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Collaborative Unsupervised Domain Adaptation
for Medical Image Diagnosis

Yifan Zhang, Ying Wei, Qingyao Wu, Peilin Zhao, Shuaicheng Niu, Junzhou Huang, Mingkui Tan

Abstract—Deep learning based medical image diagnosis has
shown great potential in clinical medicine. However, it often
suffers two major difficulties in real-world applications: 1) only
limited labels are available for model training, due to expensive
annotation costs over medical images; 2) labeled images may
contain considerable label noise (e.g., mislabeling labels) due to
diagnostic difficulties of diseases. To address these, we seek to ex-
ploit rich labeled data from relevant domains to help the learning
in the target task via Unsupervised Domain Adaptation (UDA).
Unlike most UDA methods that rely on clean labeled data or
assume samples are equally transferable, we innovatively propose
a Collaborative Unsupervised Domain Adaptation algorithm,
which conducts transferability-aware adaptation and conquers
label noise in a collaborative way. We theoretically analyze the
generalization performance of the proposed method, and also
empirically evaluate it on both medical and general images.
Promising experimental results demonstrate the superiority and
generalization of the proposed method.

Index Terms—Unsupervised Domain Adaptation, Deep Learn-
ing, Label Noise, Medical Image Diagnosis

I. INTRODUCTION

DEEP learning has achieved great success in various vision
applications [1], [2], [3], [4], [5], such as image classifi-

cation [6] and resolution [7]. One widely accepted prerequisite
of deep learning is rich annotated data [8]. In medical appli-
cations [9], [10], [11], [12], however, such rich supervision
is often absent due to prohibitive costs of data labeling [13],
[14], which impedes successful applications of deep learning.
Hence, there is a strong motivation to develop Unsupervised
Domain Adaptation (UDA) [15], [16] to improve diagnostic
accuracy with limited annotated medical images. Specifically,
by leveraging a source domain with abundant labeled data,
UDA aims to learn a domain-invariant feature extractor, which
aligns the feature distribution of the target domain to that of the
source. As a result, the classifier trained with labeled source
examples also applies to unlabeled target examples. To achieve
this, the key problem is to resolve the discrepancy between
domains, derived from diverse characteristics of images from
different domains (one example can be found in Fig. 1).
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(a) scope shades (b) background colors (c) field views

Fig. 1: Examples of domain discrepancies between whole-slide
image (WSI) and microscopy image (MSI) on histopatholog-
ical images, including scope shades, background colors and
field views. Here, the red boxes are for emphasis.
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Fig. 2: Illustrations of two challenges that UDA meets in
medical image diagnosis, where discrepancy refers to predic-
tion inconsistency of two classifiers. Transferability difference
(Left): hard-to-transfer target data (dissimilar to the source) is
potentially more distant to the source distribution, so they are
more difficult to adapt than easy-to-transfer target data (similar
to the source). Label noise (Right): noisy labels on the source
domain often result in a biased source-trained classifier which
inevitably performs poorly on the target domain.

In addition to domain shift that all UDA methods resolve,
medical image diagnosis poses two additional challenges.
First, there also exist significant discrepancies among images
within the same domain. The discrepancies, such as different
appearance and scales of lesion regions, mainly arises from
inconsistent data preparation procedures, including tissue col-
lection, sectioning and staining [17]. As a result, different
target images have different discrepancy levels to the source
images, and hence the difficulty of domain alignment varies
from sample to sample. That is, the target samples which bear
a striking similarity with source samples are easier to align
than the samples that are highly dissimilar (See the example in
the left of Fig. 2). If ignoring sample differences and pursuing
only global matching, those hard-to-transfer target images may
not be well treated, leading to inferior overall performance.
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Second, a considerable percentage of medical annotations
are unfortunately noisy, caused by diagnostic difficulties and
subjective biases [13]. Directly applying the classifier built
upon noisy source examples, as shown in the right of Fig. 2,
inevitably performs poorly on the target domain even though
the target domain has been aligned well with the source.
Noteworthily, the performance of UDA highly depends on
both the domain alignment and the classifier accuracy, so
the mentioned two challenges are inescapable and are worth
paying great attention to dealing with in the methodology of
UDA for medical image diagnosis.

To address the two challenges that are usually ignored by ex-
isting UDA methods [18], [19], [20], we innovatively propose
a Collaborative Unsupervised Domain Adaptation (CoUDA)
algorithm. By taking advantage of the collective intelligence
of two (or possibly more) peer networks [21], [22], [23],
CoUDA is able to distinguish between examples of different
transferability (namely different levels of domain alignment
difficulty). Specifically, CoUDA assigns higher importance to
the hard-to-transfer examples, which are collaboratively de-
tected by peer networks with greater prediction inconsistency
(See prediction discrepancy in the left of Fig. 2). Meanwhile,
we overcome label noise by a novel noise co-adaptation layer,
shared between peer networks. The layer aggregates different
sets of noisy samples identified by all peer networks, and then
denoises by adapting the predictions of these noisy samples
to their (mislabeled) annotations. Last but not least, to further
maximize the collective intelligence, we enforce the classifiers
of peer networks to be diverse as large as possible. Our main
contributions are summarized as follows:
• We propose a novel Collaborative Unsupervised Domain

Adaptation algorithm for medical image diagnosis. Via the
collective intelligence of two peer networks, the proposed
method conducts transferability-aware domain adaptation and
overcome label noise simultaneously.
• We theoretically analyze the generalization of the pro-

posed method based on Rademacher complexity [24].
• We demonstrate the superiority and generalization of

the proposed method through extensive experiments on both
medical image and general image classification tasks.

II. RELATED WORK

Deep learning has advanced many classification tasks for
medical images [13]. One prerequisite is the availability of
labeled data, which is usually costly for medical diagnosis,
since medical images can only be annotated by doctors with
expertise [25]. Hence, there is a strong need to develop UDA
to reduce labeling efforts in medical image tasks [26], [27].

Unsupervised Domain Adaptation. Existing UDA meth-
ods [28], [29], [30] for deep learning reduce the domain
discrepancy either by adding adaptation layers to match high-
order moments of distributions like Deep Domain Confusion
(DDC) [19], or by devising a domain discriminator to learn
domain-invariant features in an adversarial manner, such as
Domain Adversarial Neural Network (DANN) [18] and Maxi-
mum Classifier Discrepancy (MCD) [31]. Following the latter
manner, Category-level Adversarial Network (CLAN) [21]

further conducts category-level domain adaptation instead of
only global alignment. This is similar to our idea, but we aim
at a more fine-grained level, i.e., sample-level difference of
transferability. In addition, all these UDA methods ignore label
noise and thus perform poorly in medical image diagnosis.

Weakly-Supervised Learning against Noisy Labels.
Learning deep networks from noisy labels is an active re-
search issue. Self-paced learning [32] assumes samples with
large losses are noisy and thus throws them away to keep
clean. Following this method, MentorNet [33] learns a data-
driven curriculum to guide the training of base networks. Co-
teaching [22], [23] learns two separate networks, which guide
the training of each other. Another type of method tries to
model the noise transition probability [34], [35], [36]. In this
way, Noise Adaptation Layer (NAL) [37] introduces an extra
noise adaptation layer to adapt network predictions to the noisy
label, so that deep networks can well predict true labels. Others
methods try to adjust loss functions [38], [39], [40].

Unsupervised Domain Adaptation against Noisy Labels.
In this paper, we focus on UDA along with noisy labels in
the source domain. To solve this, Transferable Curriculum
Learning (TCL) [41] devises a transferable curriculum to
improve domain adaptation via self-paced learning. Although
it throws some noisy data away, it ignores class imbalance and
also throws minority data with large losses away, leading to
poor performance in practice. In addition, TCL also ignores
different transferability of samples. In contrast, our method
overcomes label noise without throwing important data and
thus is more general. Also, our method adaptively handle hard-
to-transfer data when adapting domains.

