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Abstract. Deep Metric Learning (DML) serves to learn an embedding
function to project semantically similar data into nearby embedding
space and plays a vital role in many applications, such as image retrieval
and face recognition. However, the performance of DML methods often
highly depends on sampling methods to choose effective data from the
embedding space in the training. In practice, the embeddings in the em-
bedding space are obtained by some deep models, where the embedding
space is often with barren area due to the absence of training points,
resulting in so called “missing embedding” issue. This issue may impair
the sample quality, which leads to degenerated DML performance. In
this work, we investigate how to alleviate the “missing embedding” issue
to improve the sampling quality and achieve effective DML. To this end,
we propose a Densely-Anchored Sampling (DAS) scheme that considers
the embedding with corresponding data point as “anchor” and exploits
the anchor’s nearby embedding space to densely produce embeddings
without data points. Specifically, we propose to exploit the embedding
space around single anchor with Discriminative Feature Scaling (DFS)
and multiple anchors with Memorized Transformation Shifting (MTS).
In this way, by combing the embeddings with and without data points,
we are able to provide more embeddings to facilitate the sampling pro-
cess thus boosting the performance of DML. Our method is effortlessly
integrated into existing DML frameworks and improves them without
bells and whistles. Extensive experiments on three benchmark datasets
demonstrate the superiority of our method.

Keywords: Deep Metric Learning · Missing Embedding · Embedding
Space Exploitation · Densely-Anchored Sampling

1 Introduction

Deep Metric learning (DML) is the foundation of various applications, including
face recognition, verification [10, 42], image retrieval [21], image clustering [17],

† Corresponding authors.

ar
X

iv
:2

20
8.

00
11

9v
1 

 [
cs

.C
V

] 
 3

0 
Ju

l 2
02

2



2 L. Liu et al.

…Data
Space

Embedding
Space

Embedding Missing embedding due to absence of data point

Fig. 1. Illustration of the “missing embedding” issue. The data points of similar se-
mantics are mapped into the nearby embedding space that is often with barren area
due to the absence of data points, resulting in the “missing embedding” issue

image classification [12], few-shot learning [32], video representation learning [5]
and sound generation [6] etc. Since it was introduced, it has sparked considerable
interest in the community, where academics have offered a variety of methods [18,
36,38,42,45,53,56] and have made substantial progress [37,41]. The goal of DML
is to learn a deep model that is capable of mapping semantically similar data
points to similar embeddings in the embedding space. To accomplish this, most
existing approaches [7,18,42,48,53,56] train the deep model with loss functions
that bring the embeddings from semantically similar data points close to each
other and vice versa. However, some embeddings may have limited contribution
or bring no improvement to train the deep model [56], or even lead to bad local
minima early on in training (such as a collapsed model) [42]. Thus, sampling
informative and stable embeddings is very important to facilitate the training
of deep model [56]. As a result, improving the sample quality is of significance
to achieve effective DML. There are two commonly used measures for this goal:
designing more effective sampling methods or providing more embeddings.

Pioneering efforts have made substantial progress toward the design of ef-
fective sampling methods upon embedding pairs [41, 42, 56] or a full batch of
embeddings [36, 38]. These methods typically perform sampling on a batch of
embeddings, which often leads to inaccurate sampling results due to the fol-
lowing reasons. First, the batch size is typically constrained by the memory
of a single GPU as the sampling process typically cannot cross different GPU
devices [41]. Second, even with GPU that has sufficient memory to support a
larger batch size, the embedding space that contains the embeddings embedded
by deep models may still with barren area due to the absence of data points,
resulting in a “missing embedding” issue (as shown in Fig. 1). Thus, the limited
amount of embeddings may impair the sample quality and the performance of
DML. Based on the above analyses, we ask: “Can we overcome the inaccurate
sampling issue brought by the absence of data points?”

Very recently, a few attempts [13, 16, 28, 54, 64] have been committed to an-
swering this question by pseudo embedding generation. Hard example genera-
tion approaches [13, 64] generate hard embeddings from easy embeddings with
an additional generative adversarial network or auto-encoder. Embedding ex-
pansion [28] performs interpolation between embeddings to achieve augmen-
tation in embedding space. Cross batch memory [54] maintains embeddings
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from previous iterations and considers them are still informative in the current
batch in terms of sampling. However, these approaches either leverage addi-
tional sub-network [13, 64], which introduce extra training cost, or need further
modification to the sampling and loss computation process [28, 54] in standard
DML [18,20,42,45,53], which may limit their applicability to other tasks.

In this paper, we seek to densely produce embeddings without data points
to alleviate the “missing embedding” issue. In this way, with the combination
of embeddings with and without data points, we are able to provide more em-
beddings for sampling to improve the sample quality and achieve effective DML.
Our motivation stems from a fundamental hypothesis of metric learning: the
embeddings that are close to each other in the embedding space have similar se-
mantics. Unfortunately, how to exploit the embedding space to produce effective
embeddings without data points remains an unsolved problem. To this end, we
propose a Densely-Anchored Sampling (DAS) scheme to consider the embedding
with data point as “anchor” and densely exploit the anchor’s nearby embedding
space to produce embeddings that have no corresponding data points. The pro-
posed DAS is consist of two modules, namely, Discriminative Feature Scaling
(DFS) and Memorized Transformation Shifting (MTS), which exploit the em-
bedding space around single and multiple embeddings respectively to produce
effective embeddings with no corresponding data points. To be specific, based
on observations that effective semantics for one embedding are highly activated
features [2, 3, 14], DFS identifies these features and applies random scaling on
them. In this sense, we are able to exploit the embedding space around a single
embedding by enhancing or weakening its effective semantics to produce em-
beddings. Based on the fact that semantic differences (i.e., transformations) of
intra-class embeddings can be added to other embeddings to generate effective
embeddings [31], we assume that they can be added in a way like word embed-
dings [34]: Queen = Woman+(King−Man). Thus, our Memorized Transforma-
tion Shifting module exploits the embedding space among multiple embeddings
by adding (i.e., shift) intra-class embeddings’ semantic differences to other em-
beddings of the same class to produce effective embeddings.

Our main contributions are summarized as follows. First, we propose a novel
and plug-and-play Densely-Anchored Sampling (DAS) scheme that exploits em-
beddings’ nearby embedding space and densely produces embeddings without
data points to improve the sampling quality and performance of DML. Sec-
ond, we propose two modules, namely Discriminative Feature Scaling (DFS) and
Memorized Transformation Shifting (MTS) to exploit embedding space around
a single and multiple embeddings to produce embeddings. Last, extensive ex-
periments demonstrate the effectiveness of the proposed method.

2 Related Work

Sampling Methods in DML. Sampling informative and stable embeddings
is vital to train the deep model in DML [41, 42, 56]. Thus, various sampling
approaches [15, 41, 42, 53, 56] have been tailored to effectively sample the em-
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beddings to train the deep model. To further improve sampling efficiency, some
researchers propose to leverage a whole batch of embeddings [20, 25, 36, 53, 67].
Even though sophisticated sampling methods improve DML, due to the absence
of data points, sampling embeddings that are often with “missing embedding”
leads to inaccurate sampling, thereby degenerating the final performance. In this
paper, we propose a DAS scheme to produce embeddings with no data points
by exploiting embeddings’ nearby embedding space to achieve effective DML.

