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ABSTRACT
We address the challenging task of event localization, which re-
quires the machine to localize an event and recognize its category
in unconstrained videos. Most existing methods leverage only the
visual information of a video while neglecting its audio information,
which, however, can be very helpful and important for event local-
ization. For example, humans often recognize an event by reasoning
with the visual and audio content simultaneously. Moreover, the
audio information can guide the model to pay more attention on
the informative regions of visual scenes, which can help to reduce
the interference brought by the background. Motivated by these, in
this paper, we propose a relation-aware network to leverage both
audio and visual information for accurate event localization. Specif-
ically, to reduce the interference brought by the background, we
propose an audio-guided spatial-channel attention module to guide
the model to focus on event-relevant visual regions. Besides, we
propose to build connections between visual and audio modalities
with a relation-aware module. In particular, we learn the represen-
tations of video and/or audio segments by aggregating information
from the other modality according to the cross-modal relations.
Last, relying on the relation-aware representations, we conduct
event localization by predicting the event relevant score and clas-
sification score. Extensive experimental results demonstrate that
our method significantly outperforms the state-of-the-arts in both
supervised and weakly-supervised AVE settings. The source code
is available at https://github.com/FloretCat/CMRAN.
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1 INTRODUCTION
Event localization is an important yet challenging task for video un-
derstanding, which requires the machine to localize events/actions
and recognize the categories in an unconstrained video. In recent
years, this task has attracted increasing attention [3, 10, 31, 39, 40,
42]. Most existing methods take only RGB frames or optical flow as
input to localize and identify an event. However, due to the strong
visual background interference and large visual content variations,
it can be difficult to localize events with only visual information.
Hearing is one of the main ways for humans to perceive the real
world, and the audio signal is potentially helpful for event localiza-
tion. Specifically, audio signals can guide us to focus on informative
regions of visual scenes. This is intuitively apparent since when
we hear the sounds of a dog barking in a video, we are most likely
to observe the area where the dog is located. Besides, the audio
signals often carry useful cues for reasoning.

The audio-visual event (AVE) localization task, which requires a
machine to determine the presence of an event that is both audible
and visible in a video segment and to what category the event
belongs, has attracted increasing attention. In this paper, we study
how to effectively leverage audio and visual information for event
localization by addressing the AVE localization task. However, this
task is very challenging due to the following difficulties: 1) complex
visual backgrounds in an unconstrained video make it difficult to
localize an AVE, and 2) localizing and recognizing an AVE requires
the machine to simultaneously consider the information from two
modalities (i.e., audio and vision) and exploit their relations. This is
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Figure 1: An illustrative example of the audio-visual event
localization. Given a videowith acoustic contents, we seek to
determine whether there exists an event that is both audible
(e.g., hearing a sound emitted by a moving train) and visible
(e.g., seeing themoving train) in any segment. To accomplish
this task,we need to consider the twomodalities and capture
the relations between them, which is very challenging.

difficult since it is nontrivial to build connections between complex
visual scenes and intricate sounds [25]. Existing methods [24, 30,
36] in this task process two modalities independently, and simply
fused them together just before the final classifiers. They focus on
modeling internal temporal relations (i.e., intra-modality relations)
to exploit potential cues for event localization, while neglecting
rich and valuable inter/cross-modality relations.

We contend that the cross-modality relation also plays an impor-
tant role in AVE localization. Intuitively, the cross-modality relation
is the audio-visual correlation between audio and video segments.
For example, as shown in Figure 1, we hear the sound of a train
horn while seeing a moving train. This audio-visual correlation
suggests an event that is audible and visible. Therefore, we argue
that cross/inter-modality relations also contribute to the detection
of an audio-visual event. Such intuition and case motivate us to
exploit cross/inter-modality relations for AVE localization.

In recent years, self-attention mechanism [32] has achieved
great success in capturing intra-modality relations among words
in NLP [5, 6]. It first transforms input features into query, key and
value (i.e., memory) features. Then, it calculates the attentive output
using a weighted summation over all values in the memory, where
the weights (i.e., relations) are learned from the key in the memory
and the query. However, since the query and memory are derived
from the same modality, directly applying self-attention to event
localization cannot exploit the cross-modality relations between vi-
sual and acoustic contents. On the contrary, if the memory acquires
features of two modalities, then the query (from one of the two
modalities) will enable exploration of the cross-modality relations
while not missing the intra-modality relation information.

In this paper, we propose a relation-aware module to build con-
nections between visual and audio information by exploiting inter-
modality relations. This module wraps an attention mechanism
called cross-modality relation attention (CMRA) inspired by the
success of self-attention. Different from self-attention, the query is
derived from one modality while the keys and values are derived
from two modalities in our CMRA. In this way, an individual seg-
ment from a modality can aggregate useful information from all
related segments from two modalities based on the learned intra-
and inter-modality relations. Our intuition is that simultaneously
watching the visual scenes and listening to the sounds (i.e., ex-
ploiting intra- and inter-modality relation information from two

modalities) is more effective and efficient than separately perceiving
them (i.e., exploiting only intra- or inter-modality relation infor-
mation) for localizing an audible and visible event. We attempt to
exploit both useful relations to facilitate representation learning
and further boost the performance of AVE localization.