Collaborative Learning. Co-training [42] has been
successfully applied in many learning paradigms, such as
unsupervised learning [43], semi-supervised learning [44],
[45], weakly-supervised learning [22] and multi-agent
learning [46]. In the methodology of UDA, one recent
work [47] proposes a co-regularization scheme to improve the
alignment of class conditional feature distributions. Moreover,
tri-training [48] can be regarded as an extension of co-
training. Specifically, the work [49] proposes an asymmetric
tri-training method for UDA, where they assign pseudo-labels
to unlabeled samples and train neural networks using these
pseudo-labels. However, all mentioned UDA methods ignore
the issue of label noise and transferability differences, thus
performing insufficiently in medical image diagnosis.

III. METHOD

Problem definition. In this paper, we focus on the problem
of Unsupervised Domain Adaptation (UDA), where the model
has access to only unlabeled samples from the target domain.
Formally, we denote S={xsi , ysi }nsi=1 as the source domain of
ns samples, where xsi denotes the i-th sample and ysi∈{0, 1}K
denotes its label, with K being the number of classes. In real-
world medical diagnosis tasks, we may observe source samples
with noisy labels, and we denote them as S ′={xsi , zsi }nsi=1.
In addition, the unlabeled target domain T ={xtj}ntj=1 can be
defined in a similar way.
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Fig. 3: The scheme of Collaborative Unsupervised Domain Adaptation (CoUDA). Two peer networks (in blue and green) have
the same architecture but different parameters. In the training phase, both labeled source data (noisy) and unlabeled target
data are fed into two peer networks for obtaining features and predictions. Based on the predictions, there are three forward
propagation branches: (a) we compute the transferability-aware weight λ and use it to conduct transferability-aware domain
adaptation; (b) we conquer label noise via a noise co-adaptation layer when conducting classification loss (only for labeled
source data); (c) we maximize classifier diversity loss to make two peer networks keep diverse as large as possible. In the
inference phase, the final prediction is the average prediction of two networks ȳ=(ŷ1+ŷ2)/2.

The goal is to learn a well-performed deep model for
the target domain, using both noisy labeled source data and
unlabeled target data. This task, however, is very difficult due
to (1) apparent discrepancies regarding domain distributions
as well as data transferability, and (2) considerable label noise
in the source domain. Most existing UDA methods, however,
resolve the domain discrepancy by assuming clean annotations
or assuming samples are equally transferable, thus leading to
limited performance in real-world medical applications. To ad-
dress this task, we propose a novel Collaborative Unsupervised
Domain Adaptation method, namely CoUDA.

A. Overall Collaborative Scheme of CoUDA

There is an old saying that “two heads are better than
one”, which actually highlights the importance of human
cooperation in combating challenging tasks. However, this
is not true if the two heads are too weak or too similar.
In other words, two heads should have strong abilities and
also keep the diversity as large as possible, so that they can
better deal with the task cooperatively. Motivated by this, we
construct two separate peer networks1 to overcome the domain
discrepancy and label noise in a collaborative manner. As
shown in Fig. 3, the two networks have the same architecture
(but different model parameters): a feature extractor Pτ for
extracting domain-invariant features, and a classifier Cτ for
prediction, where τ∈ {1, 2}. In addition, the collaborative
network consists of a domain discriminator D for domain
alignment and a noise co-adaptation layer Z for handling label
noise, where D and Z are shared by two peer networks.

To train the collaborative network, CoUDA conducts three
main strategies: (a) collaborative domain adaptation: we
cooperatively detect data transferability, and impose a new

1One can also construct more peer networks which may perform better,
but the learning cost will be a concern. Please refer to Appx. III in the
supplementary for more details.

transferability-aware domain adversarial loss Ld to align the
feature distribution of two domains, so that the domain dis-
crepancy is minimized in an adversarial learning manner [3];
(b) collaborative noise adaptation: we conquer label noise
via the noise co-adaptation layer and train the whole network
via a focal classification loss Lc, which makes the model
robust and imbalance-aware; (c) classifier diversity maxi-
mization: we maximize the diversity of two networks via a
classifier diversity loss Ldiv so that peer networks can keep
diverse as large as possible. In this way, CoUDA is able to
adapt the source domain knowledge to the target domain and
diagnose medical images effectively.

The overall training procedure is to solve the following
minimax problem [50]:

min
θp,θc,θz

max
θd
−αLd(θp, θd)︸ ︷︷ ︸

domain loss

+Lc(θp, θc, θz)︸ ︷︷ ︸
classification loss

− ηLdiv(θp, θc)︸ ︷︷ ︸
diversity loss

,

(1)

where θp={θp1 , θp2} and θc={θc1 , θc2} denote the parameters
of the feature extractors {Pτ}2τ=1 and the classifiers {Cτ}2τ=1

in two peer networks, while θd and θz denote the parameters
of the domain discriminator D and the noise co-adaptation
layer Z. Here, α and η denote trade-off parameters for the
domain loss Ld and the diversity loss Ldiv .

B. Collaborative Domain Adaptation

A key challenge for UDA is to resolve the domain discrep-
ancy among images, while medical images usually have differ-
ent potentials for domain alignment. Existing UDA methods
often ignore such differences and treat all data equally. As a
result, some hard-to-transfer images may not be well treated,
leading to inferior performance. To address this, we propose
to focus more on hard-to-transfer data. The key question is
how to detect the transferability of samples.
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Previous work [31] has shown that hard-to-transfer samples
are often difficult to be correctly classified by two networks
simultaneously. Motivated by this and considering that two
peer networks generate decision boundaries with different
discriminability, we propose to detect data transferability col-
laboratively based on prediction inconsistency. Formally, for
a sample xi, we define the prediction inconsistency based
on the cosine distance, and model the transferability via a
transferability-aware weight:

λ(xi) = 2− 〈ŷ1,i, ŷ2,i〉
‖ŷ1,i‖‖ŷ2,i‖

, (2)

where ŷ1,i and ŷ2,i denote the prediction probabilities of the
sample xi by two classifiers, and 〈a, b〉=a>b denotes the inner
product of two vectors a and b. For simplicity, we represent
λ(xi) by λi in the following text.

Based on this transferability-aware weight, we conduct
transferability-aware domain adaptation in an adversarial man-
ner [20], [50]. Specifically, on the one hand, a domain
discriminator D is trained to adequately distinguish fea-
ture representations between two domains by minimizing the
transferability-aware domain loss Ld. On the other hand,
the feature extractors of two peer networks are trained to
confuse the discriminator by maximizing the domain loss.
In this way, the learned feature extractors are able to extract
domain-invariant features that confuse the discriminator well.
Formally, based on the transferability-aware weight and least
square distance [51], we define the domain loss as:

Ld(θp, θd)=
2∑

τ=1

[ 1

ns

∑

S′

λsidτ (xsi )
2+

1

nt

∑

T
λtj(dτ (xtj)−1)2

]
,

(3)

where dτ (x)=D(Pτ (x)) denotes the domain prediction by the
domain discriminator D and feature extractor Pτ . Here, λsi and
λtj denote the transferability-aware weights of the i-th source
data and the j-th target data. Moreover, the label of the target
domain is denoted as 1 and that of the source is 0.

C. Collaborative Noise Adaptation

Label noise is common in medical image diagnosis. If we
directly match the predictions to noisy labels, deep neural
networks may even fit noisy samples due to strong fitting
capabilities [52]. To make deep neural networks more robust,
previous studies [35], [36] assume that the noisy label z
is only conditioned on the true label y, i.e., p(z|y). After
that, the prediction regarding the mislabeled class m can
be expressed as p(z=m|x)=

∑K
k=1 p(z=m|y=k)p(y=k|x),

where p(z=m|y=k) means the probability that the true label k
changes to the noisy label m. Here, we use a noise transition
matrix to represent the transition probabilities regarding all
classes. Following this, the work [36] uses an additional noise
adaptation layer to estimate the noise transition matrix for deep
networks. However, the above assumption may not be realistic
in many cases, since a wrong annotation is more likely to occur
in cases where features are misleading [37]. Hence, it is more
reasonable to assume the noisy label z is conditioned on both
the true label y and features f , i.e., p(z|y, f) [37].