Loss Functions for DML. Studies on DML losses can be grouped into two cat-
egories: pair-based and proxy-based. The pair-based losses [18, 22, 26, 42, 45, 51–
53, 56, 58] are constructed upon the pairwise distance between embeddings. Al-
though pair-based approaches mine the rich information among vast embedding
pairs, they typically encounter the sampling effective embedding pairs issues. In-
stead, proxy-based [1,10,25,33,36,40,60] losses introduce the concept of “proxy”
as a class representation and avoid the sampling issue by optimizing the embed-
ding close to its proxy. However, proxy-based methods are very difficult to train
when the number of classes is extremely large [38], limiting their applicability
to real-life scenarios. Thus, in this paper, we focus on developing an effective
technique to alleviates the general data sampling issue for pair-based methods
that have wider applicability and delivers boosted performance for them.

Pseudo Embedding Generation. Methods on synthesizing pseudo embed-
ding have been recently shown as an important technique to improve DML [13,
28, 31, 54, 62, 64]. DAML [13] uses an additional generative adversarial network
to generates only hard negatives to improve the model training. HDML [62]
leverages the inter-class information for embedding generation on the sampled
embeddings. DVML [31] apply extra generator and decoder to model the class
centers that may have inaccurate distance estimation to the real embeddings and
employs them to generate embeddings. Embedding expansion [28] linearly inter-
polates the embeddings to obtain more embeddings. Cross batch memory [54]
stores embeddings from previous batches and considers them beneficial for the
upcoming sampling process. However these approaches [28, 54] suffer from the
following limitations: First, the generated embeddings can only be considered as
negative during sampling, which may limit the power of them. Second, the sam-
pling or loss computation process need to be modified to dock with them, limiting
their applicability. Third, an additional sub-network is introduced in order to
generate embeddings, which brings heavy computation cost. Last, information
source that may have inaccurate distance measurement to real embeddings such
as class centers and inter-class differences are considered to produce embeddings.
Different from them, DAS is a light-weight module, which produces embeddings
by densely sampling around the “anchor” and serves as a plug-and-play compo-
nent to facilitate the sampling process in standard DML.

Data Augmentation. Augmentation in data space such as image [44] has
been widely studied and is considered an important technique to avoid overfit-
ting. Recently, many efforts have been made to design effective augmentation
methods [8, 11, 49, 55, 57] in feature space, aiming to provide more features for
training when the source data (e.g., images) is scarce. These methods often in-
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Fig. 2. Illustration of our Densely-Anchored Sampling (DAS) scheme, which leverages
two modules to exploit anchors’ (i.e., embeddings with data points) nearby embedding
space to densely produce embeddings without data points: DFS performs random scal-
ing on the discriminative features to produce embeddings around a single embedding;
MTS exploits the embedding space among multiple embeddings by adding the intra-
class semantic differences to embeddings of the same class to produce embeddings.
With DAS, we alleviate the “missing embedding” issue by providing more embeddings
for sampling, thereby, achieving effective DML

troduce complicated training processes [8, 49]. Wang et al. [55] propose ISDA
that estimates semantic differences with covariance matrices and develops an
improved version of cross-entropy loss. The computation and memory consump-
tion of covariance matrices are much heavier than DAS. Moreover, ISDA can
not be trivially extended to pair-based DML loss. Yin et al. [57] introduce FTL
that requires extra networks (e.g., decoder and feature transfer module) and a
carefully designed bi-stage training strategy to achieve feature translation, which
is less efficient and general than DAS. Unlike these methods, we view the fea-
ture space augmentation as an approach to fill the “missing embedding” in the
embedding space and propose a simpler solution under the context of DML.

3 Densely-Anchored Sampling

In this paper, we seek to improve DML by alleviating the “missing embedding”
issue incurred in sampling. The overall process of DAS scheme is shown in Fig. 2.
Notation. Let v = fθ(I) ∈ Rd be an embedding with data point I, where fθ(·)
is a deep model (e.g., CNNs) with learnable parameters θ. Let yv be the label
of the embedding v. Let v′ denote embedding without data point. Following
previous methods [42], we normalize both v and v′ to the d-dimensional hyper-
sphere (i.e., ∥v∥2, ∥v′∥2 = 1). We omit the normalization process for brevity.
Let C denote the number of training classes.

3.1 Problem Definition and Motivation

DML seeks to learn a deep model that keeps similar data points close, and vice
versa. Formally, we define the distance between two embeddings as follows [56]:

Dij = ∥fθ(Ii)− fθ(Ij)∥, (1)
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where ∥ · ∥ denotes the ℓ2 norm. For any positive pair of embeddings (yi = yj),
the distance should be small; Whilst for negative pair (yi ̸= yj), it should be
large. In practice, limited by computing resources, it is infeasible to optimize
every element in Dij . Therefore, it is necessary to sample effective embedding
pair for the objective construction (take the contrastive loss as an example):

L =
∑

(i,j)∈Q
I{yi = yj} Dij + I{yi ̸= yj} [α−Dij ]+, (2)

where I{·} is the indication function, α is a margin, Q = S(D) indicates indexes
of the sampled embedding pairs and S denotes some sampling function.

Without causing ambiguity, we denote the points on the embedding space as
“anchor points”, based on which we will conduct sampling to train the deep
model. Note that each data point shall have an anchor point on the embedding
space. However, due to the absence of training data, the embedding space may
have a lot of “barren area”. Thus, it is very difficult to provide sufficient anchor
points for sampling and learn a deep model with good performance. To this end,
we propose to densely produce anchor points with no data points to facilitate
the sampling, thereby improving the training in DML.

Specifically, we first propose to exploit the embedding space around a single
embedding by enhancing or weakening its semantics. We term this process as
semantic scaling. Second, we propose to add (i.e., shift) intra-class differences
(i.e., transformations) to embeddings to exploit the embedding space among
multiple embeddings. We term this process as semantic shifting. Based on the
above analyses, the formulation of DAS scheme is formulated as

v′ = DAS(v; s,b) = s ⊙ v︸ ︷︷ ︸
scaling

+ b︸ ︷︷ ︸
shifting

, (3)

where v and v′ are embeddings with and without data points, respectively. ⊙
denotes the Hadamard product. s,b ∈ Rd are semantic scaling and semantic
shifting factors, respectively. Moreover, given a set of semantic scaling and shift-
ing factor pairs {(st,bt)}, we are able to produce a set of embeddings by

v′
t = DAS(v; st,bt). (4)

Therefore, the semantic scaling and shifting factors is essential to the quality
of the produced embeddings and we propose DFS and MTS to acquire them:

s = DFS({v | yv = c}), (5)

b = MTS({v | yv = c}), (6)

where DFS and MTS take embeddings from the same class as input and produce
the semantic scaling and shifting factors, respectively.
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Fig. 3. Illustration of the proposed Dis-
criminative Feature Scaling (DFS) mod-
ule, which identifies the discriminative
features (e.g., channels) and applies dif-
ferent random scaling to them to produce
embeddings around a single embedding
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Fig. 4. Illustration of the proposed Mem-
orized Transformation Shifting (MTS)
module. MTS adds the intra-class trans-
formations to embeddings of the same
class to produce embeddings among mul-
tiple embeddings