Besides, since the strong visual background interference can
obstruct accurate event localization, we aim to highlight informa-
tive visual regions and features to reduce the interference. To this
end, we propose an audio-guided spatial-channel attention mod-
ule, which leverages audio information to build visual attention
at spatial and channel levels. We integrate these components to-
gether and present a cross-modal relation-aware network, which
outperforms state-of-the-arts by a certain margin in supervised and
weakly-supervised AVE localization tasks on AVE dataset.

Our main contributions in this paper are as follows:

• We propose an Audio-Guided Spatial-Channel Attention
module (AGSCA) to leverage the guidance capability of au-
dio signals for visual attention, which precisely highlights
informative features and sounding regions.

• We propose a relation-aware module to exploit the intra-
modality and inter-modality relations for event localization.

• Built upon these two modules, we present a Cross-Modal
Relation-Aware Network for supervised and weakly super-
vised AVE localization tasks. Experimental results demon-
strate that our method significantly outperforms the state-
of-the-arts in both tasks on AVE dataset, suggesting the
effectiveness of the proposed method.

2 RELATEDWORK
In this section, we first introduce recent works on audio-visual
learning. Then, we narrow the scope to the task we investigate
in this paper i.e., audio-visual event localization. Last, we briefly
introduce the attention mechanism.
Audio-Visual Learning. Audio-visual learning has attracted at-
tention from many domains, such as action recognition [12, 20, 27],
sound source separation [9, 43, 44] and generation [8], and audio-
visual event localization [24, 30, 36]. Among them, Gao et al. [12]
use audio to build a previewing mechanism to reduce temporal re-
dundancies. Kazakos et al. [20] propose a sparse temporal sampling
strategy to fuse multiple modalities to boost action recognition.
Owens et al. [27] propose to use audio as a supervisory signal for
learning visual models in an unsupervised manner. Oh et al. [26]
present a Speech2Face framework that uses the voice-face corre-
lations to generate facial images behind the voice. In addition, to
exploit the readily available large-scale unlabelled videos, many
works [1, 11, 28] leverage audio-visual correspondence to learn
audio-visual representations in a self-supervised manner.
Audio-Visual Event Localization. Tian et al. [30] first use two
LSTMs to separately model temporal dependencies of audio and
video segment sequences and then fuse audio and visual features via
additive fusion for event category prediction. Lin et al. [24] first sep-
arately process audio and visual modalities and then fuse features of
two modalities via LSTMs, which works in a sequence-to-sequence
manner. Wu et al. [36] propose a dual attention matching module,
which uses global information obtained by intra-modality relation
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Figure 2: Schematic of our cross-modal relation-aware network. First, audio-guided spatial-channel attention serves to lever-
age audio information to guide visual attention at spatial and channel levels. Then, two relation-aware modules capture both
intra-modality relations and inter-modality relations for two modalities separately. Last, cross-modal relation-aware visual
and acoustic features are incorporated together via an audio-video interaction module, yielding a joint dual-modality repre-
sentation for the following classifiers.

modeling and local information to measure cross-modality similar-
ity via the inner-product operation. The cross-modality similarity
directly serves as a final event relevance prediction.

These methods mainly concentrate on leveraging intra-modality
relations as potential cues, ignoring the equally valuable cross-
modality relation information for event localization. Different from
these methods, our proposed cross-modal relation-aware networks
enable bridging connections between visual and audio modalities,
by simultaneously exploiting both the intra- and inter-modality
relation information.
Attention Mechanism. Attention mechanism mimics human vi-
sual perception function. It seeks to automatically focus on cer-
tain portions of the input that have high activation. Attention
mechanism has many variants, and our work mainly relates to
self-attention.

Vaswani et al. [32] propose the self-attention mechanism to cap-
ture long-range dependencies amongwords for machine translation.
Recently self-attention mechanism has emerged widely in NLP [5–
7, 35] and many language-vision tasks [4, 18, 19, 38, 41]. Devlin et
al. [6] propose the well-known BERT model based on self-attention
for pretraining word embeddings. Wang et al. [33] transfer self-
attention into the vision domain, and attempt to capture pixel-level
long-range dependencies spatially and temporally. Ye et al. [37]
propose the cross-modal self-attention mechanism for referring
image segmentation, where they perform self-attention over the
fused features from multiple modalities. Hu et al. [16] propose a
relation module based on self-attention to capture the relations
among bounding boxes for object detection.

In contrast to the self-attention, which focuses on capturing
relations within a modality, our proposed cross-modality relation
attention enables simultaneous exploitation of intra- and inter-
modality relations for audio-visual representation learning.

