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Abstract— Deep learning has achieved great success in image
classification task when given sufficient labeled training images.
However, in fundus image based glaucoma diagnosis, we often
have very limited training data due to expensive cost in data
labeling. Moreover, when facing a new application environment,
it is difficult to train a network with limited labeled training
images. In this case, some images from some auxiliary domains
(i.e., source domain) could be exploited to improve the per-
formance. Unfortunately, direct using the source domain data
may not achieve promising performance for the domain of
interest (i.e., target domain) due to reasons like distribution
discrepancy between two domains. In this paper, focusing on
glaucoma diagnosis, we propose a deep adversarial transfer
learning method conditioned on label information to match the
distributions of source and target domains, so that the labeled
source images can be leveraged to improve the classification
performance in the target domain. Different from the most
existing adversarial transfer learning methods which consider
marginal distribution matching only, we seek to match the
label conditional distributions by handling images with different
labels separately. We conduct experiments on three glaucoma
datasets and adopt multiple evaluation metrics to verify the
effectiveness of our proposed method.

I. INTRODUCTION

Glaucoma is caused by structural changes in the optic
nerve head, and it is often caused by the progressive degen-
eration of optic nerve fibres [7]. Due to the incurableness of
glaucoma, it is extremely important to diagnose glaucoma
from digital fundus photographs in time. Recently, deep
convolutional networks have shown promising performance
in classifying fundus images into glaucoma and normal
fundus ones given sufficient labeled training images [3] due
to their powerful representative ability.

However, in fundus image based glaucoma diagnosis, due
to the expensive cost in data collection and annotation, we
usually have only limited labeled training images. As a result,
it is difficult to train a network to diagnose glaucoma from
fundus images. Although the domain of interest (i.e., target
domain) includes only limited images, some labeled images
in an auxiliary domain (i.e., source domain) can be used to
enhance the classification performance in the target domain.
For example, in order to classify the images in ORIGA
dataset [16], we can leverage the images in iSee or REFUGE
datasets to train a better classifier for ORIGA. Due to the
domain discrepancy between different datasets, direct using
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source images may not achieve promising performance in the
target domain. To alleviate this, transfer learning is proposed
to match the data distributions of different domains [10]. As
a result, the source images can be better leveraged for the
classification task in the target domain.

There have been some works investigating deep learning
for domain transfer [8], [9]. Among them, deep adversarial
learning has attracted much attention for distribution match-
ing [4], [15]. However, most of them only match the marginal
distributions of domains. This means that the approaches
for distribution matching omit the label information, which
is vital for classification. Motivated by this, we propose a
deep adversarial transfer learning method called Conditional
Adversarial Transfer (CAT) to reduce the label conditional
distributions for glaucoma diagnosis.

Specifically, we introduce two domain discriminators for
positive and negative samples, respectively. The domain
discriminators are trained to distinguish between source and
target images, and encoders are trained to make source and
target images indistinguishable by domain discriminators.
By this adversarial learning approach, the label conditional
distributions of two domains are matched, and label infor-
mation extracted from the source images can be transferred
into the target domain. To demonstrate the effectiveness of
our proposed method, we adopt three glaucoma datasets and
multiple evaluation metrics in our experiments.

A. Related Studies

In the last decade, deep learning has been widely applied
in medical image analysis especially for fundus image pro-
cessing [1], [7]. M-net applies a multi-scale U-net for fundus
segmentation [3]. In [13], Sun et al. use an object detection
network for optic disc segmentation. In [14], R-CNN is used
to localize optic disc and cup for glaucoma diagnosis.