3.2 Discriminative Feature Scaling

We seek to obtain effective semantic scaling factors to produce anchor points
around a single anchor. Thus, as shown in Fig. 3, our Discriminative Feature
Scaling (DFS) module carries out the semantic scaling mechanism by finding
the discriminative features in an embedding and applying random scaling on
them. The feasibility of DFS comes from two aspects. First, visual attributes
can be predicted reliably using a sparse number of neurons from CNNs [14].
Second, in CNNs, neurons that match a diverse set of object concepts are highly
activated [2,3]. In practice, the embedding typically occupies a high dimensional
embedding space, which contains semantics for all training classes and semantics
for each class are diverse. Thus, the semantics for one class are more likely to
be noise for another. In this sense, it is very important to find out the effective
e.g., discriminative features for each class in order to perform semantic scal-
ing. To this end, we propose to identify the effective semantics by counting the
number of occurrences of the highly-activated neurons for each class.

To be specific, we first initialize a Frequency Recorder Matrix (FRM) P ∈
RC×d as a zero matrix. Then, given a set of embeddings {v | yv = c} from class
c, we update P as follows:

P[c, k] =

{
P[c, k] + 1, if v[k] ∈ Top(v,K),

P[c, k], otherwise,
(7)

where Top(v,K) is an operator to select the top-K elements from the vector
v. During training, we constantly update the FRM by recording the position
of highly-activated neurons from the embeddings of the same class. In this way,
FRM1 serves as a stable, accurate and effective semantics identifier for training
classes. Given the FRM, we compute the class-wise binary channel mask M ∈
RC×d by

M[c, k] =

{
1, if P[c, k] ∈ Top(P[c],K),

0, otherwise.
(8)

1 Visualization of the frequency recorder matrix is in the supplementary.
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Given an embedding v, we attain the semantic scaling factor by

s = γ ⊙M[yv] + 1d ⊙ (1−M[yv]), (9)

where γ ∈ Rd and γ ∼ Uniform[1 − rs, 1 + rs]
d and rs ∈ (0, 1) is a hyper-

parameter to be set. Note that we only randomly scale the discriminative features
while leaving the indiscriminative ones intact. To produce more than one scaling
factor, we repeatedly sample γ from the uniform distribution.

3.3 Memorized Transformation Shifting

To produce anchors without data points among multiple anchors, we propose a
module to provide effective semantic shifting factors. As shown in Fig. 4, our
Memorized Transformation Shifting (MTS) module exploit intra-class embed-
dings’ nearby embedding space by leveraging the differences between embeddings
and adding them to other embeddings of the same class. On the basis of that
semantic differences of embeddings can be added to other embedding to generate
effective embeddings [31], the motivation of our MTS comes from the semantic
relations of word embedding [34]: Woman + (King − Man) = Queen, where a
“woman” pluses “royal” semantics (e.g., transformation) becomes a “Queen”.

The transformations from both inter-class and intra-class embeddings are
candidates for our design choices. However, the majority of the inter-class trans-
formations typically are not transferable due to large inter-class differences.
Thus, we only consider intra-class embeddings to attain the transformations.
As suggested by the latest research [41], sampling only two images for each class
in a batch consistently achieves good performance, which leads to very limited
transformations we can obtain in one batch i.e., two transformations. To address
this issue, we construct a bank to memorize the transformations from previous it-
erations to ensure the diversity of the transformations. Specifically, we construct
a transformation bank B ∈ RC×Z×d, where Z is the bank capacity for each class.
Then, during training, once we obtain a set of embeddings Vc = {v | yv = c}
from the class c, we calculate the transformations between them by

tz = vi − vj , vi,vj ∈ Vc, i ̸= j. (10)

Then, the transformations are en-queued into B according to the FIFO principle
to ensure that the transformations in the bank are in a relatively fresh state:

B[yv, z] = tz, z ∈ {1, 2, . . . , Z}. (11)

Note that z is reset to 1 when it reaches Z. Finally, with the assistance of the
bank B, given an embedding v, we retrieve the semantic shifting factor as follow

b = rbt, t ∼ {B[yv, z] | z=1, 2, . . . , Z}. (12)

rb is a hyper-parameter. Multiple shifting factors are formed by repeat sampling.
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Algorithm 1 Training method of DAS-based DML

Require: Training image-label pairs S = {(Ii, yi)}Ni=1; the embedding function fθ;
number of embeddings to produce T ; number of training classes C; transformation
bank capacity Z; learning rate α.

Ensure: Optimized embedding function f∗
θ .

1: Initialize θ from ImageNet pretrained model.
2: Initialize the frequency recorder matrix P ∈ RC×d = 0.
3: Initialize the transformation bank B ∈ RC×Z×d = 0.
4: while not converge do
5: Obtain a batch image-label pairs {(Ii, yi)}Bi=1 from S.
6: Compute embeddings vi ← fθ(Ii), i = 1, 2, · · · , B.
7: // perform semantic scaling by Discriminative Feature Scaling
8: Update the frequency recorder matrix P by Eqn. (7).
9: Acquire semantic scaling factors {sj}B×T

j=1 by Eqn. (9).
10: // perform semantic shifting by Memorized Transformation Shifting
11: Obtain intra-class transformations {t} by Eqn. (10).
12: Update the transformation bank B by Eqn. (11).
13: Attain semantic shifting factors {bj}B×T

j=1 by Eqn. (12).
14: // perform densely-anchored sampling
15: Produce embeddings {v′

j}B×T
j=1 by Eqn. (4).

16: Sample positive and negative embedding sets.
17: Compute the training loss LDAS-DML by Eqn. (13).
18: Update the parameters θ by θ ← θ − α∇θLDAS-DML.
19: end while

3.4 DML with Densely-Anchored Sampling

The overall algorithm of integrating DAS into DML is detailed in Algorithm 1.
Given anchor-label pairs {(v, yv)}, we produce embedding-label pairs {(v′, y′v)}
with no data points by DAS scheme, where y′v = yv since the class seman-
tic is preserved. Then, embedding-label pairs with or without data points are
fed into the sampling module to obtain the positive and negative embedding
sets (e.g., pairs, triplets, etc. specified by the sampling and loss functions):
{(P,N )} = Sample({(v, yv)} ∪ {(v′, y′v)}). Last, given a DML loss function
LDML

2, DAS-based DML objective function is formulated as:

LDAS-DML = LDML({(P,N )}). (13)

4 Experiments

Datasets. We use three popular benchmarks: 1) CUB2011-200 (CUB) [50], a
fine-grained bird dataset with the first 100 categories for training and another 100
categories for testing. 2) CARS196 (CARS) [29], a fine-grained vehicle dataset
with the first 98 classes for training and another 98 classes for testing. 3) Stanford
Online Products (SOP) [38], a large-scale online products dataset with the train
and test partitions as 11,318 classes and another 11,316 classes, respectively.