3 PROPOSED METHOD
Notations. Let S = {𝑆𝑡 = (𝑉𝑡 , 𝐴𝑡 )}𝑇𝑡=1 be a video sequence with
𝑇 non-overlapping segments. Here, 𝑉𝑡 and 𝐴𝑡 represent the visual

content and its corresponding audio content of the 𝑡-th segment,
respectively.
Problem Definition. Given a video sequence S, AVE localization
requires a machine to predict the event label (including background)
for each segment 𝑆𝑡 relaying on𝑉𝑡 and𝐴𝑡 , as illustrated in Figure 1.
An audio-visual event is defined as an event that is both audible and
visible (i.e., hearing a sound emitted by an object and simultaneously
seeing the object). If a segment 𝑆𝑡 is not both audible and visible, it
should be predicted as background, as labeled in Figure 1. The main
challenge in this task is that the machine is required to analyze
two modalities and capture their relations. Cross-modality relation
information can be used to boost performance and, unfortunately,
is mostly ignored by existing methods. In this paper, we study this
task in two settings:
Supervised Setting.We have access to segment-level labels dur-
ing the training phase. A segment-level label indicates the cate-
gory (including background) of the corresponding segment. Non-
background category labels are given only if the sounds and the
corresponding sounding objects are presented.
Weakly supervised Setting.We can access only video-level labels
during training, and we still aim to predict a category for each
segment during testing. A video-level label indicates whether a
video contains an audio-visual event and to what category the
event belongs.

3.1 General Scheme
We focus on solving the problem that most existing event localiza-
tion methods neglect the information from the audio signal in a
video, which, however, can help to alleviate the interference of com-
plex background and provide more cues for reasoning. We study a
method that leverages both the visual and audio information for
event localization and evaluate it on an audio-visual event local-
ization task [30], which requires the machine to localize an event
that is both audible and visible in an untrimmed video. This task
is very challenging, since an unconstrained video often contains
complex backgrounds and it is nontrivial to build connections be-
tween complex visual scenes and intricate sounds [25]. To address
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these challenges, we propose an audio-guided attention module to
highlight certain spatial regions and features to reduce background
interference. We also devise relation-aware modules to exploit inter-
modality relations along with intra-modality relations for localizing
an audio-visual event.

Specifically, we propose a cross-modal relation-aware network
(CMRAN) with three main components as shown in Figure 2, in-
cluding audio-guided spatial-channel attention module (AGSCA),
relation-aware module and audio-video interaction module. Given
a video sequenceS, we first forward each audio-visual pair {𝑉𝑡 , 𝐴𝑡 }
through pretrained CNN backbones to extract segment-level fea-
tures {𝒗𝑡 , 𝒂𝑡 }𝑇𝑡=1. Then, we forward audio and visual features through
the AGSCA module, to obtain enhanced visual features. With audio
features and enhanced visual features at hand, we prepare two
relation-aware modules (i.e., video relation-aware module and au-
dio relation-aware module in Figure 2) separately for audio and
visual features. We feed visual and audio features into the relation-
aware modules to exploit both relations for two modalities. Last, the
relation-aware visual and audio features are fed into the audio-video
interaction module, yielding a comprehensive joint dual-modality
representation for event classifiers.

In the following, we first illustrate the audio-guided spatial-
channel attention in Section 3.2. We then introduce the relation-
aware module and audio-video interaction module in Section 3.3
and Section 3.4, respectively. Last, we introduce how to apply our
method to both supervised and weakly-supervised AVE localization
in Section 3.5.

3.2 Audio-Guided Spatial-Channel Attention
Previous works [27, 30] have shown that audio signals are capa-
ble of guiding visual modeling. Besides, the channel attention can
ignore irrelevant features and improve the quality of visual rep-
resentations [17]. Inspired by these, we propose an audio-guided
spatial-channel attention module (AGSCA), which seeks to make
the best of the audio guidance capability for visual modeling. Dif-
ferent from [30], where audio features only participate in visual at-
tention in the spatial dimension, our AGSCA exploits audio signals
to guide visual attention in both spatial and channel dimensions,
which emphasizes informative features and spatial regions to boost
the localization accuracy. We follow [2] to perform channel and
spatial attention sequentially.

Given audio features 𝒂𝑡 ∈ R𝑑𝑎 and visual features 𝒗𝑡 ∈ R𝑑𝑣×(𝐻∗𝑊 )

where 𝐻 and 𝑊 are the height and width of feature maps re-
spectively, AGSCA first generates channel-wise attention maps
𝑴𝑐
𝑡 ∈ R𝑑𝑣×1 to adaptively emphasize informative features. It then

produces spatial attention maps 𝑴𝑠
𝑡 ∈ R1×(𝐻∗𝑊 ) for the channel-

attentive features to highlight sounding regions, yielding channel-
spatial attentive visual features 𝒗𝑐𝑠𝑡 , as illustrated in Figure 3. The
attention process can be summarized as,

𝒗𝑐𝑠𝑡 = 𝑴𝑠
𝑡 ⊗ (𝒗𝑐𝑡 )𝑇 ,

𝒗𝑐𝑡 = 𝑴𝑐
𝑡 ⊙ 𝒗𝑡 ,

(1)

where ⊗ denotes matrix multiplication, and ⊙ means element-wise
multiplication. We next separately introduce the channel-wise at-
tention that generates attention maps𝑴𝑐

𝑡 and spatial attention that
produces attention maps 𝑴𝑠

𝑡 .

Visual Features 𝒗𝒕

Audio Features 𝒂𝒕

𝐌𝐭
𝐜

Channel-wise
Attention

Guidance

Channel Attentive  
Visual Features 𝒗𝒕𝒄

Spatial Attention

𝐌𝐭
𝐬

Attentive Visual 
Feature Vector 𝒗𝒕𝒄𝒔

Figure 3: Illustration of the AGSCA module. AGSCA lever-
ages the audio guidance capability to guide visual attention
at channel level (left part) and spatial level (right part).