Based on this assumption, we propose a noise co-adaptation
layer Z, shared by two peer networks. The motivation behind
this collaborative design is that different networks have differ-
ent discriminative abilities, and thus have different abilities to
filter label noise out. That is, they can adjust the estimation
error of noise transition probabilities, possibly caused by a sin-
gle network. Specifically, noise co-adaptation layer estimates
the probability of true label k changing to noisy label m based
on predictions and features using the softmax function:

p(ẑ=m|ŷ=k, f, θz) =
exp

(
w>kmf + bkm

)
∑K
l=1 exp

(
w>klf + bkl

) , (4)

where ẑ denotes the prediction of the noisy label and f
represents the features. Moreover, wkm and bkm denote the
parameters of Z regarding true label k changing to noisy label
m, and θz={wkm, bkm|m, k=1, ...,K} denotes the parameter
set of Z. Based on Eq. (4), for each peer network, we predict
the noisy label by:

p(ẑ=m|x, θp, θc θz)=
∑

k

p(ẑ=m|ŷ=k, f, θz)p(ŷ=k|x, θp, θc).

(5)

In this way, we are able to train peer networks with noisy
labels relying on any classification losses, e.g., cross-entropy.
In medical image diagnosis, since class imbalance is common,
we adopt the focal loss [53] as our classification loss:

Lc(θp, θc, θz)=−
1

ns

∑

S′

2∑

τ=1

zsi
>
(

(1−ẑτ (xsi )
)γ

log
(
ẑτ (xsi ))

)

(6)

where ẑτ (x)=p(ẑ|x, θpτ , θcτ , θz) denotes the prediction of the
i-th source data and zsi denotes its noisy label, while γ is
a parameter to decide the degree to which the classification
focuses on minority classes. Like [53], we set γ=2 in our
method. By minimizing this loss, CoUDA focuses more on
minority classes and thus handles class imbalance well.

D. Classifier Diversity Maximization

It is worth mentioning that the detection of data transfer-
ability highly depends on the classifier diversity. Also, keeping
classifiers diverse prevents the noise co-adaptation layer reduc-
ing to a single noise adaptation layer in function [37]. Hence,
to better find hard-to-transfer samples out and handle label
noise, we further maximize the classifier diversity. Specifically,
based on Jensen-Shannon (JS) divergence [50], we define the
classifier diversity loss as:

Ldiv(θp, θc)=
1

ns+nt

∑

S′∪T
DKL(ŷ1‖ȳ)+DKL(ŷ2‖ȳ), (7)

where DKL(y1‖y2)=
∑
i y1,i log(y1,i)−y1,i log(y2,i) is the

Kullback-Leibler divergence and ȳ= ŷ1+ŷ2
2 . Here, JS diver-

gence is a symmetric distance metric, which measures the
differences between two distributions well (See empirical su-
periority in Appx. III). Moreover, since the final prediction of
CoUDA is the average ensemble of two networks’ predictions
ȳ= ŷ1+ŷ2

2 , maximizing the classifier diversity further improve
ensemble performance [54].
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We summarize the training and inference details of CoUDA
in Algorithm 1 and Algorithm 2. Following [18], [55], we
implement the adversarial optimization with a gradient reversal
layer (GRL) [18], which reverses the gradient of the domain
loss when backpropagating to feature extractors. In this way,
the whole training process can be implemented with standard
backpropagation in an end-to-end manner.

Algorithm 1 Training of CoUDA

Require: Noisy source data S ′ = {xsi , zsi }nsi=1; Target data T =
{xtj}nti=j ; Training epoch S; Parameters α and η.

Initialize: Feature extractors {P1, P2};, Classifiers {C1, C2}; Noise
co-adaptation layer Z; Domain discriminator D.

1: for s = 1 → S do
2: Extract feature vectors f1, f2 based on P1, P2, respectively;
3: Obtain the prediction ŷ1 of Network 1 based on C1, f1;
4: Obtain the prediction ŷ2 of Network 2 based on C2, f2;
5: Obtain transferability weight λ based on ŷ1 and ŷ2; // Eq. (2)
6: Compute the domain loss Ld based on f1, f2, D, λ; // Eq. (3)
7: Compute the diversity loss Ldiv based on ŷ1, ŷ2. // Eq. (7)
8: if Source data then
9: Predict ẑ1, ẑ2 based on ŷ1, ŷ2, Z; // Eqs. (4-5)

10: Compute classification loss Lc based on ẑ1, ẑ2. // Eq. (6)
11: end if
12: Compute the total loss; // Eq. (1)
13: loss.backward(). // standard backward propagation.
14: end for

Algorithm 2 Inference of CoUDA
Require: Parameters of collaborative network: P1, P2, C1, C2;
Require: Input data x.

1: Compute the prediction ŷ1 of Network 1 using P1, C1, x;
2: Compute the prediction ŷ2 of Network 2 using P2, C2, x;
3: Obtain the ensemble prediction ŷ = ŷ1+ŷ2

2
.

4: Return: ŷ.

IV. THEORETICAL ANALYSIS

This section analyzes the generalization error of the pro-
posed CoUDA method based on Rademacher complexity [24],
[56], [34], [57]. Before that, we give some necessary notations.

Further Notations: we denote Ŝ, Ŝ ′ and T̂ as the em-
pirical distributions for S, S ′ and T , respectively. In ad-
dition, we denote l as the class labeling function, with lS
for the source domain, lS′ for the noisy source domain
and lT for the target domain. For some hypothesis set H ,
let h∗S∈argminh∈HLcS(h, lS), h∗S′∈argminh∈HLcS′(h, lS′),
and h∗T ∈argminh∈HLcT (h, lT ) be the optimal classifier
regarding S, S ′ and T , respectively. Moreover, let
ĥ∗Ŝ∈argminh∈HLcŜ(h, lŜ) and ĥ∗Ŝ′∈argminh∈HLcŜ′(h, lŜ′) be
the optimal classifiers regarding two empirical source distri-
butions. Also, we denote the expected risk over X={X,Y }
as RX (h)=EXLcX (h(X), Y ), and the empirical risk by
R̂X (h)= 1

n

∑n
i=1 LcX (h(xi), yi).

Following [58], [59], we define the discrepancy distance
between the source distribution S and the target distribution
T as: discL(S, T )= maxh1,h2∈H

∣∣LS(h1, h2)−LT (h1, h2)
∣∣,

where H means a set of hypothesis, and L denotes some
loss function. We then have the following result on the
generalization error.

Theorem 1: Let U be a hypothesis set for the domain loss
Ld and H be a hypothesis set for the classification loss Lc ∈
[0,M ] in terms of K classes. Assume that the loss function
L is symmetric and obeys the triangle inequality. Suppose the
noise transition matrix Q is invertible and known. For any
δ > 0 and any hypothesis h ∈ H , with probability at least
1 − (2+K)δ over m samples drawn from S and n samples
drawn from T , the following holds:

LcT (ĥ∗Ŝ′ , lT )− LcT (h∗T , lT )

≤ discLd(Ŝ, T̂ ) + LcS(h∗S , h
∗
T ) + 4KR̂S(H)

+ 8R̂S(U) + 8R̂T (U)+9

(
(1+

2

3
M)

√
log 2

δ

2m
+

√
log 2

δ

2n

)
.