2 See supplementary for detailed DML sampling methods and loss functions.
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Table 1. Comparisons with SoTA methods on CUB, CARS and SOP. The best results
are in bold. ∗ indicates the reimplementation by [4]. † denotes our reimplementation

Method Backbone
CUB CARS SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100 R@1000

Margin [56] R128 63.60 74.40 83.10 90.00 79.60 86.50 91.90 95.10 72.70 86.20 93.80 98.00
HDC [59] G384 53.60 65.70 77.00 85.60 73.70 83.20 89.50 93.80 69.50 84.40 92.80 97.70
A-BIER [39] G384 57.50 68.70 78.30 86.20 82.00 89.00 93.20 96.10 74.20 86.90 94.00 97.80
ABE [27] G512 60.60 71.50 79.80 87.40 85.20 90.50 94.00 96.10 76.30 88.40 94.80 98.20
HTL [15] IBN512 57.10 68.80 78.70 86.50 81.40 88.00 92.70 95.70 74.80 88.30 94.80 98.40
RLL-H [52] IBN512 57.40 69.70 79.20 86.90 74.00 83.60 90.10 94.10 76.10 89.10 95.40 N/A
SoftTriple [40] IBN512 65.40 76.40 84.50 90.40 84.50 90.70 94.50 96.90 78.30 90.30 95.90 N/A
MS [53] IBN512 65.70 77.00 86.30 91.20 84.10 90.40 94.00 96.50 78.20 90.50 96.00 98.70
ProxyGML [67] IBN512 66.60 77.60 86.40 N/A 85.50 91.80 95.30 N/A 78.00 90.60 96.20 N/A
ProxyAnchor [25] IBN512 68.40 79.20 86.80 91.60 86.10 91.70 95.00 97.30 79.10 90.80 96.20 98.70

Contrastive + XBM [54] IBN512 65.80 75.90 84.00 89.90 82.00 88.70 93.10 96.10 79.50 90.80 96.10 98.70
MS∗ [53] IBN512 64.50 76.20 84.60 90.50 82.10 88.80 93.20 96.10 76.30 89.70 96.00 98.80
MS + EE∗ [28] IBN512 65.10 76.80 86.10 91.00 82.70 89.20 93.80 96.40 77.00 89.50 96.00 98.80
ProxyAnchor + MemVir [4] IBN512 69.00 79.20 86.80 91.60 86.70 92.00 95.20 97.40 79.70 91.00 96.30 98.60

MS† [53] IBN512 65.72 77.19 85.74 91.56 83.86 90.41 94.64 96.99 76.89 89.58 95.59 98.60
MS + DAS (K = 8) (Ours) IBN512 67.07 78.11 86.43 91.88 85.66 91.60 95.27 97.37 78.16 90.26 95.99 98.76

MS† [53] R512 66.46 77.28 85.85 91.69 83.99 90.39 94.51 96.80 79.53 91.06 96.30 98.83
MS + DAS (K = 8) (Ours) R512 69.19 79.25 87.09 92.62 87.84 93.15 95.99 97.85 80.59 91.80 96.68 98.95

Implementation details3 We leverage two popular backbones: ResNet50 [19]
(Rd) and Inception BN [23] (IBNd), where their parameters are initialized from
ImageNet [9] pre-trained models and d denotes the embedding dimension. Note
that some approaches also consider GoogleNet [46] (Gd) as the backbone. Here,
we mainly consider the settings of d = 128, 512. R128 is used as the default back-
bone. The embedding layer is randomly initialized. Regarding evaluation metrics,
Recall at k (R@k) [24], Normalized Mutual Information (NMI) [43] and F1 score
(F1) [45] are used, where R@k measures the image retrieval performance while
F1 and NMI measure the image clustering performance. For hyper-parameters
in DAS, we set (T,K,Z, rs, rb) = (3, 4, 10, 1e−2, 1e−2) by default.4 Our source
code is publicly available at https://github.com/lizhaoliu-Lec/DAS.

4.1 Comparison with State-of-the-arts

In this section, we compare our method with state-of-the-art competitors to in-
vestigate the effectiveness of DAS. The results are shown in Table 4. For fair
comparisons, the results of the closely related baseline EE are from the reim-
plementation by [4] using the stronger IBN512 backbone (G512 in the original
paper). Our approach is based on MS loss and achieves superior performance
on all datasets and evaluation metrics. First, when combining the R512 back-
bone and DAS, we are able to boost the R@1 metrics by 3.49% on CUB and
1.74% on CARS, which shows that DAS is able to deliver more accurate image
retrieval results even with higher embedding dimension (i.e., 512). Second, for
our closely relative opponent, EE, its improvements on MS are marginal, show-
ing that simply performing interpolation to generate embeddings is inferior to

3 See supplementary for more details.
4 Experiments on hyper-parameters T, rs, rb are in the supplementary.

https://github.com/lizhaoliu-Lec/DAS
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Table 2. Comparisons with pair-based methods on CUB, CARS and SOP. [S] and [D]
denote semi-hard and distance weighted sampling, respectively

Method
CUB CARS SOP

R@1 F1 NMI R@1 F1 NMI R@1 F1 NMI

Triplet [S] [42] 60.25 32.82 64.64 74.64 31.98 63.22 73.51 33.47 89.33
Triplet [S] + DAS 60.82 33.86 65.67 77.21 33.88 64.84 73.99 33.91 89.42

Triplet [D] [56] 62.68 36.39 67.03 78.86 35.80 65.85 77.54 37.10 90.05
Triplet [D] + DAS 64.28 38.16 68.06 82.63 39.14 68.12 77.95 37.64 90.18

Contrastive [D] [56] 61.65 35.23 66.58 76.03 32.77 64.09 73.13 35.60 89.78
Contrastive [D] + DAS 63.67 36.25 67.15 80.74 36.07 65.93 74.80 36.21 89.89

Margin [56] 62.61 37.33 67.58 80.10 37.85 67.15 78.69 39.20 90.50
Margin + DAS 64.50 37.86 68.04 82.29 38.22 67.94 79.14 39.52 90.56

GenLifted [20] 58.81 34.64 65.50 72.45 32.43 64.00 76.18 37.26 90.13
GenLifted + DAS 59.94 35.09 66.07 73.55 32.85 64.11 76.92 37.64 90.21

N-Pair [45] 60.55 36.94 67.19 77.35 36.26 66.74 77.71 37.13 90.15
N-Pair + DAS 62.81 38.37 68.43 79.93 38.06 68.20 77.98 37.82 90.28

MS [53] 62.63 38.88 68.19 82.04 40.85 69.45 78.89 37.53 90.12
MS + DAS 64.13 39.18 69.08 83.31 42.78 70.77 79.44 38.77 90.40

DAS. Last, even for a strong baseline, ProxyAnchor that leverages the advanced
training techniques, and sophisticated loss, we still outperform it considerably.