Channel-Wise Attention. We explicitly model the dependencies
between channels of features with the guidance of audio signals.
Specifically, we first project audio and visual features to the same
dimension 𝑑𝑣 using fully-connected layers with non-linearity, re-
sulting in audio guidance maps 𝒂𝑚𝑡 ∈ R𝑑𝑣 and projected visual
features with dimensions of 𝑑𝑣 × (𝐻 ∗𝑊 ). We then leverage the
guidance information of 𝒂𝑚𝑡 by fusing visual features with 𝒂𝑚𝑡 via
element-wise multiplication. Following [17], we spatially squeeze
the fused features by global average pooling. Last, we forward the
fused feature vector through two fully-connected layers with non-
linearity to model the relationships between channels, yielding
channel attention maps 𝑴𝑐

𝑡 . We give the details as follows:

𝑴𝒄
𝒕 = 𝜎 (𝑾1𝑼

𝑐
1 (𝛿𝑎 (𝑼

𝑐
𝑎𝒂𝑡 ⊙ 𝑼𝑐𝑣𝒗𝑡 ))) , (2)

where 𝑼𝑐𝑎 ∈ R𝑑𝑣×𝑑𝑎 , 𝑼𝑐𝑣 ∈ R𝑑𝑣×𝑑𝑣 , and 𝑼𝑐1 ∈ R𝑑×𝑑𝑣 are fully-
connected layers with ReLU as an activation function,𝑾1 ∈ R𝑑𝑣×𝑑
are learnable parameters with 𝑑 = 256 as a hidden dimension, 𝛿𝑎
indicates global average pooling, and 𝜎 denotes the sigmoid func-
tion. We add a residual connection by adding one to each element
of 𝑴𝒄

𝒕 to obtain the final channel attention maps.
Spatial Attention. We also leverage the guidance capability of
audio signals to guide visual spatial attention. Spatial attention
follows a similar pattern to the aforementioned channel-wise atten-
tion. Note that the input visual features 𝒗𝑐𝑡 are channel attentive.
We formulate the process of spatial attention as follows:

𝑴𝑠
𝑡 = Softmax(𝒙𝑠𝑡 ) ,

𝒙𝑠𝑡 = 𝛿 (𝑾2 ((𝑼 𝑠𝑎𝒂𝑡 ) ⊙ (𝑼 𝑠𝑣𝒗𝑐𝑡 ))) ,
(3)

where 𝑼 𝑠𝑎 ∈ R𝑑×𝑑𝑎 , 𝑼 𝑠𝑣 ∈ R𝑑×𝑑𝑣 are fully-connected layers with
ReLU as an activation function,𝑾2 ∈ R1×𝑑 are learnable parame-
ters with 𝑑 = 256 as a hidden dimension, and 𝛿 denotes the hyper-
bolic tangent function. With the spatial attention maps𝑴𝑠

𝑡 at hand,
we perform weighted summation over 𝒗𝑐𝑡 according to 𝑴𝑠

𝑡 to high-
light informative regions and shrink spatial dimensions, yielding a
channel-spatial attentive visual feature vector 𝒗𝑐𝑠𝑡 ∈ R𝑑𝑣 as output.

3.3 Relation-Aware Module
A relation-aware module involves a cross-modality relation mod-
ule denoted as 𝑀𝑐𝑚𝑟𝑎 , and an internal temporal relation module
denoted as𝑀𝑠𝑒𝑙 𝑓 . The module 𝑀𝑐𝑚𝑟𝑎 contains the cross-modality
relation attention mechanism (CMRA) illustrated below to exploit
relation information. 𝑀𝑠𝑒𝑙 𝑓 serves as an assistant of 𝑀𝑐𝑚𝑟𝑎 . We
first give an overall description of the relation-aware module and
then detail each component separately.
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Figure 4: Illustration of the proposed CMRA. The bars in
blue and orange represent segment-level features from dif-
ferent modalities. CMRA simultaneously exploits the intra-
modality and inter-modality relation information for audio
or video segment features.

Without loss of generality, we take the video relation-aware
module for illustration. Given visual features 𝒗 ∈ R𝑇×𝑑𝑣 and audio
features 𝒂 ∈ R𝑇×𝑑𝑎 , we first transform them into a common space
via linear layers. Here, we denote the transformed visual and audio
features as 𝑭 𝑣 and 𝑭𝑎 , respectively, with the same dimensions of
𝑇 ×𝑑𝑚 . Then,𝑀𝑠𝑒𝑙 𝑓 takes as input 𝑭𝑎 to explore internal temporal
relations in advance, yielding self-attentive audio features denoted
as 𝑭 𝑠𝑎 . Last,𝑀𝑐𝑚𝑟𝑎 takes as input 𝑭 𝑣 and 𝑭 𝑠𝑎 to explore intra- and
inter-modality relations for visual features with the help of CMRA,
and yields relation-aware visual features 𝒗𝑜 as output. The overall
process can be summarized as