See Appx. I for the proof and the definition of the empir-
ical Rademacher complexity R̂(·). This theorem shows the
generalization error of CoUDA. Overall, if we minimize the
domain discrepancy discLd(Ŝ, T̂ ) well, the learned classifier
on the source domain can match the optimal classifier on the
target well. This verifies the reasonability and significance to
reduce domain discrepancy discLd(Ŝ, T̂ ) via transferability-
aware domain adaptation. Moreover, LcS(h∗S , h

∗
T ) denotes the

average loss between the best intra-class hypothesis, and is
usually assumed to be small [59]. This is because if there
is not any hypothesis that performs well on both domains,
domain adaptation cannot be conducted.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

Baselines. We compare CoUDA with several advanced
methods, including: (a) MobileNet V2 [60] is the net-
work backbone. (b) MentorNet [33], Co-Teaching [22] and
NAL [37] are classic weakly-supervised learning methods for
training deep networks. (c) DDC [19], DANN [18], MCD [31]
and CLAN [21] are classic unsupervised domain adaptation
methods. (d) TCL [41] is the state-of-the-art unsupervised do-
main adaptation method that considers label noise. (e) CoUDA
(Source-only) is a variant of CoUDA with only classification
loss on source samples (without domain adaptation). For
fairness, all methods employ the same network backbone yet
with different optimization procedures.

Implementation Details. We implement CoUDA with Ten-
sorflow2. For medical images, we train the model from scratch,
while for general images we use MobileNet pre-trained on
the ImageNet [61] as the backbone. In the training process,
we use Adam optimizer with the batch size 16 on a single
GPU. The learning rate is set to 10−5 for medical tasks and
10−3 for tasks with general images. Moreover, we set the
trade-off parameters α=0.1 and η=0.01. The overall training
step is 105. More implementation details about the network
architecture and noise co-adaptation layer (e.g., initialization)
can be found Appx. V.B.1.

Metrics. In this paper, we use Accuracy (Acc), Macro
Precision (MP), Macro Recall (MR) and Macro F1-measure
as metrics. Their implementations can be found in [62].

2The source code is available: https://github.com/Vanint/CoUDA.
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TABLE I: Comparisons on colon cancer diagnosis in terms of four metrics.

Methods Colon-A Colon-B

Acc (%) MP MR Macro F1 Acc (%) MP MR Macro F1

MobileNet [60] 68.79 78.62 61.67 64.46 44.84 61.08 40.77 33.72
MentorNet [33] 66.28 79.24 55.65 56.25 41.25 65.60 42.84 37.06
Co-teaching [22] 71.52 79.74 64.88 67.93 48.16 74.73 46.74 43.42
NAL [37] 68.92 74.83 63.49 64.65 50.23 54.78 43.32 40.71

DDC [19] 79.74 78.75 79.01 78.76 65.21 65.76 68.82 65.64
DANN [18] 80.01 79.25 78.85 78.75 67.23 67.40 67.63 66.98
MCD [31] 81.77 81.04 80.45 80.19 68.20 67.46 66.92 66.86
CLAN [21] 82.47 80.75 81.69 81.04 72.96 75.93 73.88 73.35
TCL [41] 81.26 80.36 80.97 80.27 69.24 69.93 69.53 68.75

CoUDA(Source-only) 72.51 77.52 66.65 69.24 53.05 65.35 50.78 47.89
CoUDA 87.75 87.62 86.85 87.22 78.35 78.37 79.48 78.63

B. Evaluation on Colon Cancer Diagnosis

Dataset. The colon dataset is formed by H&E stained
histopathology slides, which are diagnosed as 4 types of colon
polyps (normal, adenoma, adenocarcinoma, and mucinous
adenocarcinoma). This dataset is provided by Tencent AI Lab
and data statistics are shown in Table II. Here, the whole-
slide image (WSI) is regarded as the source data, while
the microscopy image (MSI) is viewed as the unlabeled
target data. Specifically, WSIs of each slide is acquired in
40× magnification scale (229 nm/pixel) by the Hamamatsu
NanoZoomer 2.0-RS scanner, where ROIs (i.e., region of
interest) corresponding to the categories are then annotated by
experts on WSI scans with our in-house tool. MSIs of 30 slides
are acquired with microscope in 10× magnification scale
(field of vision: 2.73×2.73 cm2, matrix size: 2048×2048).
Specifically, we focus on 10× magnification scale, since it is
the preferred scale for pathologist’s diagnosis. For consistency,
WSIs are down-sampled to the same resolution as MSIs.
Following that, a sliding window crops MSIs and annotated
WSI regions into patches of size 512, where the label of each
patch is defined by the annotation in its center. WSI and MSI
patches acquired from 15 slides are taken as the test set, and
the rest serves as the training set.

From Table II, we find class imbalance is severe. Moreover,
according to the remark of doctor annotators, there exist
a certain number of noisy labels in WSIs due to coarse
annotation, while the labels of MSIs in the test set are clean
based on careful annotation. Considering both class imbalance
and label noise, this problem is very tough. For adequate
evaluations, we formulate two multi-class classification tasks
for domain adaptation, where the Colon-A task consists of
three classes (normal, adenoma and adenocarcinoma), while
Colon-B consists of all four classes. Generally, Colon-B is
more difficult than Colon-A, since it suffers from more severe
class imbalance and label noise due to the additional class.

Results. We report the result of all methods in Table VII.
The encouraging result suggests that CoUDA is able to con-
duct effective domain adaptation from the source domain (with
label noise) to the unlabeled target domain. Since there is
an urgent need for robust deep models for medical image
diagnosis, this result highlights the importance of CoUDA in
real-world medical applications with label limitations.

TABLE II: Statistics of colon image dataset, where WSI serves
as the source domain, and MSI serves as the target domain.
In addition, “ade.” denotes the adenocarcinoma class.

Set Domain Categories total
normal adenoma ade. mucinous ade.

Training WSI 36,094 3,626 3,081 1,741 44,542
MSI 2,696 1,042 1,091 2,534 7,363

Test MSI 1,110 487 713 674 2,984

From the empirical result, we further make the following
observations. (1) The issue of class imbalance in medical
image diagnosis makes the learning of deep models from
noisy annotations more difficult. For example, MentorNet
proposes to discard noisy data with large losses. However,
it also discards the minority data that often suffers from large
losses [63], leading to inferior performance than MobileNet
due to class imbalance. In contrast, NAL handles the label
noise and diagnoses the class-imbalanced cancer images better,
since the noise adaptation layer does not throw the minority
data away. (2) The collaborative scheme helps to handle
label noise better. For example, Co-teaching performs better
than MenterNet, while CoUDA (source-only) with noise co-
adaptation layer outperforms NAL. (3) Reducing the domain
discrepancy by learning domain-invariant features can well
adapt the source domain knowledge to the target domain
(DDC, DANN, MCD and CLAN). This also demonstrates the
importance of domain adaptation in medical image diagnosis.
(4) Simultaneously resolving the domain discrepancy and label
noise makes great performance contributions (CoUDA and
TCL). However, TCL follows the technique of MentorNet and
ignores the issue of class imbalance.

Ablation Studies. We then conduct ablation studies on
Colon-A. As shown in Table III, promising results verify
the effectiveness of all components in our methods, where
each of them makes empirical contributions. In addition,
according to the result, the transferability-aware domain loss
for domain adaptation and the noise co-adaptation layer for
noise adaptation are relatively more important. Such a result
is reasonable, since the issues of domain discrepancy and label
noise are the main challenges in this task.
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TABLE III: Ablation studies of CoUDA on Colon-A. Lce denotes cross entropy classification loss; TW denotes transferability-
aware weight; NCL denotes the noise co-adaptation layer.

Backbone Lce Lc Ld Ldiv TW NCL Acc (%) MP MR Macro F1
√ √

69.57 79.21 58.53 59.24√ √ √ √
72.51 77.52 66.65 69.24√ √ √ √ √
85.54 84.49 85.22 84.81√ √ √ √ √
82.94 81.37 82.70 81.64√ √ √ √ √
85.45 84.46 84.94 84.68

√ √ √ √ √ √
87.75 87.62 86.85 87.22

Source normal class
Target normal class

Source adenoma class
Target adenoma class

Source adenocarcinoma class
Target adenocarcinoma class

(a) MobileNet (b) DANN (c) TCL

(d) MCD (e) CLAN (f) CoUDA

Fig. 4: t-SNE plots of learned features on Colon-A in terms of classes and domains, where the clusters of adenoma are circled.
The closer the same class samples across domains are, the more effective the domain adaptation is (better viewed in color).