4.2 Effectiveness of DAS on Pair-based Loss

Quantitative results. To investigate the efficacy of DAS, we conduct experi-
ments with R128 backbone on the widely used pair-based losses. We reimplement
all baselines under the same settings for a fair comparison. The results are pre-
sented in Table 2. For considered pair-based losses, DAS is able to improve
their performance on both image retrieval and clustering metrics. Notably, for
approaches such as GenLifted and N-Pair that leverage the whole batch of em-
beddings for loss computation, DAS still improves their performance, showing its
effectiveness. Last, even for a very strong baseline, MS, that considers different
kinds of relationships among embedding pairs and designs sophisticated weight-
ing mechanism, DAS is able to greatly improve it without bells and whistles.
Convergence analyses.We provide the results of training loss and test set R@1
in Fig. 5 to analyze the training behaviors of DAS.5 The loss curve with DAS
decreases smoother than that without DAS, showing that DAS provides more
embeddings to facilitate sampling, thereby, stabilizing the training. Moreover,
with DAS, the training loss is higher than the baseline, one possible reason is
that DAS is able to act as a regularizer to avoid overfitting, which is consistent
with the result that DAS achieves a higher test set R@1. Similar phenomenon
is also observed in other embeddings generation methods [28].

4.3 Effectiveness of DAS on Sampling Method

In this section, we investigate the effectiveness of DAS by evaluating it with
different sampling approaches. We choose two popular loss functions: triplet and

5 Results on more pair-based losses are in the supplementary.
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Fig. 5. The training loss and test set R@1 on CARS. The sampling method and loss
function are triplet loss and distance weighted sampling, respectively

Table 3. Comparisons with various sam-
pling methods on CARS

Method Sampling DAS R@1 F1 NMI

Triplet

Random
74.21 33.41 64.28

✓ 76.79 35.21 65.49

Semi-hard [42]
74.64 31.98 63.22

✓ 77.10 33.82 65.03

Soft-hard [41]
79.20 35.55 66.08

✓ 80.54 37.52 66.77

Distance [56]
78.86 35.80 65.85

✓ 81.34 37.27 67.21

Contrastive
Random

42.44 15.83 48.87
✓ 50.79 19.40 52.71

Distance [56]
76.03 32.77 64.09

✓ 80.70 35.47 66.01

Table 4. Comparisons with more related
works on CARS

Method Backbone R@1 R@2 R@4 R@8

N-Pair + HDML [63] G512 68.90 78.90 85.80 90.90
N-Pair + HDML-A [63] G512 81.10 88.80 93.70 96.70
N-Pair + DAS (Ours) G512 83.70 90.33 94.47 96.77

MS + SEC [61] IBN512 85.73 91.96 95.51 97.54
MS + DAS (Ours) IBN512 85.66 91.60 95.27 97.37
MS + SEC + DAS (Ours) IBN512 87.80 93.16 96.18 98.01

Margin + DiVA [35] IBN512 83.10 90.00 N/A N/A
Margin + DAS (Ours) IBN512 84.85 90.32 93.99 96.40

ProxyNCA++ [47] R512 86.50 92.50 95.70 97.70
Margin + DiVA R512 82.20 89.00 N/A N/A
Margin + DRML [66] R512 73.30 83.00 89.80 94.40
Margin + DCML [65] R512 85.20 91.80 96.00 98.00
Margin + DAS (Ours) R512 88.34 93.21 95.92 97.59

contrastive losses that are sensitive to the sampling methods. Therefore, various
sampling approaches are tailored for them. The experiment results are presented
in Table 3. For two loss functions, despite the choice of sampling approaches,
DAS is able to improve them considerably on both image retrieval and cluster-
ing metrics. Notably, when applying DAS, triplet loss with random sampling
outperform the one with the semi-hard sampling. This indicates that producing
more embeddings for sampling is as important as the sampling approach.

4.4 Qualitative Results

To better understand our method, we compare contrastive loss (with distance
weighted sampling) w/ or w/o DAS and visualize image retrieval results on both
CARS (Fig. 6) and SOP (Fig. 6) datasets.6 On CARS, the model performs better
with DAS despite the background noises or the interference from the car’s color,
demonstrating that DAS enforces the model to focus on real semantics. On SOP,
the model with DAS is insensitive to drastic viewpoint changes. These results
verify the generalization ability and robustness of DAS under various scenes.

6 More qualitative results are in the supplementary.
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Fig. 6. Top 3 retrieved results from the R128 trained w/ or w/o DAS. green and red
rectangles indicate desired and undesired results, respectively

4.5 Ablation Studies

Effect of DFS and MTS. In this section, we perform ablation studies to
evaluate the performance gain by each module in DAS. The loss function and
sampling method are triplet loss and distance weighted sampling, respectively.
The results are in Table 5. First, DFS, alone, boosts R@1 by +2.42%, verifying
that producing embeddings around a single embedding is able to force the model
to focus on real semantics and achieve better image retrieval results. Second, with
MTS only, the clustering metrics are greatly improved, indicating that producing
embeddings among multiple embeddings are beneficial to the image clustering
task. Last, with DFS and DAS, all metrics are further improved, suggesting that
DFS and MTS reinforce and complement each other.

Table 5. Ablation studies on CARS

DFS MTS R@1 F1 NMI

78.86 35.80 65.85
✓ 81.28 (+2.42) 36.22 (+0.42) 66.84 (+0.99)

✓ 81.83 (+2.97) 38.26 (+2.46) 67.81 (+1.96)
✓ ✓ 82.63 (+3.77) 39.14 (+3.34) 68.12 (+2.27)

Effect of K in DFS. Multi-dimensional embeddings have a diverse set of se-
mantic features [2,3]. The top-K mask is effective to discover the discriminative
features. We perform experiments on SOP, a large-scale and diverse dataset with
margin loss to support our claim. With K = 1, 2, 4, 8, 16, 32, we obtain results
R@1 = 78.76, 78.86,79.14, 78.09, 77.94, 77.96, where substantial improvements are
observed when K = {1, 2, 4} and larger K (i.e., K > 4) leads to worse results.

Effect of Z in MTS. The larger bank capacity (Z) allows us to access intra-class
transformations from current and previous iterations, which improves the diver-
sity of the produced embeddings. We conduct experiments on CARS with margin
loss by setting Z = 1, 2, 3, 4, 5 and obtain R@1 = 82.35, 82.38, 82.42,82.75, 82.33,
showing that history transformations (Z > 2) bring slight improvements.
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4.6 Further Discussions

More discussions on DFS. One may question whether the proposed DFS
requires the linear assumption on high dimensional feature space. In fact, we do
not make this assumption and our method is built on a very basic hypothesis of
metric learning: the embeddings that are close to each other in the embedding
space have similar semantics. More critically, DFS does not rely on the linearity
assumption. Instead, DFS is based on the observations that effective semantics
for one embedding are highly activated features [2, 3].

More discussions on MTS. Li et al. [30] also apply a memory module is
leveraged to store abundant features and conduct neighborhood search upon
them to enhance the discriminative power of a general CNN feature on the image
search and few-shot learning tasks. Unlike them, DAS constructs a memory bank
with the intra-class embedding transformations, which allows us to access intra-
class transformations from current and previous iterations, and thus improves
the diversity of produced embeddings for DML.