𝒗𝑜 = 𝑀𝑐𝑚𝑟𝑎 (𝑭 𝑣, 𝑭 𝑠𝑎) ,
𝑭 𝑠𝑎 = 𝑀𝑠𝑒𝑙 𝑓 (𝑭𝑎) ,
𝑭𝑎 = 𝒂𝑾𝑎, 𝑭 𝑣 = 𝒗𝑾 𝑣 ,

(4)

where𝑾𝑎 ∈ R𝑑𝑎×𝑑𝑚 and𝑾 𝑣 ∈ R𝑑𝑣×𝑑𝑚 are learnable parameters.
Cross-Modality Relation Attention. Given the audio features
and visual features, we aim to exploit cross-modality relations while
not neglecting the intra-modality relation information. To this end,
we propose a cross-modality relation attention (CMRA) mechanism.
We implement CMRA as shown in Figure 4 inspired by the success
of self-attention [32].

Specifically, we first project visual features 𝒗 ∈ R𝑇×𝑑𝑚 into the
query features, denoted as 𝒒1 ∈ R𝑇×𝑑𝑚 , with a linear transforma-
tion. We then temporally concatenate 𝒗 with 𝒂 ∈ R𝑇×𝑑𝑚 to obtain a
raw memory base 𝒎𝑎,𝑣 ∈ R2∗𝑇×𝑑𝑚 . Afterwards, we linearly trans-
form 𝒎𝑎,𝑣 into key features 𝑲1,2 ∈ R2∗𝑇×𝑑𝑚 and value features
𝑽 1,2 ∈ R2∗𝑇×𝑑𝑚 . We take the inner-product operation as a pair-
wise relation function to measure the intra- and inter-modality
relations. A cross-modal attentive output is calculated as

CMRA(𝒗, 𝒂) = Softmax(
𝒒1 (𝑲1,2)𝑇√

𝑑𝑚
)𝑽 1,2 ,

𝒒1 = 𝒗𝑾𝑄 , 𝑲1,2 = 𝒎𝑎,𝑣𝑾
𝐾 , 𝑽 1,2 = 𝒎𝑎,𝑣𝑾

𝑉 ,

𝒎𝑎,𝑣 = Concat(𝒂, 𝒗) ,

(5)

where𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 are learnable parameters with dimensions of
𝑑𝑚 × 𝑑𝑚 and index 1 or 2 represents different modalities. Note that
here we take visual features 𝒗 as the query for illustration, and we
can also take audio features as the query to exploit relations for
audio features. In comparison, self-attention can be regarded as a

special case of CMRA when the memory contains only the same
modality features as the query.

The video/audio relation-aware module in our architecture is a
relation-aware module that takes visual/audio features as the query
in the CMRA operation.
Cross-Modality Relation Module. Thanks to the CMRA opera-
tion, cross-modality relation module𝑀𝑐𝑚𝑟𝑎 serves to exploit inter-
modality relations along with intra-modality relations. Specifically,
we first perform CMRA in a multihead setting [32] as

𝑯 = Concat(𝒉1, ...,𝒉𝑛)𝑾ℎ ,

𝒉𝑖 = CMRA𝑖 (𝑭 𝑣, 𝑭 𝑠𝑎) ,
(6)

where𝑾ℎ are parameters to be learned, and 𝑛 denotes the number
of parallel CMRA modules. To avoid the transmission loss from
CMRA, we add 𝑭 𝑣 as a residual connection into 𝑯 along with a
layer normalization as

𝑯𝒓 = LayerNorm(𝑯 + 𝑭 𝑣) . (7)

To further fuse the information from several parallel CMRA opera-
tions, we forward 𝑯𝑟 through two linear layers with a ReLU. The
detailed calculation of output 𝒗𝑜 is given as

𝒗𝑜 = LayerNorm(𝑶 𝑓 + 𝑯𝑟 ) ,
𝑶 𝑓 = 𝛿 (𝑯𝑟𝑾3)𝑾4 ,

(8)

where 𝛿 denotes the ReLU function, and𝑾3 and𝑾4 are learnable
parameters of two linear layers.
Internal Temporal Relation Module. We replace our CMRA
with self-attention in𝑀𝑐𝑚𝑟𝑎 to obtain an internal temporal relation
module 𝑀𝑠𝑒𝑙 𝑓 . The module 𝑀𝑠𝑒𝑙 𝑓 concentrates on exploring the
internal temporal relation for a portion of memory features in
advance to assist in 𝑀𝑐𝑚𝑟𝑎 . We omit the description of 𝑀𝑠𝑒𝑙 𝑓 to
avoid repetition.

3.4 Audio-Video Interaction Module
After relation-aware modules, we obtain the cross-modal relation-
aware visual and acoustic representations, denoted as 𝒗𝑜 ∈ R𝑇×𝑑𝑚
and 𝒂𝑜 ∈ R𝑇×𝑑𝑚 , respectively. To obtain a comprehensive represen-
tation of two modalities for the following classifiers, we propose a
simple yet effective audio-video interaction module, which seeks
to capture the resonance between visual and acoustic channels by
incorporating 𝒗𝑜 with 𝒂𝑜 .