Feature Visualization. We visualize t-SNE embed-
dings [64] of learned features after the global average pooling.
In our collaborative network, we only plot the features learned
from one peer network. By taking the adenoma class as an
example, we make several interesting observations. (1) There
are apparent domain discrepancies on Colon-A, where the
feature distributions of two domains are quite different (See
Fig. 4(a)). (2) Ignoring the data difference regarding trans-
ferability may make domain alignment difficult. For example,
DANN, TCL, MCD and CLAN fail to align domains very
well (See Figs. 4(b-e)). (3) The cooperation scheme is helpful
for domain alignment. For instance, CoUDA aligns domain
features well by conducting collaborative domain adaptation.
These visualized results further explain the superiority of
CoUDA in domain knowledge adaptation.

Parameter Sensitivities. As mentioned in Section V.A,
we set the trade-off parameter α=0.1 and η=0.01 in all
experiments, where α adjusts the domain loss and η controls

the diversity loss. In this section, we further evaluate the
sensitivities of the two parameters on Colon-A. In each exper-
iment, we only evaluate one parameter, while fixing all other
parameters. We report the results in Table IV, which shows
that the proposed method is insensitive to both parameters in
the range of {10−3, 10−2, 10−1, 1}. Moreover, the proposed
method achieves the best on Colon-A when setting α=0.1 and
η=0.01. In other real-world applications, it would be better for
users to select suitable values based on the task in hand.

TABLE IV: Parameter sensitivities analysis on Colon-A.

Parameters α η

0.001 0.01 0.1 1 0.001 0.01 0.1 1

Acc (%) 87.23 87.53 87.75 86.36 87.62 87.75 87.62 87.36
MP 86.49 87.24 87.62 85.08 86.99 87.62 86.84 87.14
MR 87.29 87.29 86.85 86.73 87.25 86.85 87.66 86.37
Macro F1 86.87 87.06 87.22 85.79 87.11 87.22 87.23 86.73
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C. Evaluation on the diagnosis of COVID-19

We then evaluate our method by diagnosing the new coron-
avirus disease 2019 (COVID-19) based on chest X-ray images.

Dataset. The used dataset is collected from Kaggle, consist-
ing of the COVID-19 Radiography Database and the dataset
of RSNA Pneumonia Detection Challenge. Based on the
collected dataset3, we randomly choose part of normal cases
and all typical pneumonia cases to make up the source domain,
and use the rest of normal cases and all COVID-19 cases
as the target domain [12]. The statistics of two domains
are summarized in Table V. Since this dataset is clean, we
construct its corrupted counterpart. Following [33], [41], we
change the label of each image in the source domain uniformly
to another class with probability ρnoise=0.1.

TABLE V: Statistics of the dataset, where pneumonia serves as
the source domain and COVID-19 serves as the target domain.

Set Domain Categories #Total
#Normal #Pneumonia #COVID-19

Training Pneumonia 5,613 2,298 0 7,911
COVID-19 2,541 0 176 2,717

Test COVID-19 885 0 43 928

Results. As shown in Table VI, CoUDA outperforms all
baselines significantly. This demonstrates that CoUDA can
be applied to X-ray images in general and to COVID-19 X-
ray based diagnosis. Since the outbreak of COVID-19 has
already infected millions of people but extensive annotations
of COVID-19 are inaccessible now, such a result verifies the
importance of CoUDA for developing deep learning based
diagnosis methods for COVID-19. Moreover, we hope our
preliminary results on the limited amount of COVID-19 data
can inspire more research on UDA for COVID-19 in the future.

TABLE VI: Comparisons on COVID-19 diagnosis based on
chest X-ray iamges, where noise rate is set to 0.1.

Methods Acc (%) MP MR Macro F1

MobileNet [63] 58.50 47.77 31.31 37.07
MentorNet [50] 78.35 48.44 41.53 44.25
Co-teaching [21] 91.27 63.43 76.62 67.29
NAL [30] 94.29 69.80 77.09 72.76

DDC [18] 78.95 49.03 44.80 45.26
DANN [17] 87.18 51.58 55.55 51.09
MCD [24] 96.77 84.31 75.07 78.79
CLAN [20] 95.58 75.04 71.13 72.90
TCL [54] 97.20 86.87 78.62 82.16

CoUDA 98.06 94.33 82.39 87.33

Evaluation on diverse noise rates. The above experiment
verifies CoUDA for diagnosing COVID-19 under noise rate
0.1. This subsection further evaluates CoUDA under the noise
rates of 0.2 and 0.4. Table VII shows that CoUDA consistently
outperforms two state-of-the-art baselines (i.e., CLAN and
TCL) under different noise rates. This further verifies the
superiority of CoUDA when dealing with label noise.

3The up-to-date dataset is available: https://github.com/Vanint/COVID-DA.

TABLE VII: Comparisons on the COVID-19 dataset under
different noise rates.

Methods noise rate = 0.2

Acc (%) MP MR Macro F1

CLAN [20] 88.15 59.27 72.77 61.95
TCL [54] 96.34 83.00 68.21 73.29
CoUDA 97.31 86.00 81.99 83.86

Methods noise rate = 0.4

Acc (%) MP MR Macro F1

CLAN [20] 85.67 51.64 53.77 51.47
TCL [54] 89.01 58.00 65.47 59.53
CoUDA 95.69 76.08 67.87 71.10

D. Application to General Images

Dataset: Office-31 [65] is a standard dataset for domain
adaptation. It consists of 4652 images with 31 classes in 3
distinct domains: amazon (A), webcam (W) and dslr (D),
which are collected from amazon.com, web cameras, and dig-
ital SLR cameras, respectively. By permuting the 3 domains,
we obtain 6 unsupervised transfer tasks. According to the
standard setting of Office-31 [65], the source domain has 8
labeled data per class for webcam/dslr and 20 for amazon.
Since this dataset is almost clean and class balanced, we create
its corrupted counterpart. Following [33], [41], we change
the label of each image uniformly to a random class with
probability pnoise = 0.1. For the class imbalance, we randomly
select each class with probability pclass = 0.5 to reduce half
data. Like [41], we use the noisy domain as the source domain
and the clean domain as the target domain. Note that this task
is very challenging, since labeled source data is very limited
and also suffers class corruption.

Results: We report the result on Office-31 in Table VIII.
Promising result verifies the effectiveness of the proposed
method in handling general image tasks. In addition, the result
also reveals several observations. (1) Domain discrepancy and
label noise limits the performance of standard deep neural
networks on the target domain (MobileNet). (2) Ignoring the
class imbalance issue affects the effectiveness of handling
label noise (MentorNet, Co-teaching and TCL). (3) Domain
adaptation enhances the model performance on the target
domain, but most existing methods cannot handle the issue
of label noise in medical image diagnosis (DDC, DANN,
MCD, CLAN). (4) Cooperation is helpful to handle the domain
discrepancy and label noise simultaneously (CoUDA).

Estimation of Noise Transition Matrix: We next evaluate
the estimated noise transition matrix, learned by the noise
co-adaptation layer. As mentioned above, we construct the
corrupted Office-31 by changing the label of each image
uniformly to a random class with probability 0.1. Hence, the
true noise transition matrix is:

[
0.9 ∗ I(i=j) + 0.1

31 ∗ I(i 6=j)
]
,

where i∈{0, .., 30} is the true label and j∈{0, .., 30} is the
changed noisy label. Parameter initialization of the noise co-
adaptation layer is based on the method in Section V.B.1 with
ε=0.8. Hence, there is a gap between the true transition matrix
and the initial estimated one.
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TABLE VIII: Comparisons on general images on the Office-31 dataset under the fixed noise rate 0.1, where “avg.” denotes
the average result of six transfer tasks.

Methods Acc (%) Macro F1-measure

A→ W D→ W W→D A→ D D→ A W→ A avg. A→ W D→ W W→D A→ D D→ A W→ A avg.