Comparisons with more related works. In Table 4, we compare DAS with
HDML [63], SEC [61], DiVA [35], ProxyNCA++ [47], DRML [66], DCML [65]
on CARS under the same settings. We can see that DAS outperforms HDML,
DiVA, DRML and DCML, and achieves comparable performance to SEC. Note
that DAS can be also incorporated into SEC. As a result, using MS loss, SEC
+ DAS outperforms SEC by 2.07% in R@1. These results further verify the
applicability of DAS on some regularization techniques in DML.

5 Conclusion

In this paper, we propose a Densely-Anchored Sampling (DAS) scheme to allevi-
ate the “missing embedding” issue incurred during DML sampling. To this end,
we propose to produce embeddings with no data points by exploiting the em-
beddings’ nearby embedding space. Specifically, we propose a DFS module that
identifies an embedding’s discriminative features and performs random scaling
on them to exploit the embedding space around it. Moreover, we propose a MTS
module to exploit embedding space among multiple embedding by adding the
intra-class semantic differences to embeddings of the same class. By combining
the embeddings with and without data points, DAS provides more embeddings
for sampling to improve the sampling quality and achieve effective DML. Ex-
tensive experiments with various loss functions and sampling methods on three
public available benchmarks show that DAS is effective. In the future, we plan to
apply DAS to other areas such as self-supervised learning that require sampling.
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We organize our supplementary materials as follows. In Section A, we pro-
vide the detailed formulations of both pair-based and proxy-based DML loss
functions. In Section B, we detail the formulations of DML sampling methods.
In Section C, we provide more implementation details of DAS. In Section D,
we analyze the overhead of DAS, In Section E, we provide experiment results
of DAS on widely used proxy-based losses. In Section F, we provide results on
DAS w/o image augmentation. In Section G, we study the effect of batch size
on DAS. In Section H, we study the effect of embedding dimension on DAS. In
Section I, we visualize and analyze the frequency recorder matrix. In Section J,
we provide the evolution of training process w.r.t. more DML losses. In Sec-
tion K, we investigate the effect of hyper-parameters rs, rb, T . In Section L, we
provide qualitative results w.r.t. DFS and MTS. In Section M, we provide more
qualitative results on different loss functions.

A Detailed Formulations of Loss Function in DML

A.1 Pair-based Loss Function

Contrastive Loss [2]. The goal of contrastive loss is simply pulling the embed-
dings of the same class as close as possible and separating the embeddings of
different classes at least of a given margin. Specifically, contrastive loss requires
the index set of the sampled embedding pairs P = {(i, j)} and the pair-wise
euclidean distance is calculated as Dij = ∥vi − vj∥. Then the formulation of
contrastive loss is as follows

LContrastive =
∑

(i,j)∈P
I{yi = yj} Dij + I{yi ̸= yj} [γ −Dij ]+ , (I)

where I{·} is the indicator function, γ (set to 1.0 in this paper) is the margin.

Triplet Loss [8]. Triplet loss extends the contrastive loss by converting the
absolute distance relationship between embeddings into a relative distance re-
lationship (i.e., ranking): the distance between embeddings of different classes

† Corresponding authors.
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should be farther away than any embeddings of the same class. Specifically,
triplet loss requires sampling a set of embedding triplets T = {(a, p, n)}, where
ya = yp ̸= yn and a, p, n are the index of the anchor, positive and negative,
respectively. The formulation of triplet loss is as follows

LTriplet =
∑

(a,p,n)∈T
[Dap −Dan + γ]+ , (II)

where γ (set to 0.2 in this paper) is the margin.

Margin Loss [11]. Margin loss introduces a more flexible optimization paradigm
into the triplet loss. Specifically, a adjustable and learnable margin β ∈ RC is
proposed to replace the fixed margin (i.e., 0) between embedding of different
classes, which converts the triplet ranking problem into a relative ordering of
pairs. The formulation of margin loss is as follows

LMargin =
∑

(i,j)∈P
I{yi = yj} [γ +Dij − βyi ]+ + I{yi ̸= yj} [γ + βyi −Dij ]+ ,

(III)
where γ (set to 0.2 in this paper) is the margin in the triplet loss and βyi

is the
learnable margin for class yi. Each element in β is initialized with 1.2 and the
learning rate for β is set to 5e−4.

Generalized Lifted Structure Loss [3]. Generalized lifted structure loss ex-
tends the standard lifted structure loss [6] by considering all embeddings from
the same class w.r.t. the anchor during intra-class distance minimization. Gen-
eralized lifted structure loss pulls embeddings of the same class w.r.t. the anchor
close while pushing embeddings of different classes apart. To save computation
cost, each embedding in a batch is used as the anchor once. To be specific, the
index set of the sampled embeddings is P = {(a,Q,R)}, where a /∈ Q,R, and
ya = yq ̸= yr, q ∈ Q, r ∈ R. Then the formulation of generalized lifted structure
loss is as follows

LGenLifted =
∑

(a,Q,R)∈P


log

∑

q∈Q
exp (Daq) + log

∑

r∈R
exp (γ −Dar)



+

+ ν ∥va∥2 ,

(IV)
where γ (set to 1.0 in this paper) is the margin to avoid pushing the embeddings
of different classes too large and ν (set to 5e−3 in this paper) regularizes the
embeddings. Note that, in this loss, embeddings for distance computation and
producing embeddings with no data points are not normalized.

N-Pair Loss [9]. N-Pair loss extends the triplet loss by considering all embed-
dings of different classes during inter-class distance maximization. Specifically,
the index set of the sampled embeddings is P = {(a, p,R)}, where ya = yp ̸=
yr, r ∈ R, and the pair-wise distance is calculated as Dij = vT

i vj . Then the



DAS: Densely-Anchored Sampling for Deep Metric Learning 3

formulation of N-Pair loss is as follows

LN-Pair =
∑

(a,p,R)∈P
log

(
1 +

∑

r∈R
exp (Dar −Dap)

)
+ ν ∥va∥2 , (V)

where ν (set to 5e−3 in this paper) controls the optimization strength on the
embedding regularization. Note that, in this loss, embeddings for distance com-
putation and producing embeddings with no data points are also not normalized.

Multi-similarity Loss [10]. Apart from considering simple anchor-positive,
anchor-negative relationships, multi-similarity loss better leverages all embed-
dings in a batch by additionally considering positive-positive and negative-negative
relationship. Also, to save computation cost, each embedding in a batch will only
be used as anchor once. For a anchor a, let Pa and Na denote its corresponding
positive and negative embedding index sets, respectively. Given the pair-wise
distance computed by Dij = vT

i vj , the sampled embedding index set is con-
structed as P = {(a,Q,R)}, where a /∈ Q,R, Q = {q | yq = ya, Daq >
mini∈Pa

(Dai − ϵ)} and R = {r | yr ̸= ya, Dar < maxj∈Na
(Daj + ϵ)}. Then

the formulation of multi-similarity loss is as follows

LMS =
∑

(a,Q,R)∈P

1

α
log


1 +

∑

q∈Q
exp (−α (Daq − λ))




+
1

β
log

[
1 +

∑

r∈R
exp (β (Dar − λ))

]
,

(VI)

where α, β, λ, ϵ are hyper-parameters to be set. In this paper, we set α = 2, β =
40, λ = 5e−1, ϵ = 1e−1.