Specifically, we first fuse 𝒗𝑜 and 𝒂𝑜 with element-wise multi-
plication to obtain a joint representation of these two modalities,
denoted as 𝒇𝑎𝑣 . We then leverage 𝒇𝑎𝑣 to attend to the visual rep-
resentation 𝒗𝑜 and acoustic representation 𝒂𝑜 , where 𝒗𝑜 and 𝒂𝑜
separately supply visual and acoustic information for better visual
understanding and acoustic perception. This operation can be re-
garded as a variant of our CMRA, where the query is a fusion of the
memory features. We denote this operation as𝑉𝑐𝑚𝑟𝑎 (𝒇𝑎𝑣, (𝒂𝑜 , 𝒗𝑜 )).
We then add a residual connection and a layer normalization to the
attentive output, similar to the relation-aware module. A compre-
hensive dual-modality representation 𝑶𝒂𝒗 is calculated as follows:

𝑶𝑎𝑣 = LayerNorm(𝑶 + 𝒇𝑎𝑣) ,
𝑶 = 𝑉𝑐𝑚𝑟𝑎 (𝒇𝑎𝑣, (𝒂𝑜 , 𝒗𝑜 )) ,
𝒇𝑎𝑣 = 𝒂𝑜 ⊙ 𝒗𝑜 ,

(9)

where ⊙ denotes element-wise multiplication.
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3.5 Supervised and Weakly-Supervised
Audio-Visual Event Localization

Supervised Localization. After the audio-video interaction mod-
ule, we obtain features 𝑶𝑎𝑣 with dimensions of 𝑇 × 𝑑𝑚 . Similar
to [36], we decompose the localization into predicting two kinds of
scores. One is an event-relevant score 𝑠𝑡 that determines whether an
audio-visual event exists in the 𝑡-th video segment. The other one is
an event category score 𝒔𝑐 ∈ R𝐶 , where C denotes the number of the
foreground categories. Event-relevant scores 𝒔 = [𝑠1, ..., 𝑠𝑇 ] ∈ R𝑇
are calculated as

𝒔 = 𝜎 (𝑶𝑎𝑣𝑾𝑠 ) , (10)

where 𝑾𝑠 are learnable parameters, and 𝜎 denotes the sigmoid
function. As for the category score 𝒔𝑐 , we conduct max-pooling
on the fused features 𝑶𝑎𝑣 , yielding a feature vector 𝒐𝑎𝑣 ∈ R1×𝑑𝑚 .
Afterwards, an event category classifier takes as input 𝒐𝑎𝑣 to predict
an event category score 𝒔𝑐 :

𝒔𝑐 = Softmax(𝒐𝑎𝑣𝑾𝑐 ) , (11)

where𝑾𝑐 is a parameter matrix to be learned.
During the interference phase, the final prediction is determined

by 𝒔 and 𝒔𝑐 . If 𝒔𝒕 ≥ 0.5, the 𝑡-th segment is predicted to be event-
relevant, with an event category according to 𝒔𝒄 . If 𝒔𝒕 < 0.5, the 𝑡-th
segment is predicted as background.

In the training, we have the segment-level labels, including event-
relevant labels and event-category labels. The overall objective func-
tion is a summation of a cross-entropy loss for event classification
and a binary cross-entropy loss for event-relevant prediction.
Weakly-Supervised Localization. In theweakly-supervisedman-
ner, we also predict 𝒔 and 𝒔𝑐 as described above. Since we only have
access to the video-level labels, we first duplicate 𝒔𝑐 for𝑇 times and
𝒔 for 𝐶 times, and then fuse them via element-wise multiplication,
yielding joint scores 𝒔𝒇 ∈ R𝑇×𝐶 . Last, we follow [30] to formulate
this problem as an MIL problem [34] and aggregate segment-level
predictions 𝒔𝒇 to obtain a video-level prediction via MIL pooling
during training. During inference, the prediction process is the
same as that of the supervised task.

4 EXPERIMENT
4.1 Dataset and Evaluation Metric
Dataset. Following previous work [24, 30, 36], we evaluate our
method onAVE dataset [30]. It contains 4,143 videos covering awide
scope of domain events (e.g., human activities, animal activities,
music performances, and vehicle sounds). The events involve 28
diverse categories (e.g., church bell, baby crying, dog barking, frying
food, playing violin, etc.). Each video contains one event and is
divided into ten one-second segments.
EvaluationMetric.We follow previous work [24, 30, 36] to predict
an event category for each segment, and apply overall accuracy as
an evaluation metric in the both AVE tasks.

