D(P (x)),x) is bounded by [0, C], which is different from [19].

Remark 1 Based on the definition of Rademacher complexity, the capacity of the function space Hdual∈P×D is smaller
than the capacity of the function space H∈P or H∈D in traditional supervised learning, i.e., R̂DL

Z ≤ R̂SL
Z , where R̂SL

Z is
Rademacher complexity defined in supervised learning. In other words, dual learning has a smaller generalization bound
than supervised learning and the proposed dual regression model helps the primal model to achieve more accurate SR
predictions.



B. Model Details of Dual Regression Network
Deep neural networks (DNNs) have achieved great success in image classification [9, 4, 8, 10], image generation [6, 3],

and image restoration [5, 7]. In this paper, we propose a novel Dual Regression Network (DRN), which contains a primal

model and a dual model. Specifically, the primal model contains 2 basic blocks for 4× SR and 3 blocks for 8× SR. To form a

closed-loop, according to the architecture design of the primal model, there are 2 dual models for 4× SR and 3 dual models

for 8× SR, respectively.

Let B be the number of RCABs [21] and F be the number of base feature channels. For 4× SR, we set B = 30 and

F = 16 for DRN-S and B = 40 and F = 20 for DRN-L. For 8× SR, we set B = 30 and F = 8 for DRN-S and B = 36
and F = 10 for DRN-L. Moreover, we set the reduction ratio r = 16 in all RCABs for our DRN model and set the negative

slope to 0.2 for all LeakyReLU in DRN. We show the detailed architecture of the 8× DRN model in Table A. To obtain the

4× model, one can simply remove one basic block from the 8× model.

As shown in Table A, we use Conv(1,1) and Conv(3,3) to represent the convolution layer with the kernel size of 1 × 1
and 3 × 3, respectively. We use Convs2 to represent the convolution layer with the stride of 2. Following the settings of

EDSR [12], we build the Upsampler with one convolution layer and one pixel-shuffle [16] layer to upscale the feature maps.

Moreover, we use h and w to represent the height and width of the input LR images. Thus, the shape of output images should

be 8h × 8w for the 8× model.

Table A. Detailed model design of the proposed 8× DRN.

Module Module details Input shape Output shape

Head Conv(3,3) (3, 8h, 8w) (1F , 8h, 8w)

Down 1 Convs2-LeakyReLU-Conv (1F , 8h, 8w) (2F , 4h, 4w)

Down 2 Convs2-LeakyReLU-Conv (2F , 4h, 4w) (4F , 2h, 2w)

Down 3 Convs2-LeakyReLU-Conv (4F , 2h, 2w) (8F , 1h, 1w)

Up 1

B RCABs (8F , 1h, 1w) (8F , 1h, 1w)

2× Upsampler (8F , 1h, 1w) (8F , 2h, 2w)

Conv(1,1) (8F , 2h, 2w) (4F , 2h, 2w)

Concatenation 1 Concatenation of the output of Up 1 and Down 2 (4F , 2h, 2w) ⊕ (4F , 2h, 2w) (8F , 2h, 2w)

Up 2

B RCABs (8F , 2h, 2w) (8F , 2h, 2w)

2× Upsampler (8F , 2h, 2w) (8F , 4h, 4w)

Conv(1,1) (8F , 4h, 4w) (2F , 4h, 4w)

Concatenation 2 Concatenation of the output of Up 2 and Down 1 (2F , 4h, 4w) ⊕ (2F , 4h, 4w) (4F , 4h, 4w)

Up 3

B RCABs (4F , 4h, 4w) (4F , 4h, 4w)

2× Upsampler (4F , 4h, 4w) (4F , 8h, 8w)

Conv(1,1) (4F , 8h, 8w) (1F , 8h, 8w)

Concatenation 3 Concatenation of the output of Up3 and Head (1F , 8h, 8w) ⊕ (1F , 8h, 8w) (2F , 8h, 8w)

Tail 0 Conv(3,3) (8F , 1h, 1w) (3, 1h, 1w)

Tail 1 Conv(3,3) (8F , 2h, 2w) (3, 2h, 2w)

Tail 2 Conv(3,3) (4F , 4h, 4w) (3, 4h, 4w)

Tail 3 Conv(3,3) (2F , 8h, 8w) (3, 8h, 8w)

Dual 1 Convs2-LeakyReLU-Conv (3, 8h, 8w) (3, 4h, 4w)

Dual 2 Convs2-LeakyReLU-Conv (3, 4h, 4w) (3, 2h, 2w)

Dual 3 Convs2-LeakyReLU-Conv (3, 2h, 2w) (3, 1h, 1w)

C. More Implementation Details
C.1. Supervised Image Super-Resolution

Training data. Following [18], we train our model on DIV2K [17] and Flickr2K [12] datasets, which contain 800 and 2650
training images separately. We use the RGB input patches of size 48×48 from LR images and the corresponding HR patches

as the paired training data, and augment the training data following the method in [12, 21].

Test data. For quantitative comparison on paired data, we evaluate different SR models using five benchmark datasets,

including SET5 [2], SET14 [20], BSDS100 [1], URBAN100 [11] and MANGA109 [13].



Implementation details. For training, we apply Adam with β1 = 0.9, β2 = 0.99 and set minibatch size as 32. The learning

rate is initialized to 10−4 and decreased to 10−7 with a cosine annealing out of 106 iterations in total.