A.2 Proxy-based Loss Function

Softmax Loss [12]. Different from the pair-based loss function, softmax loss1
introduces a proxy i.e., classifier for each class and optimizes the embedding by
pulling it close to its proxy. The formulation of softmax loss is as follows:

LSoftmax = −
∑

i

log
exp

(
WT

yi
vi / T

)
∑

c∈C exp (WT
c vi / T )

, (VII)

where W ∈ RC×d is the classifier weight for all training classes. Since the em-
bedding vi is normalized, a temperature T (set to 5e−2 in this paper) is used to
boost the gradient. Moreover, the learning rate of W is set to 1e−5 for CARS
and CUB, 2e−3 for SOP.

ArcFace Loss [1]. ArcFace loss improves the vanilla softmax by adding an
angular margin into embedding and its corresponding proxy to achieve more
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compact intra-class representation. The formulation of ArcFace loss is as follows

LArcFace = −
∑

i

log
exp

(
s · cos

(
WT

yi
vi + γ

))

exp
(
s · cos

(
WT

yi
vi + γ

))
+
∑

c̸=yi
exp (s · cos (WT

c vi))
,

(VIII)
whereW ∈ RC×d is the classifier weight for all training classes and γ, s are hyper-
parameters to be set. In this paper, we set γ = 5e−1 and s = 16. Moreover, the
learning rate of W is set to 5e− 4 for all datasets.

B Detailed Formulations of Sampling Method for DML

Random Sampling [4]. Random sampling simply selects the index of pos-
itive pair or negative pair in a most trivial way i.e., randomly selecting. To
be specific, given an embedding vi, its index of positive is randomly draw
from {j | yi = yj , i ̸= j} and its index of negative is randomly draw from
{k | yi ̸= yk, i ̸= k}.

Semi-hard Sampling [8]. Semi-hard sampling is proposed to effectively sample
embedding triplets that grows cubically to batch size. In the training process,
most of the triplets satisfy the objective function and they provide limited (or
no) training signal to train the model, thereby impeding the model learning [8].
Thus, given an anchor va and its positive vp (randomly sampled), semi-hard
sampling carefully choose negative embedding’s index as follows

n ∼ {i | yi ̸= ya, ∥va − vp∥2 < ∥va − vi∥2}. (IX)

Soft-hard Sampling [7] To avoid selecting “hard” embeddings that impedes
model training, semi-hard sampling chooses embeddings that are relatively close
to the anchor. Soft-hard triplet sampling shows that a probabilistic (soft) se-
lection of potentially hard embeddings is actually beneficial. Given an anchor
embedding va, soft-hard sampling attain the indexes of positive and negative
embedding as follows

p ∼ {i | yi = ya, ∥va − vi∥2 > argmin
q∈Qa

∥va − vq∥2}, (X)

n ∼ {j | yj ̸= ya, ∥va − vj∥2 < argmax
r∈Ra

∥va − vr∥2}, (XI)

where Ra = {r | yr ̸= ya}, Qa = {q | yq ̸= ya} are the positive and negative
index sets w.r.t. the anchor a, respectively. In this way, soft-hard sampling ex-
plores more triplets than semi-hard sampling to improve the model training.

Distance-weighted Sampling [11] . Different from other sampling strategy
that considers a certain distance range of embeddings, distance-weighted sam-
pling considers a wide range of embeddings in a probabilistic way. Since the
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embedding space is typically a d-dimensional hypersphere Sd−1, the analytical
distribution of pairwise distance on a hypersphere obeys

q (Dij) ∝ Dd−2
ij [1− 1

4
Dij ]

d−3
2 , (XII)

and Dij = ∥vi − vj∥ for any embedding pairs vi,vj ∈ Sd−1. To obtain a wide
range of negative embeddings that are able to improve the embedding diversity as
well as model training, distance-weighted sampling acquires the index of negative
embedding based on the inversed distance distribution

P (n | a) ∝ min
(
λ, q−1(Dan)

)
. (XIII)

In this paper, we set λ = 5e−1 and the largest distance to 1.4.

C More Implementation Details

In this section, we provide more implementation details. As for image augmen-
tation process, random crop (image size 224×224) with random horizontal flip
(p = 0.5) is applied during training and single center crop (image size 256×256)
is used for testing. In terms of training strategy, the number of training epochs
is 300. We use Adam [5] as the optimizer. The initial learning rate is 1e−5, which
is reduced by a factor of 0.3 in 200th and 250th epoch, respectively. The weight
decay is 4e−4. For batch preparation, SPC-2 construction [7] is used (2 samples
per category). The batch size is set to 112.

D Efficiency and Overhead Analysis

DAS takes extra cost only in the training stage. Specifically, w/ and w/o DAS,
the training time cost for [11] are 1.15s vs. 0.70s per batch, which includes
the cost of DAS and using more embeddings for sampling and loss computation.
Moreover, DAS only consumes 13% of the total time, which is efficient compared
to the whole training procedure.

E Effectiveness of DAS on Proxy-based Loss

Although DAS is developed for pair-based loss, we perform experiments to eval-
uate the generalization ability of DAS on classic and widely used proxy-based
losses i.e., Softmax and ArcFace. The results are presented in Table I. The im-
provements are still observed when equipped with DAS for Softmax and ArcFace
across different datasets.

F DAS w/o Image Augmentation

We further perform experiments without image augmentation using triplet loss
and distance weighted sampling on CARS. The results are shown in Table II.
DAS boosts all metrics considerably, showing that DAS is complementary to
image augmentation technique.
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Table I: Comparisons with proxy-based approaches on various datasets

Method
CUB CARS SOP

R@1 F1 NMI R@1 F1 NMI R@1 F1 NMI

Softmax [12] 61.58 36.12 66.73 79.07 37.11 67.01 77.92 37.20 90.05
Softmax + DAS 62.02 36.24 67.42 81.23 39.95 68.91 79.36 38.72 90.40

ArcFace [1] 61.56 35.73 66.83 79.50 37.75 67.82 78.08 37.79 90.18
ArcFace + DAS 62.80 37.63 67.80 82.22 40.82 69.82 78.12 38.08 90.26

Table II: Comparisons without image augmentation on CARS

DAS R@1 F1 NMI

61.47 22.06 53.88
✓ 65.13 (+3.66) 23.77 (+1.71) 55.89 (+2.01)

G Effect of Batch Size

In this section, we investigate the effect of batch size on the proposed DAS. The
results are presented in Fig. I. The loss function and sampling method are margin
loss [11] and distance-weighted sampling [11], respectively. From Fig. I, we have
the following observations: First, under various batch size and image retrieval
evaluation metrics, when equipped with DAS, the model is able to consistently
obtain better results than the one trained without DAS. Second, we observe that
the model trained with DAS and batch size = 32 outperforms the one trained
without DAS and batch size = 224 in terms of R@1. It shows that producing
effective embeddings without datapoints by DAS is as equally important as
providing more data points in a batch to achieve improved performance. These
results well prove the rationality of our motivation and the efficacy of DAS.
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Fig. I: The test set R@{1, 2, 4, 8} on CARS with different batch size

H Effect of Embedding Dimension

In this section, we evaluate the proposed method on different embedding di-
mensions. The results are shown in Fig. II. We use the margin loss [11] as the
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loss function while leveraging the distance-weighted sampling as the sampling
method [11]. From Fig. II, we obtain the following results: First, under different
embedding dimension, DAS consistently reaches the best performance for all im-
age retrieval metrics. Second, the model that trained with DAS and embedding
dimension = 64 obtains a comparable result like the one trained without DAS
and embedding dimension = 128 regarding R@1. It shows that the produced
embeddings by DAS are able to force the model to better leverage the model
capacity. And covering the barren area in embedding space is important to get
improved performance when model capacity is low. These results demonstrate
the effectiveness of DAS.
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(a) Experiments using different embedding dim.