MobileNet [60] 39.85 77.51 62.95 40.80 30.63 33.91 47.61 37.33 75.88 62.74 32.83 28.39 32.11 45.38
MentorNet [33] 34.98 69.60 68.40 44.40 38.07 38.25 48.95 35.62 64.95 63.47 42.04 36.00 36.00 46.34
Co-teaching [22] 42.96 70.38 78.89 47.01 40.24 40.87 53.39 43.59 69.26 69.56 41.18 38.02 39.06 50.11
NAL [37] 45.34 74.22 72.51 50.60 29.27 37.05 51.50 45.05 72.24 65.81 45.14 28.09 33.56 48.32

DDC [19] 52.20 80.71 84.40 50.80 38.12 36.75 57.16 45.80 78.70 79.84 44.88 35.83 36.01 53.51
DANN [18] 59.78 84.64 86.85 50.80 43.38 42.92 61.39 44.90 83.31 78.88 50.06 40.52 42.11 56.63
MCD [31] 43.88 85.52 88.50 56.97 42.65 45.56 60.51 40.32 84.37 80.13 47.17 41.09 44.81 56.32
CLAN [21] 42.96 85.29 88.05 60.96 39.78 44.83 60.31 41.24 84.63 79.58 52.95 37.53 42.62 56.43
TCL [41] 46.62 85.56 85.90 56.18 41.69 44.20 60.02 46.04 83.00 80.90 47.81 41.72 40.29 56.68

CoUDA 63.07 85.92 88.84 62.15 45.74 46.24 65.33 61.77 85.79 83.62 57.38 43.66 46.02 63.04

Fig. 5: An empirical example of the difference between the
true noise transition matrix and the estimated one by the noise
co-adaptation layer on W → D of Office-31.

Fig. 5 presents the difference between the true noise
transition matrix and the estimated one by the noise co-
adaptation layer on the setting of W → D. As is shown
in Fig. 5, the noise co-adaptation layer approximates the
true noise transition matrix within an acceptable error level.
This result not only verifies the effectiveness of the proposed
noise co-adaptation layer, but also explains the state-of-the-art
performance of CoUDA in previous experiments.

Evaluation on diverse noise rates. In the previous
experiments, we have demonstrated the proposed CoUDA on
Office-31 with the fixed label noise rate 0.1. Here, we further
evaluate our method on Office-31 corrupted by the noise
rates of 0.2 and 0.4. As shown in Table IX, our proposed
method deals with label noise consistently better than other
state-of-the-art unsupervised domain adaptation methods (i.e.,
CLAN and TCL).

TABLE IX: Comparisons on Office-31 under different noise
rates in terms of Macro F1 measure. “avg.” denotes the average
result of six transfer tasks.

Methods noise rate = 0.2

A>W D>W W>D A>D D>A W>A avg.

CLAN [21] 43.30 69.52 70.68 44.95 29.13 31.58 48.19
TCL [41] 38.94 68.56 64.54 30.68 23.26 23.21 41.53
CoUDA 53.75 75.86 72.77 48.28 36.71 33.81 53.49

Methods noise rate = 0.4

A>W D>W W>D A>D D>A W>A avg.

CLAN [21] 31.46 41.37 59.34 37.69 22.02 28.10 36.66
TCL [41] 30.04 51.01 50.12 16.34 15.07 12.24 29.14
CoUDA 45.03 65.76 63.52 38.15 32.66 30.93 46.01

VI. CONCLUSION

In this paper, we have proposed a general Collaborative
Unsupervised Domain Adaptation method. Unlike previous
UDA methods that treat all data equally or assume data
with clean labels, our method collaboratively eliminates the
domain discrepancy with more focuses on hard-to-transfer
samples, and overcome label noise simultaneously. Also, we
theoretically analyze the generalization error of the proposed
method. Extensive experiments on real-world medical and gen-
eral images demonstrate the effectiveness and generalization of
the proposed method. Since there is an urgent need for robust
deep models for medical image diagnosis, our method is of
great clinical significance in practice. Moreover, considering
that UDA with noise labels is not specific to the medical
domain, we expect that our method will be applied to more
general image classification tasks, such as in crowdsourcing
and financial domains.
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Abstract—This supplementary material provides the proof for
all theorems, architecture details and additional experimental
results in our paper “Collaborative Unsupervised Domain Adap-
tation for Medical Image Diagnosis.

Index Terms—Unsupervised Domain Adaptation, Deep Learn-
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I. DEFINITION AND PROOF FOR THEOREMS

A. Definitions

Following [1], [2], we define the discrepancy distance
between the source distribution S and the target distribution
T as: discL(S, T )=maxh1,h2∈H

∣∣LS(h1, h2)−LT (h1, h2)
∣∣,

where H means a set of hypothesis, and L denotes some loss
function. Since our analysis based on the Rademacher com-
plexity, we then give its definition and empirical counterpart.

Definition 1. (Rademacher Complexity) Let H be a set of
real-valued functions. The empirical Rademacher complexity
of H over data distribution X is defined as:

R̂X (H) =
2

m
Eσ
[
sup
h∈H
|
m∑

i=1

σih(xi)|
∣∣∣x1, x2, ..., xm ∈ X

]
,

where σ1, σ2, ..., σm are independent uniform {±1}-valued
random variables. Then, the Rademacher complexity of H is
RX (H) = ER̂X (H).

B. Proof of Theorem 1

Theorem 1. Let U be a hypothesis set for the domain loss
Ld and H be a hypothesis set for the classification loss Lc ∈
[0,M ] in terms of K classes. Assume that the loss function
L is symmetric and obeys the triangle inequality. Suppose the
noise transition matrix Q is invertible and known. For any
δ > 0 and any hypothesis h ∈ H , with probability at least
1 − (2+K)δ over m samples drawn from S and n samples
drawn from T , the following holds:

LcT (ĥ∗Ŝ′ , lT )− LcT (h∗T , lT )
≤ discLd(Ŝ, T̂ ) + LcS(h∗S , h∗T ) + 4KR̂S(H)

+ 8R̂S(U) + 8R̂T (U)+9

(
(1+

2

3
M)

√
log 2

δ

2m
+

√
log 2

δ

2n

)
.

Proof. In CoUDA, two peer networks share the same archi-
tecture and optimization procedure, so two networks have
the same generalization bound. For clarity, we first analyze
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a single one. To begin with, relying on Theorem 8 in [2], we
have the following proposition.

Proposition 1. Assume that the loss function L is symmetric
and obeys the triangle inequality. For any hypothesis h ∈ H ,
the following holds:

LcT (h, lT ) ≤LcT (h∗T , lT ) + LcS(h, h∗S)
+ discLd(S, T ) + LcS(h∗S , h∗T ).

From Proposition 1, the hypothesis error regarding to the
target domain LcT (h, lT ) − LcT (h∗T , lT ) is related with the
average source classification loss LcS(h, h∗S), the domain dis-
crepancy discLd(S, T ) and the average loss between the best
intra-class hypotheses LcS(h∗S , h∗T ). For adaptation to succeed,
it is natural to assume that LcS(h∗S , h∗T ) is small [2], where
more discussion is put in Section C in the main text. Next,
we mainly discuss the remaining two terms, and let us begin
with the domain discrepancy discLd(S, T ).
Lemma Sup. 1. Let U be a hypothesis set for the domain
loss Ld. Then, for any δ > 0, with probability at least 1− 2δ
over m samples drawn according to S and n samples drawn
according to T , we have:

discLd(S, T ) ≤ discLd(Ŝ, T̂ )+

8
(
R̂S(U) + R̂T (U)

)
+ 9

(√
log 2

δ

2m
+

√
log 2

δ

2n

)
.

Here, R̂(·) is the empirical Rademacher complexity. See
Appendix A.3 for the proof. This lemma shows that the
discreapncy distance between domains can be estimated from
finite samples. Next, we analyze the performance in the source
domain with noisy labels.