4.2 Implementation Details
Visual Feature Extractor. For fair comparisons, we separately
use VGG-19 [29] and ResNet-151 [14] pretrained on ImageNet [22]

Table 1: Comparisons with state-of-the-arts in a supervised
manner on AVE dataset

Method Feature Accuracy (%)

ED-TCN [23] VGG-19 46.9
Audio [15] VGG-like 59.5
Visual [29] VGG-19 55.3
Audio-Visual [30] VGG-like, VGG-19 71.4
AVSDN [24] VGG-like, VGG-19 72.6
Audio-Visual+Att [30] VGG-like, VGG-19 72.7
DAM [36] VGG-like, VGG-19 74.5
CMRAN (ours) VGG-like, VGG-19 77.4

Visual [30] ResNet-151 65.0
Audio-visual [30] VGG-like, ResNet-151 74.0
Audio-visual+Att [30] VGG-like, ResNet-151 74.7
AVSDN [24] VGG-like ResNet-151 75.4
CMRAN (ours) VGG-like, ResNet-151 78.3

as visual feature extractors for experiments. Following [30], we uni-
formly select 16 frames within each segment as input. The output
of the 𝑝𝑜𝑜𝑙5 layer in VGG-19 with dimensions of 7×7×512 is taken
as the visual features. For ResNet-151, we take the output of the
𝑐𝑜𝑛𝑣5 layer with dimensions of 7 × 7 × 2048 as visual features. The
frame-level features within each segment are temporally averaged
as segment-level features.
Audio Feature Extractor. We first transform raw audios into log
mel spectrograms and then extract acoustic features with dimen-
sions of 128 for each segment using a VGG-like network [15] pre-
trained on AudioSet [13].
Training settings.We set the hidden dimension𝑑𝑚 in the relation-
aware module as 256. For CMRA and self-attention in relation-
aware modules, we set the number of parallel heads as 4. The batch
size is 32. We apply Adam [21] as an optimizer. We set the initial
learning as 5× 10−4 and gradually decay it by multiplying by 0.5 at
epochs 10, 20 and 30.

4.3 Comparisons with state-of-the-arts
We apply our cross-modal relation-aware networks (CMRAN) in
supervised and weakly-supervised AVE localization. For fair com-
parisons, we compare our method with existing methods using the
same features.
Supervised audio-visual event localization. We compare our
method with state-of-the-arts using the same visual features as
reported in their papers in Table 1. ED-TCN [23] is a state-of-the-
art method for temporal action labeling. Our method reaches the
highest accuracy using different visual features. Specifically, when
using VGG-19 [29], our method achieves 77.44%, surpassing the
previous best method by 2.94 % . When using ResNet-151 [14], our
method outperforms the previous best method by 2.9 %.
Weakly-supervised audio-visual event localization. We also
compare our method with existing weakly-supervised AVE local-
ization methods in Table 2. Our method still achieves the best
performance, showing its robustness. Specifically, our methods
achieves 72.9% accuracy using VGG-19 visual features, exceeding
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Table 2: Comparisons with state-of-the-arts in a weakly-
supervised manner on AVE dataset. * indicates the repro-
duced performance

Method Feature Accuracy (%)

AVEL (visual-only) [30] VGG-19 52.9
AVEL (audio-only) VGG-like 53.4
AVEL (audio+visual) VGG-like, VGG-19 63.7
AVEL (audio+visual+ Att) VGG-like, VGG-19 66.7
AVSDN* [24] VGG-like, VGG-19 66.8
CMRAN (ours) VGG-like, VGG-19 72.9

AVEL (visual-only) ResNet-151 63.4
AVEL (audio+visual) VGG-like, ResNet-151 71.6
AVEL (audio+visual+Att) VGG-like, ResNet-151 73.3
AVSDN [24] VGG-like, ResNet-151 74.2
CMRAN (ours) VGG-like, ResNet-151 75.3

the previously best method by 6.1%. When using ResNet-151 visual
features, our method achieves the best accuracy of 75.3%.

5 ABLATION STUDIES
In this section, we conduct experiments to verify the effectiveness
of each component in the proposed CMRAN. We uniformly use the
VGG-19 as a visual feature extractor for experiments.

How does the cross-modality relation attention help? Our
CMRA is proposed to exploit useful relation information and fur-
ther facilitate representation learning. To verify its effectiveness, we
implement four variants of CMRAN: “w/o CMRA” , “Self-Att”, “Co-
Att”, and “CMRA-F”. These baseline methods are the same as our
CMRAN, except that we only replace the CMRA in relation-aware
modules with other attention mechanisms or directly remove the
CMRA. Specifically, “w/o CMRA” denotes a baseline method where
we remove CMRA from relation-aware modules. In the “Self-att”
and “Co-att” methods, the CMRA is replaced with self-attention
and co-attention respectively. The co-attention here is based on the
scaled-dot product attention. The baseline “CMRA-F” equips with
a variant of CMRA, where the memory features from two modal-
ities are concatenated along the feature dimension instead of the
temporal dimension in CMRA. Furthermore, we try using different
linear layers for two modalities of the memory in CMRA, and we
did not observe improvements. We argue that this is redundant
since we have separately mapped the features of two modalities
into a common space at the beginning of relation-aware modules.

As shown in Table 3, the performance of “CMRA-F” significantly
declines compared with CMRAN, and this is likely because features
from two modalities are entangled together, obstructing a clear
relation modeling of two modalities. Critically, the performances of
all the variants decrease, verifying the effectiveness of CMRA and
justifying the intuition that watching visual contents while hearing
the sounds(i.e., capturing intra- and inter-modality relations) is
more efficient and effective for localizing an audible and visual
event. Besides, both “Self-att” and “Co-att” baselines outperform
the “w/o CMRA” baseline, which supports our view that both intra-
and inter-modality relations contribute to AVE localization.