Fig. II: Test set R@{1, 2, 4, 8} on CARS with different embedding dimension d

I Visualization Results on Frequency Recorder Matrix

In this section, we visualize the Frequency Recorder Matrix (FRM) P introduced
in the DFS module. The FRM serves as a stable and effective identifier for seman-
tic scaling by considering the top activated features for one class as the effective
semantics instead of noises. The loss function and sampling method we used here
are triplet loss [8] and distance-weighted sampling [11], respectively. We perform
experiments on all three datasets (i.e., CARS, CUB and SOP). The results are
depicted in Fig. III, from which, we have the following observations: First, for
different training stages (i.e., epoch = 1, 150, 300), the number of top activated
features for embeddings of the same classes are limited (i.e.,around 4 ∼ 8) across
all datasets. Second, as the training process proceeds, more features are likely
to be the top activated features. Third, for the large scale dataset SOP, more
features are likely to be the top activated ones due to the rich semantics covered
by adequate data points. In this sense, with the proposed FRM, we are able to
figure out channels with more discriminative power to achieve effective semantic
scaling. These results demonstrate the rationality of the proposed FRM.
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(a) Visualization of the frequency recorder matrix at epoch = 1
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(b) Visualization of the frequency recorder matrix at epoch = 150
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(c) Visualization of the frequency recorder matrix at epoch = 300

Fig. III: From left to right, the visualized FRM on CARS, CUB and SOP, re-
spectively. Each element in P is normalized (i.e., divided by the maximum value
in its row). Only the first 48 classes are presented due to page limit
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J Evolution of Training Process w.r.t. Different Losses

In this section, we provide the evolution of training loss and test set R@1
w.r.t. different losses in the training process. The results are depicted in Fig. IV.
We have the following observations: First, when training with DAS, the train-
ing losses are generally higher and decrease smoother than the baseline, which
demonstrates that producing more embeddings by DAS is able to consistently
provide training signal to train the model. Second, when equipped with DAS,
the test set R@1s are higher than the baseline. Third, for some loss functions
that face severe overfitting problems such as contrastive loss and generalized
lifted structure loss, DAS is able to ease the overfitting problem. These results
verify the effectiveness of the proposed method across different loss functions
and sampling methods.
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Fig. IV: The training loss and test set R@1 on CARS with different losses
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K Ablation Studies on Hyper-parameters

In this section, we investigate the effect of the hyper-parameters rs, rb, T in
DAS. The loss function and sampling method are margin loss [11] and distance-
weighted sampling [11], respectively. The default hyper-parameters’ settings are
(rs, rb, T ) = (1e−2, 1e−2, 3).
Random scale in DFS (rs). The results on different random scale in DFS are
shown in Table III (a). Our method is insensitive to a wide range of random
scale, showing that scaling the discriminative features is able to provide effective
semantics of different strength.
Semantic shifting scale in MTS (rb). rb is to provide the flexibility of con-
trolling the strength of adding intra-class semantic differences. The results on
different semantic shifting scales in MTS are shown in Table III (b). Our method
obtains similar results under different rb and reaches the best results when rb = 1,
which suggests that larger rb is able to cover more barren area in the embedding
space to improve the model training.
Number of the produced embeddings T . The results on different numbers
of the produced embeddings are shown in Table III (c). As T increases from 1 to
5, the proposed DAS achieves better results and reaches the best result at T = 5.
When T = 10, the performance is worse than T = 5, which indicates that too
many produced embeddings with no data points will dominate the optimization
direction and impair the learning of embeddings with data points.

Table III: Experiments on different hyper-parameters on CARS

(a) Effect of the random scale rs in DFS

rs 1e−2 1e−1 2e−1 5e−1

R@1 82.29 82.25 82.30 82.43

(b) Effect of the scale rb in MTS

rb 1e−3 1e−2 1e−1 1

R@1 82.19 82.29 82.07 82.55

(c) Effect of the number of produced embedding (T ) in DAS

T 1 3 5 10

R@1 80.78 82.29 83.40 81.75

L Qualitative Results of DFS and MTS

In this section, we investigate the effectiveness of the proposed DFS and MTS.
Specifically, we apply DFS and MTS in the test phase and compare results from
the model trained with or without them. Since the training and test classes are
different, the DFS and MTS modules used for training are unavailable here.
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Thus, the semantic scaling is implemented as randomly scaling the top K fea-
tures in an embedding; Whilst we perform semantic shifting by adding the trans-
formation (obtained from another two embeddings of the same class) to the em-
bedding. The loss function and sampling method we used here are contrastive
loss [2] and distance-weighted sampling [11], respectively. The results for seman-
tic scaling and shifting are shown in Fig. V and Fig. VI, respectively. We have
the following observations: 1) When we apply different semantic scaling to the
query, the model trained with DAS consistently retrieves correct results, which is
not the case for the baseline. 2) The model trained with DAS is able to retrieve
expected results even with the semantic shifted embedding while the baseline
fails to do so. These results show that DAS is able to produce embeddings with
effective semantics to train the model, which is insensitive to the semantic dif-
ferences and consistently achieves good generalization ability after training.
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M More Qualitative Results

In this section, we provide qualitative results on different losses w/ or w/o DAS.
The results for CARS and SOP are in Fig. VII and Fig. VIII, respectively.
From those results, we can see that the proposed DAS can enforce the model
to focus on real semantics despite the background noises and other semantics’
interference such as car’s colors, drastic viewpoint changes etc. These results
show the generalization ability and robustness of the proposed DAS.
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model trained with N-Pair [9]
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(f) Top 3 retrieved results using the
model trained with MS [10]

Fig.VII: Top 3 retrieved results using the model trained by different loss func-
tions that are equipped w/ or w/o on CARS. The expected and unexpected
results are framed by green and red rectangles, respectively
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model trained with Triplet [D] [11]
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model trained with Triplet [S] [8]
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(d) Top 3 retrieved results using the
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(f) Top 3 retrieved results using the
model trained with MS [10]

Fig.VIII: Top 3 retrieved results using the model trained by different loss func-
tions that are equipped w/ or w/o on SOP. The expected and unexpected results
are framed by green and red rectangles, respectively
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