Lemma Sup. 2. Assume H be a hypothesis set for the mod-
ified focal loss Lc ∈ [0,M ] in terms of K-class classification
and suppose the noise transition matrix Q is invertible and
known. Then, for any δ > 0, with probability at least 1−Kδ
over m samples drawn according to S, the following holds:

RS(ĥ
∗
Ŝ′) ≤ RS(h∗S) + 4KR̂S(H) + 6M

(√
log 2

δ

2m

)
.

See Appendix A.4 for the proof. This lemma shows that the
optimal classifier h∗S learned with true labels can be estimated
from finite samples by a good classifier ĥ∗Ŝ′ learned with noisy
labels.

Since the prediction of the collaborative network is a convex
combination of the predictions of both networks, according to
[3], [4], the generalization bound of the collaborative networks
is the same to that of a single peer network. Therefore, based
on Proposition 1, Lemma Sup. 1 and Lemma Sup. 2, we
conclude the proof of Theorem 1.
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C. Proof of Lemma Sup. 1

Proof. The following inequality is a version of the
Rademacher complexity bound [3]. Let H be a class of
functions mapping X,Y to [0,M ], and there are m samples
drawn according to a distribution X . Then, for any δ > 0, with
probability at least 1 − δ over these samples, the following
holds for all h ∈ H:

RX (h) ≤ R̂X (h) + R̂X (H) + 3M

√
log 2

δ

2m
. (1)

The proof method can be found in [3].
For a bounded loss function L, we can bound the dis-

crepancy distance between a distribution and its empirical
distribution, based on Rademacher complexity of the function
set LH = {x→ |h1(x)− h2(x)|q : h1, h2 ∈ H}. Assume the
loss function L is bounded by M ≥ 0. Let X be a distribution
and X̂ be the corresponding empirical distribution. Then, for
any δ > 0, with probability at least 1 − δ over m samples
drawn according to X , the following holds for all h ∈ H:

discL(X , X̂ ) ≤ R̂X (LH) + 3M

√
log 2

δ

2m
. (2)

The proof method can be found in [2].
In our proposed method, the domain loss Ld relies on the

least square loss, i.e., L2 regression loss, which is 2-Lipschitz.
Thus, by the contraction lemma [5], we have:

R̂X (LdH) ≤ 4R̂X (H
′) (3)

with H ′ = {x→ (h1(x)−h2(x)) : h1, h2 ∈ H}. Then, Based
on the definition of the Rademacher variables and the sub-
additivity of the supremum function, R̂X (H ′) can be bounded
as follows:

R̂X (H
′)

=
2

m
Eσ
[

sup
h1,h2∈H

|
m∑

i=1

σi(h1(xi)− h2(xi))|
]

≤ 2

m
Eσ
[
sup
h1∈H

|
m∑

i=1

σih1(xi)|
]
+

2

m
Eσ
[
sup
h2∈H

|
m∑

i=1

σih2(xi)|
]

= 2R̂X (H). (4)

Moreover, the domain logits of the discriminator belong to
[0, 1]. With the transferability-aware weight w ∈ [1, 3], we can
easily find that Ld is bounded by 3. Combining Eqs. (2-4), for
any δ > 0, with probability at least 1−δ over m samples drawn
according to X , the following holds for all h ∈ H:

discLd(X , X̂ ) ≤ 8R̂X (H) + 9

√
log 2

δ

2m
. (5)

Then, by the triangle inequality, we have:

discLd(S, T ) ≤
discLd(S, Ŝ) + discLd(Ŝ, T̂ ) + discLd(T̂ , T ). (6)

Combining Eqs. (5-6) and adjusting to the hypothesis U for
discriminator, we conclude the proof.

D. Proof of Lemma Sup. 2

Proof. In our proposed method, we use a noise co-adaptation
layer to approximate the noise transition matrix Q, so that
the classifier learned with noisy labels is consistent with the
optimal classifier learned with true labels. To facilitate the
analysis, following [6], we assume the noise transition matrix
Q is known and invertible. Besides, consider that the focal
loss is a modified cross-entropy loss. According to Lemma 1
and Theorem 1 in [6], the minimizer h∗S′ of RS′(h) is also
the minimizer h∗S of RS(h), i.e., h∗S′ = h∗S . Moreover, we
know that, given sufficient training data with noisy labels,
the empirical optimal ĥ∗Ŝ′ converges to the expected optimal
h∗S′ [7]. Therefore, ĥ∗Ŝ′ can also converge to h∗S even though
the former is learned with noisy labels. Like [7], [6], we have:

RS(ĥ
∗
Ŝ′)−RS(h∗S)

= RS′(ĥ∗Ŝ′)−RS′(h∗S)

= R̂Ŝ′(ĥ
∗
Ŝ′)− R̂Ŝ′(h

∗
S) +RS′(ĥ∗Ŝ′)− R̂Ŝ′(ĥ

∗
Ŝ′)

+ R̂Ŝ′(h
∗
S)−RS′(h∗S)

≤ RS′(ĥ∗Ŝ′)− R̂Ŝ′(ĥ
∗
Ŝ′) + R̂Ŝ′(h

∗
S)−RS′(h∗S)

≤ 2 sup
h∈H
|RS′(h)− R̂Ŝ′(h)|, (7)

since R̂Ŝ′(ĥ∗Ŝ′) − R̂Ŝ′(h∗S) ≤ 0. Moreover, the error in
the last line is called the generalization error. To analyze
the generalization error for multi-class classification, inspired
by [8], [9], we first reformulate the focal loss on the top
of the softmax into a single modified logistic loss function
−∑K

i=1 z
i(1 − oi) log exp oi∑

j exp oj , where zi is the noise label
in terms of the i-th class, oi is the corresponding prediction
logits, and K is the class number.

Then, relying on the concentration lemma [5] and Lemma
3 in [8], and considering 1 − oi ≤ 1, the generalization
error for multi-class classification can be upper bounded with
Rademacher complexity [3] as follows. For any δ > 0, with
probability at least 1−Kδ over m samples drawn according
to S ′, we have:

sup
h∈H
|RS′(h)− R̂Ŝ′(h)| ≤ 2KR̂S(H) + 3M

(√
log 2

δ

2m

)
,

(8)

where M is the upper bound of the single modified logistic
loss. Combining Eqs. (7-8), we conclude the proof of Lemma
Sup. 2.

II. ARCHITECTURE AND MORE DISCUSSIONS OF COUDA

This appendix details the architecture of the cooperative
network. Since two peer networks have the same network
architecture, we here describe a single one. Specifically, it
consists of three main components: the backbone network (i.e.,
the feature extractor, the classifier), the noise co-adaptation
layer, and the discriminator network.
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TABLE I: Detailed architecture of the base network in the cooperative network, where peer networks share the same architecture.
Here, m and k indicate the length and width of the input image and K means the class number, while GAP represents global
average pooling. All spatial convolutions use 3x3 kernels except conv2d 1x1, which uses 1x1 kernels.

Backbone Network

Part Input → Output Expansion Repeat Stride Activation

conv2d (m, k, 3) → (m
2
, k
2
, 32) - 1 2 ReLU

bottleneck (m
2
, k
2
, 32) → (m

2
, k
2
, 16) 1 1 1 ReLU

bottleneck (m
2
, k
2
, 16) → (m

4
, k
4
, 24) 6 2 2 ReLU

bottleneck (m
4
, k
4
, 24) → (m

8
, k
8
, 32) 6 3 2 ReLU

bottleneck (m
8
, k
8
, 32) → (m

16
, k
16

, 64) 6 4 2 ReLU

bottleneck (m
16

, k
16

, 64) → (m
16

, k
16

, 96) 6 3 1 ReLU

bottleneck (m
16

, k
16

, 96) → (m
32

, k
32

, 160) 6 3 2 ReLU

conv2d 1x1 (m
32

, k
32

, 160) → (m
32

, k
32

, 320) - 1 1 ReLU

GAP (m
32

, k
32

, 320) → (1, 1, 1280) - 1 1 ReLU

conv2d 1x1 (1, 1, 1280) → (1,K) - 1 - Softmax

Noise Co-adaptation Layer

conv2d 1x1 (1, 1, 1280)&(1,K) → (1,K) - K 1 Softmax

TABLE II: Discriminator network architecture.