Transfer learning has been widely studied in the commu-
nities of machine learning, data mining, medical imaging,
etc [10], [12], [11]. Adversarial learning has also attracted
much attention since the proposal of generative adversarial
networks [5]. ADDA [15] performs adversarial learning
between a domain discriminator and two encoders to match
the source and target distributions. A gradient reversal layer
(GRL) is proposed in [4] to reverse the gradient from a do-
main discriminator for distribution matching. These methods
aim to match the marginal distributions without consider-
ing the label information, which is vital for classification.
Compared with them, our proposed method exploit label in-
formation to perform label conditional distribution matching
between domains, thus can achieve better performance in
glaucoma diagnosis.
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II. METHODOLOGY

A. Problem Statement

We now present the notations used in this paper. Let
S = {(xs

i , y
s
i )}

ns
i=1 be the set of source images and their

corresponding labels, where ysi ∈ {0, 1}, and ns is the
number of source images. The target images and the cor-
responding labels are denoted as T = {(xt

i, y
t
i)}

nt
i=1, where

yti ∈ {0, 1}, and nt is the number of target images. S and T
are drawn from two different distributions, e.g., two different
glaucoma datasets collected from two practical applications.
Among the target images, let L = {xl

i, y
l
i}

nl
i=1 be the set of

labeled images and their labels, and U = {xu
i }

nu
i=1 be the

set of unlabeled images for testing, where nl and nu are the
numbers of images in L and U. In this paper, we leverage
both source and target labeled images (i.e., S, L) to learn a
classifier for predicting target test images (i.e., U).

B. Overview

Fig. 1 presents an overview of the proposed method CAT.
We use a source encoder Es and a target encoder Et to
extract high-level representations for source and target im-
ages, respectively. A classifier C is trained on images S and
L to generate the probability Pr(y = 1|x) given an image
x from the source or target domain. Domain discriminators
D+ and D− are trained to generate the probability that the
input comes from the source domain, where D+ is trained
for positive images, and D− is trained on negative images.
By performing adversarial learning between the encoders and
domain discriminators, the distributions of source and target
representations can be matched. As a result, the classifier
can be used to classify target images in the testing set. In
practice, we share the parameters of two encoders Es and Et,
thus a better encoder is expected because of more training
images.

C. Conditional Adversarial Transfer
To obtain an effective classifier, we leverage labeled

images from both source and target domains to train the
encoders and classifier by minimizing the following loss
function:

Lbce(Es, Et, C) =

−
ns∑
i=1

ys
i logC(Es(x

s
i )) + (1− ys

i ) log
(
1− C(Es(x

s
i ))
)

−
nl∑
i=1

yl
i logC(Et(x

l
i)) + (1− yl

i) log
(
1− C(Et(x

l
i))
)
, (1)

where the classifier C consists of a fully-connected layer
for classification, and encoders Es and Et are convolutional
networks.

Due to the domain discrepancy, the direct use of source
and target images for training the model cannot achieve
promising performance on target test images. To alleviate
this issue, one of the common methods is to introduce a
domain discriminator, and then perform adversarial learning
between the discriminator and encoders. Specifically, let D
be a domain discriminator network trained by the binary
cross-entropy loss to calculate the probability that the input

comes from the source domain, the goal of Es and Et is
to mislead D to maximize its loss function. In this way, the
domain discriminator finally cannot distinguish the source
and target embeddings, so that the marginal distribution of
source and target domain can be aligned, and the classifier C
is trained on a unified data distribution. Adversarial learning
between (Es, Et) and D can be formulated as the following
adversarial loss function:

Ladv(Es, Et, D) =

−
ns∑
i=1

logD(Es(x
s
i ))−

nl∑
i=1

log
(
1−D(Et(x

l
i))
)
. (2)

However, this approach has a severe drawback that it omits
label conditional information involved in images, which
is important to train a classifier for glaucoma diagnosis.
Motivated by this, we propose to match the label conditional
distribution of the source and target domains by handling
positive and negative data separately. To this end, we employ
two domain discriminators, D+ and D−, to respectively
calculate the probability that the input comes from the
source domain, and perform adversarial learning between the
encoders and the discriminators to match the distributions of
positive and negative images. Let xs+

i and xl+
i be positive

images, ns+ and nl+ be the numbers of positive source im-
ages and positive target images, respectively. The adversarial
objective related to D+ is given by