C.2. Adaptation to Real-world Scenarios with Unpaired Data

Training data. To obtain the unpaired synthetic data, we randomly choose 3k images from ImageNet [15] (called Ima-

geNet3k) and obtain the LR images using different degradation methods, including Nearest and BD. More specifically, we

use Matlab to obtain the Nearest data. The BD data is obtained using the Gaussian kernel with size 7 × 7 and a standard

deviation of 1.6. Note that ImageNet3K HR images are not used in our experiments. Moreover, we collect 3k LR raw video

frames from YouTube as the unpaired real-world data to evaluate the proposed DRN in a more general and challenging case.

More critically, we use both paired data (DIV2K [17]) and unpaired data to train the proposed models.

Test data. For quantitative comparison on unpaired synthetic data, we obtain the LR images of five benchmark datasets using

Nearest and BD degradation methods separately.

Implementation details. We train a DRN-Adapt model for each kind of unpaired data, i.e., Nearest data, BD data, and video

frames collected from YouTube. Thus, there are 3 DRN-adapt models in total. And We also train a CinCGAN [22] model for

each kind of unpaired data for comparison. Based on pretrained DRN-S, We train our DRN-Adapt models with a learning

rate of 10−4 and the data ratio of unpaired data ρ = 30% for a total of 105 iterations. Moreover, we apply Adam with

β1 = 0.9, β2 = 0.99 to optimize the models, and set minibatch size as 16.

D. More Ablation Studies on Dual Regression
In this section, we first provide an additional ablation study of the dual regression scheme on other architectures. Then,

we investigate the effect of the dual regression scheme on LR images and the effect on both LR and HR images. Last, we

compare the performance of the DRN models trained with and without trainable dual models.

D.1. Effect of Dual Regression Scheme on Other Architectures

To verify the impact of the dual regression scheme, we also conduct an ablation study of the dual network for SRResNet

(see architecture in Figure A). “SRResNet + Dual” denotes the baseline SRResNet equipped with the dual regression scheme.

From Table B, the model with the dual regression scheme consistently outperforms the baseline counterpart, which further

demonstrates the effectiveness of our method.

Table B. The impact of the proposed dual regression scheme on the SRResNet model in terms of PSNR score on the five benchmark

datasets for 4× SR.

Method Set5 Set14 BSDS100 Urban100 Manga109

SRResNet 32.26 28.53 27.61 26.24 31.03

SRResNet + Dual 32.47 28.77 27.70 26.58 31.24

Figure A. The SRResNet architecture equipped with the proposed dual regression scheme for 4× SR.

D.2. Effect of the Dual Regression on HR Data

As mentioned in Section 3.1, one can also add a dual regression constraint on the HR domain, i.e., downscaling and

upscaling to reconstruct the original HR images. In this experiment, we investigate the impact of dual regression loss on

HR data and show the results in Table C. For convenience, we use “DRN-S with dual HR” to represent the model with the

regression on both LR and HR images. From Table C, DRN-S yields comparable performance with “DRN-S with dual HR”

while only needs half the computation cost. Thus, it is not necessary to apply the dual regression on HR images in practice.



Table C. The impact of the dual regression loss on HR data for 4× SR. We take DRN-S as the baseline model.

Method MAdds Set5 Set14 BSDS100 Urban100 Manga109

DRN-S with dual HR 51.20G 32.69 28.93 27.79 26.85 31.54

DRN-S (Ours) 25.60G 32.68 28.93 27.78 26.84 31.52

D.3. Effect of the Trainable Dual Models

To verify the impact of the trainable dual models, we conduct an ablation study on the dual model whether it is trainable

or not (see results in Table D). “DRN-S with fixed dual” denotes the model using a fixed degradation method (i.e., Bicubic)

to form the close-loop. From Table D, the model with trainable dual models significantly outperforms the counterpart using

the fixed degradation method, which demonstrates the necessity of the trainable dual models.

Table D. Comparison of the DRN-S models equipped with the trainable dual model and the fixed dual degradation method for 4× SR.

Method Set5 Set14 BSDS100 Urban100 Manga109

DRN-S with fixed dual 32.31 28.51 27.45 26.27 31.04

DRN-S (Ours) 32.68 28.93 27.78 26.84 31.52

D.4. Impact of Different Degradation Methods to Obtain Paired Synthetic Data

In this experiment, we investigate the impact of different degradation methods to obtain paired synthetic data. We change

kernel from Bicubic to Nearest and evaluate the adaptation models on BD data. From Table F, DRN-Adapt obtains similar

results when we use different degradation methods to obtain the paired synthetic data.

Table F. The impact of different degradation methods on DRN-Adapt for 8× SR.

Degradation Method Set5 Set14 BSDS100 Urban100 Manga109

Nearest 24.60 23.03 23.60 20.61 21.46

Bicubic 24.62 23.07 23.59 20.57 21.52

E. More Comparisons and Results
For supervised super-resolution, we put more visual results in this section shown in Figures C and D, respectively. Con-

sidering the scenario with unpaired data, we put more visual results on real-world unpaired data (See Figure E). From these

results, our models are able to produce the images with sharper edges and clearer textures than state-of-the-art methods.



Figure C. Visual comparison for 4× image super-resolution on benchmark datasets.



Figure D. Visual comparison for 8× image super-resolution on benchmark datasets.

Figure E. Visual comparison of model adaptation for 8× super-resolution on real-world video frames (from YouTube).
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