Discriminator

Layer Input → Output Layer information

Hidden Layer (1, 1, 1280) → (1, 1280) Fully Connectly Layer, Leaky ReLU

Hidden Layer (1, 1280) → (1, 1280) Fully Connectly Layer, Leaky ReLU

Output (1, 1280) → (1, 1) Fully Connectly Layer, Sigmoid

Backbone network. To satisfy the resource and efficiency
requirements of real-world medical tasks, we adopt Mo-
bileNetV2 [10] as the backbone. The architecture is summa-
rized in Table I. We recommend readers to the paper [10] for
more detailed information.

Noise co-adaptation layer.
As shown in Table I, the repeat number K means that we

have K additional softmax layers. Each one serves for one
class to estimate the transition probabilities from this class to
pseudo-classes (See Eq. 3 in the main text). After that, we can
obtain the predictions of noisy labels based on the estimated
noise transition probabilities (based on Eq. 4 in the main text).

In addition, a careful initialization of the parameters of the
noise co-adaptation layer is crucial for successful convergence
of the network into a good classifier at the test time. To this
end, we follow the initialization strategy in [11], where we
initialize all weight parameters as zero, and initialize the bias
parameters by assuming a small uniform noise ε as:

bij = log
(
(1− ε)I(i=j) +

ε

K − 1
I(i 6=j)

)
, (9)

where the value of ε depends on the tasks in hand, and i, j
represent the true label and noisy label.

However, the noise co-adaptation layer may suffer the
sclability issue when the class number K is very large,
since there are K additional softmax layers. In this case, the
manner in Eq. 9 mentioned above can be a suitable choice to
reduce the computational burden, since it does not have weight
parameters. In fact, such a simplified method also performs
well in the methods of the noise adaptation layer [11], [12].

Discriminator. As for adversarial learning, inspired by
ADDA [13], we use three fully connected layers as the
discriminator D, which is shown in Table II.

III. MORE EXPERIMENTAL RESULTS

A. Discussion about Transferability-aware Weights

In the definition of the transferability-aware weight, we use
the cosine distance to represent the distance similarity. In
fact, one can also use other metrics like L1 or L2 distances.
However, in our preliminary experiments, as shown in Ta-
ble III, there are no apparent differences among them, and the
cosine distance performs slightly better. Therefore, we adopt
the cosine distance in our method.

TABLE III: Comparisons of different distances for computing
transferability-aware weights on Colon-A.

Distances Acc (%) MP MR Macro F1

L1 distance 87.27 86.68 86.75 86.72
L2 distance 87.49 87.04 86.90 86.97
cosine distance (ours) 87.75 87.62 86.85 87.22

B. Discussion about Domain Loss

In our method, we define the domain loss relying on the
least square distance, since it helps to improve domain confu-
sion and stabilize training, by preserving the domain distance
information [14]. In this section, we empirically compare it
with the classic GAN loss [15] with transferability-weights on
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Colon-A. As shown in Table IV, the least-square loss performs
better than GAN loss, which demonstrates the effectiveness of
the adopted domain loss.

TABLE IV: Evaluation the least-square distance as the domain
loss on Colon-A.

Domain Loss Acc (%) MP MR Macro F1

GAN loss 86.45 85.40 86.17 85.77
least square loss (ours) 87.75 87.62 86.85 87.22

C. Discussion about Diversity Loss

In our method, we define the diversity loss relying on
the JS distance. In fact, one can also use other distance
according to the tasks at hand. Nevertheless, we do not find
apparent differences among these distances in our preliminary
experiments, as shown in Table V. Specifically, the JS distance
performs relatively better.

TABLE V: Comparisons of different distances in the diversity
loss on Colon-A.

Distances Acc (%) MP MR Macro F1

L1 distance 87.32 86.99 87.16 87.07
L2 distance 87.53 87.51 86.69 87.07
KL divergence 87.53 87.54 86.63 87.06
cos distance 87.62 87.16 87.24 87.20
JS divergence (ours) 87.75 87.62 86.85 87.22

D. Discussion about Best Intra-Class Hypotheses

This section discusses the average loss between the best
intra-class hypotheses, i.e., LcS(h∗S , h∗T ). Previous work [2]
assumes LcS(h∗S , h∗T ) be small, since if there is not any
hypothesis that performs well on both domains, domain adap-
tation cannot be conducted. In fact, we can also minimize
this term by enforcing entropy loss to guarantee intra-class
consistency [16], [17]. Nevertheless, in our preliminary exper-
iments as shown in Table VI, entropy loss does not boost the
performance a lot, so we forsake it for the simplicity of our
proposed method.

TABLE VI: Evaluation of the entropy loss on Colon-A.

Methods Acc (%) MP MR Macro F1

CoUDA + entropy loss 87.92 88.08 87.15 87.58
CoUDA 87.75 87.62 86.85 87.22

E. Discussion about Ensemble Methods

We adopt the average prediction of two peer networks as
the final prediction, which is commonly used in ensemble
learning [18]. The promising experiments in the main text
have demonstrated the effectiveness of the average ensemble.
In fact, one can also use the maximum ensemble, which even
performs slightly better as shown in Table VII.

TABLE VII: Evaluation of different ensemble methods on
Colon-A.

Methods Acc (%) MP MR Macro F1

Average Ensemble 87.75 87.62 86.85 87.22
Maximum Ensemble 88.14 87.58 88.20 87.87

F. Discussion about the Number of Source Annotations

We further evaluate the influence of the annotation number
in the source domain, we test CoUDA with different numbers
of WSIs on Colon-A. Table VIII shows that the more labeled
WSIs, the better performance of CoUDA. Note that with only
20,000 labeled WSIs, CoUDA is able to perform well.

TABLE VIII: Performance of CoUAD with different numbers
of labeled WSIs on Colon-A.

Number of WSIs Acc (%) MP MR Macro F1

5,000 83.98 82.70 81.41 81.87
10,000 85.93 87.27 82.25 83.73
20,000 87.23 87.28 85.14 86.05
44,542 87.75 87.62 86.85 87.22

G. Discussion about the Number of Peer Networks

This section further evaluates the influence of the number of
peer networks on CoUDA. Table IX shows the performance vs.
the learning cost regarding different numbers of peer networks
on Colon-A. To be specific, the increase in the number of
peer networks improves the performance of CoUDA, while
the magnitude of the increase gradually decreases. At the same
time, the number of parameters and the computational costs
(#FLOPs and Memory consumption) increase steadily. This
may be a huge concern in many real-world applications, e.g.,
on mobile phones or intelligent microscopes. Therefore, it is
better for users to select a suitable number of peer networks
based on practical needs and computing resources.

H. Visualization of Training Curve

In the proposed CoUDA method, by using the Gradient
Reverse Layer (GRL), we can train all network components
simultaneously in an end-to-end manner. Note that GRL sta-
bilises the adversarial training and is widely used in adversarial
domain adaptation [19], [20], [21], [22]. In fact, to improve
the training efficiency, we first train the network backbone on
the source WSI data, and then apply CoUDA to train the pre-
trained model with both labeled WSIs and unlabeled MSIs.
As for the latter process, we show the training curve of each
loss term in Fig. 1. To be specific, both the classification loss
and the diversity loss evolve as expected, while the domain
loss gradually reaches equilibrium.



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

TABLE IX: Performance of CoUDA with different numbers of peer networks on Colon-A.

#Peer Networks Acc (%) MP MR Macro F1 #Params #FLOPs Memory

2 87.75 87.62 86.85 87.22 7.75M 3.13G 16,783 MiB
3 90.26 91.55 87.99 89.45 9.98M 4.69G 23,421 MiB
4 92.08 91.82 92.07 91.91 12.20M 6.26G 30,058 MiB
5 93.29 93.94 91.95 92.84 14.43M 7.82G 36,697 MiB
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Fig. 1: Training curves of CoUDA.
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