L+
adv(Es, Et, D+) =

−
ns+∑
i=1

logD+(Es(x
s+
i ))−

nl+∑
i=1

log
(
1−D+(Et(x

l+
i ))

)
. (3)

Similarly, define xs−
i and xl−

i as negative images, ns− and
nl− as the numbers of negative source images and negative
target images, respectively. The adversarial objective related
to D− is given by

L−
adv(Es, Et, D−) =

−
ns−∑
i=1

logD−(Es(x
s−
i ))−

nl−∑
i=1

log
(
1−D−(Et(x

l−
i ))

)
. (4)

Overall, the optimization problems w.r.t. C, D+ and D−
are given by

min
C
Lbce(Es, Et, C), (5)

min
D+

L+
adv(Es, Et, D+), (6)

min
D−
L−
adv(Es, Et, D−), (7)

respectively. The encoders Es and Et receive losses from the
classifier C and the domain discriminators (D+, D−), and
are optimized by minimizing optimization problem:

min
Es,Et

Lbce(Es, Et, C)

− L+
adv(Es, Et, D+)− L−

adv(Es, Et, D−). (8)

III. EXPERIMENTS

In order to evaluate the performance of the proposed
method, we conduct experiments on different fundus image
datasets for glaucoma diagnosis, and adopt multiple metrics
for evaluation and several state-of-the-art transfer learning
methods for comparison.
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Fig. 1. An illustration of our proposed method. The source (resp. target) domain encoder Es (resp. Et) extracts high-level embeddings from source
(resp. target) images, and the classifier C aims to classify source and target images. The domain discriminator D+ (resp. D−) is trained to distinguish
between positive (resp. negative) source and positive (resp. negative) target images, and two encoders Es and Et are trained to hamper the classification
performance of the domain discriminators D+ and D−. As a result, the embeddings of source and target images are indistinguishable by the domain
discriminators, so that the label conditional distributions of source and target domains are matched.

A. Datasets

• REFUGE1 contains 800 fundus images in total, com-
prising of 80 with glaucoma and 720 normal ones.

• iSee contains fundus images with four diseases, includ-
ing AMD, DR, glaucoma and myopia. We randomly
pick up 800 images with glaucoma and 800 normal ones
from the dataset as a domain.

• ORIGA [16] contains 650 fundus images with 168
glaucomatous eyes and 482 normal eyes. Following the
setting in [2], the dataset is divided into 325 labeled im-
ages for training and 325 unlabeled images for testing.

These three datasets are collected by different devices from
different application environments. Therefore, they are taken
as three different domains. In our experiments, we take
ORIGA as the target domain, and the other two datasets as
the source domain, respectively. As a result, we perform two
transfer learning tasks, i.e., REFUGE → ORIGA and iSee
→ ORIGA.

B. Compared Methods

To demonstrate the effectiveness of our proposed method,
we compare against several state-of-the-art transfer learning
methods: ADDA [15], GRL [4], DAN [8], and JAN [9].

• ADDA is a generalized framework for domain adap-
tation. It combines discriminative modeling and GAN
loss for asymmetric adaptation.

• GRL addresses domain adaptation by making the source
and target samples indistinguishable for a domain dis-
criminator by adversarial training.

• DAN learns transferable features by embedding deep
features of multiple task-specific layers to reproducing
kernel Hilbert spaces(RKHSs) and matching different
distributions optimally using multi-kernel MMD.

1https://refuge.grand-challenge.org

• JAN extends DAN by matching the joint distributions of
the deep activations in multiple domain-specific layers
using Joint MMD.

For the above unsupervised domain adaptation methods,
we firstly training the networks in an unsupervised domain
adaptation paradigm, and then fine-tune the classifier to take
better advantage of labeled target images for training. The
fine-tuned versions of the above methods are denoted as
ADDA-FT, GRL-FT, DAN-FT and JAN-FT.