Table 3: Ablation study on the effect of CMRA, measured by
accuracy(%) on AVE dataset

Method Supervised Weakly-supervised

w/o CMRA 76.07 72.03
Self-Att 76.42 72.46
Co-Att 76.64 72.24
CMRA-F 75.62 71.67
with CMRA 77.44 72.94

Table 4: Ablation study on the effect of AGSCA module and
audio-video interaction module, measured by accuracy(%)
on AVE dataset

Method Supervised Weakly-supervised

w/o AGSCA 76.24 72.16
AGVA [30] 76.95 72.34
AGSCA 77.44 72.94

w/o AV-Interaction 77.09 72.61
with Self-Att 77.29 72.64
with AV-Interaction 77.44 72.94

Does the audio-guided spatial-channel attention help? To
verify the effectiveness of AGSCA, we implement variants of our
CMRAN. Specifically, we remove AGSCA and simply conduct the
average pooling spatially and denote this as “w/o AGSCA” method.
We also compare our AGSCA with “AGVA” in previous work [30].
As shown in the first part of Table 4, without AGSCA, the perfor-
mance of our model drops by 1.2% and 0.78% in the supervised
and weakly-supervised tasks respectively, which shows that high-
lighting informative regions enables reduction of background in-
terference for accurate event localization. Comparing our AGSCA
with AGVA, the accuracy of AGSCA is higher than that of AGVA,
indicating that AGSCAmore effectively exploits the audio guidance
capability for visual modeling.

Does the audio-video interaction module improve event
localization? As shown in the second part of Table 4, we imple-
ment two baseline methods, denoted as "w/o AV-Interaction" and
“with Self-Att”. In the “w/o AV-Interaction” method, we remove the
variant of our CMRA from the audio-video interaction module, leav-
ing only an element-wise multiplication. Without the help of the
variant of CMRA, the accuracy of event localization decreases ab-
solutely by 0.35% and 0.31% for supervised and weakly-supervised
tasks respectively. To further verify the effectiveness, we implement
a strong baseline, “with Self-Att”, where the variant of CMRA is
replaced by self-attention. The performance of this baseline is also
lower than that of our method. These experiments imply the good
scalability of our CMRA.

Does the internal temporal relation module help? To ver-
ify its effectiveness, we first remove the internal temporal relation
module (ITR) from relation-aware modules. As shown in Table 5,
without ITR, the accuracy drops by 0.71% in the supervised task,
indicating that exploiting the internal temporal relation of the other
modal representations immediately before performing CMRA en-
ables a performance boost. Besides, we study how the number of
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Figure 5: Qualitative results. Ourmodel correctly localizes the cat screaming event in the first example. In the second example,
our model fails to correctly predict the category of the ninth segment. The ground truth is “background” while our model
predicts it as “Accordion”.

Table 5: Ablation study on the effect of internal temporal
relation module, measured by accuracy(%) on AVE dataset

Method Supervised Weakly-supervised

w/o ITR 76.73 72.56
w/ 1 ITR 77.09 72.91
w/ 2 ITR 77.44 72.94
w/ 3 ITR 76.86 72.86
w/ 4 ITR 76.67 72.58

ITR modules(L) affects the performance. We found that when 𝐿 = 2,
we obtain the best performance in both tasks, and thus we set 𝐿 = 2
in this paper. Furthermore, we also attempted to stack multiple
relation-aware modules in CMRAN, but we did not obtain apparent
performance improvements. We argue that this may suffer from an
overfitting problem.

Raw

Ours

AGVA

Figure 6: Qualitative examples of different attention meth-
ods. The middle row and bottom row show the visualization
examples of AGVA [30] and our method respectively.

5.1 Qualitative Analysis
We show visualization examples of our AGSCA and baselinemethod
AGVA [30] in Figure 6. Owing to the guidance from audio signals
for features and spatial attention, our method focuses more on
sounding regions (view in color), and covers the sounding regions
more accurately and comprehensively (view in the masked area).

We show qualitative examples of our CMRA in Figure 5. The
box in red represents a query segment. We mark other segments
with top-5 attention weights using green boxes. We found that our
CMRA tends to leverage the information of the surrounding seg-
ments for event prediction. This is intuitive because the surrounding
segments often share similar semantic information that is useful for
event prediction, and such information can be regarded as contex-
tual information that can ease the recognition of an AVE. Besides,
the segments with high respondence come from two modalities,
verifying that our CMRA enables to build connections between
two modalities. The second example of Figure 5 contains a failure
case. It is challenging since we can hear the sounds of accordion
throughout the segment and see an accordion at the very beginning
of the segment.

6 CONCLUSION
In this paper, we have devised a relation-aware module that uses the
cross-modality relation attention mechanism to capture the useful
intra-modality and inter-modality relations for AVE localization.
Besides, we have proposed an audio-guided spatial-channel atten-
tion module to highlight informative features and spatial regions
for reduction of background interference. Built upon these two
modules, we present a cross-modal relation-aware network, which
significantly outperforms state-of-the-arts in both supervised and
weakly-supervised AVE localization tasks on AVE dataset. Empiri-
cally, we found some cases where the sounds and visual scenes in a
video are not always aligned. It would be interesting to explore our
method under this condition, and we leave it for our future work.
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