In addition, we further conduct the following baseline
methods for completed comparison:

• The source-only model (SO) only uses the source
images for training without considering the domain
discrepancy and knowledge transfer.

• The target-only model (TO) only uses labeled target
data for training. This method is a classical supervised
learning method without leveraging source data for
learning.

• The source+target model (S+T) directly trains the net-
work on all the source and target training data without
considering the domain discrepancy.

C. Implementation details

In our experiments, all the methods are implemented
on PyTorch platform2. We use ResNet-50 [6] pretrained
on ImageNet dataset to initialize the encoders, and use
a fully-connected layer as the classifier and the domain
discriminators. The network is trained on source and target
training images for 200 epochs using a batch size of 16. We
apply SGD to train the network with the learning rate being
0.0001.

D. Evaluation Metrics

In glaucoma diagnosis, datasets are usually highly im-
balanced, which means that the number of normal images

2https://pytorch.org
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TABLE I
RESULTS ON REFUGE→ ORIGA TASK.

Method recall F1 G-mean

SO 0.5895 0.5308 0.6601
TO 0.5604 0.5730 0.6873
S+T 0.7419 0.6699 0.7734

ADDA [15] 0.6842 0.5909 0.7106
GRL [4] 0.6421 0.5701 0.6930
DAN [8] 0.7684 0.6728 0.7776
JAN [9] 0.7474 0.6762 0.7774

ADDA+FT 0.7340 0.6188 0.7366
GRL+FT 0.7263 0.6301 0.7434
DAN+FT 0.7789 0.6916 0.7915
JAN+FT 0.7895 0.6757 0.7817

CAT (ours) 0.8191 0.6968 0.8007

TABLE II
RESULTS ON ISEE→ ORIGA TASK.

Method recall F1 G-mean

SO 0.7579 0.6154 0.7329
TO 0.5604 0.5730 0.6873
S+T 0.8085 0.6941 0.7967

ADDA [15] 0.8000 0.6360 0.7500
GRL [4] 0.8421 0.6426 0.7558
DAN [8] 0.7684 0.6854 0.7862
JAN [9] 0.7684 0.6887 0.7883

ADDA+FT 0.7979 0.6466 0.7611
GRL+FT 0.8000 0.6255 0.7413
DAN+FT 0.8000 0.7037 0.8022
JAN+FT 0.7789 0.7048 0.8001

CAT (ours) 0.8737 0.7124 0.8153

is much larger than that of the images with glaucoma.
Therefore, accuracy is insufficient to reflect the performance
of the methods. Here we adopt multiple metrics in our
experiments for evaluation. Let TP, TN, FP and FN denote
the number of true positive, true negative, false positive
and false negative, respectively. The metrics we will use
are defined as: recall = TP

TP+FN , F1 = 2·TP
2·TP+FN+FP ,

G-mean =
√

TP
TP+FN ·

TN
TN+FP .

E. Results and Discussions

TABLES I and II report the results on REFUGE →
ORIGA and iSee → ORIGA, respectively. The best results
are highlighted with boldface case, and the second best re-
sults are underlined. We draw several interesting observations
as follows:

• Our proposed method CAT achieves the best perfor-
mance in terms of the three evaluation metrics, which
demonstrates the effectiveness of label conditional dis-
tribution matching in deep transfer learning.

• S+T outperforms both SO and TO, which demon-
strates that although the domain discrepancy affects the
learning performance, more training images are still
beneficial for training an effective classifier.

• For ADDA, DAN and JAN, the fine-tuned versions
usually outperform the ones without fine-tuning, which
verifies the effects of labeled target images.

IV. CONCLUSION

In this paper, we study transfer learning for glaucoma
diagnosis based on deep adversarial learning. We propose
to match the label conditional distributions of the source
and target domains. To this end, we employ two domain
discriminators to handle images with positive and negative
labels, respectively. The experimental results on three glau-
coma datasets demonstrate the effectiveness of our proposed
method in terms of multiple metrics.
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