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Deep Multi-View Learning Using Neuron-Wise
Correlation-Maximizing Regularizers

Kui Jia , Jiehong Lin, Mingkui Tan , and Dacheng Tao , Fellow, IEEE

Abstract— Many machine learning problems are concerned
with discovering or associating common patterns in data of
multiple views or modalities. Multi-view learning is one of the
methods to achieve such goals. Recent methods propose deep
multi-view networks via adaptation of generic deep neural
networks (DNNs), which concatenate features of individual views
at intermediate network layers (i.e., fusion layers). In this paper,
we study the problem of multi-view learning in such end-to-end
networks. We take a regularization approach via multi-view
learning criteria, and propose a novel, effective, and efficient
neuron-wise correlation-maximizing regularizer. We implement
our proposed regularizers collectively as a correlation-regularized
network layer (CorrReg). CorrReg can be applied to either fully-
connected or convolutional fusion layers, simply by replacing
them with their CorrReg counterparts. By partitioning neurons
of a hidden layer in generic DNNs into multiple subsets, we also
consider a multi-view feature learning perspective of generic
DNNs. Such a perspective enables us to study deep multi-
view learning in the context of regularized network training,
for which we present control experiments of benchmark
image classification to show the efficacy of our proposed
CorrReg. To investigate how CorrReg is useful for practical
multi-view learning problems, we conduct experiments of
RGB-D object/scene recognition and multi-view-based 3D object
recognition, using networks with fusion layers that concatenate
intermediate features of individual modalities or views for
subsequent classification. Applying CorrReg to fusion layers of
these networks consistently improves classification performance.
In particular, we achieve the new state of the art on the
benchmark RGB-D object and RGB-D scene datasets. We make
the implementation of CorrReg publicly available.

Index Terms— Multi-view learning, deep learning, regulariza-
tion, normalization, canonical correlation analysis.

I. INTRODUCTION

MANY machine learning problems concern with dis-
covering or associating common patterns in data of
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multiple views or modalities. Typical applications include
retrieving images from texts or vice versa, combining visual
and audio signals for content understanding, and object recog-
nition from visual observations of multiple modalities. Data of
different views usually contain complementary information,
whose statistical distributions in the high-dimensional mea-
surements of individual views may also be different. Multi-
view learning methods aim to exploit information contained
in multiple views to better accomplish specified learning tasks.
In this work, we take image classification, in particular multi-
view or multi-modal object recognition (e.g., recognizing
objects from RGB and depth images), as the primary example
to study the problem of multi-view learning.

Given feature observations of different views, existing
multi-view learning approaches learn latent space repre-
sentations in either deterministic [1]–[4] or probabilistic
manners [5]–[8]. The learning objective is to make resulting
features of different views at each dimension of the latent
space more related with each other, where relations may be
measured by different metrics/criteria [4], [9], [10]. Among
various techniques, Canonical Correlation Analysis (CCA) [1]
and its extensions [2], [11], [12] are the most representative
ones. For example, given two-view data, CCA learns pairs
of linear projections so that in the projected space, features
of both views are maximally correlated at corresponding
dimensions.

Following the success of deep learning, deep multi-view
learning methods [2], [13] are also proposed recently for learn-
ing deep features from multi-view data. These methods apply
multi-view learning criteria (e.g., CCA) on top of multiple
single-view deep networks (cf. Figure 1-(a) for an illustration);
a two-stage scheme of iterative learning is usually adopted to
train the network parameters, where view-specific features are
learned until the very top layers, to which either a sequential
step of multi-view criteria followed by the objectives of the
specified learning tasks or regularized learning objectives that
seek a balance between multi-view criteria and the final tasks
of interest, are applied. Alternatively, one may design deep
architectures that concatenate at intermediate network layers
(fusion layers) output features of lower, parallel layer streams
for individual views [3], [8], [14], followed by upper network
layers for specified learning tasks (e.g., image classification,
cf. Figure 1-(b) for an illustration). Such end-to-end networks
have the advantage that the final tasks of interest are achieved
directly at the network outputs. However, output features of the
lower, parallel streams in such networks capture view-specific
patterns, which may not be aligned in a common space for a
ready fusion in the subsequent layers.
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Fig. 1. Two-view illustrations of deep networks for multi-view learning,
where fusion layers are inside shaded regions that concatenate features of
individual views. (a) Deep multi-view features are learned by applying multi-
view learning criteria, possibly together with the main learning objective,
on top of multiple single-view deep networks; (b) a deep network takes
as inputs data of multiple views/modalities for a specified learning task
(e.g., multi-modal image classification), where features of individual views
are concatenated at an intermediate layer (i.e., the fusion layer), and multi-
view learning criteria can be imposed as a regularization on the fusion layer;
(c) in generic DNNs, input neurons of a hidden layer can be partitioned into
multiple subsets (represented as black circles grouped in different dashed
boxes), and features learned at different subsets could be considered as multi-
view features of the same input data.

To enjoy the advantage of end-to-end learning while collab-
oratively benefiting from different views, multi-view learning
criteria could be exploited to improve the relations between
resulting features of the lower, parallel streams. Under the
framework of regularized function learning, this amounts to
training network parameters by penalizing objectives of the
main learning tasks with correlation-maximizing regularization
at fusion layers (cf. Figure 1-(b)). In this work, we are
interested in CCA criteria since they have long been the main
workhorse for multi-view learning [10], [11], [15]. Empirical
results also show that CCA based approaches outperform
alternative ones in the context of deep multi-view repre-
sentation learning [13]. Directly using CCA as the regular-
izer makes network training very expensive, which is also
incompatible with the mini-batch based stochastic gradient
descent (SGD), the commonly used algorithm in deep network
training (cf. Section II for a discussion). Inspired by batch
normalization [16], we propose in this paper a novel neuron-
wise correlation-maximizing regularizer, and implement the
proposed regularizers collectively as a correlation-regularized
network layer (CorrReg). CorrReg can be applied to either
fully-connected (FC) or convolutional (conv) fusion layers,
simply by replacing these layers with their CorrReg versions
(cf. Figure 3 for an illustration). CorrReg fusion has the same
computational complexity as the plain one does, which is
significantly lower than that of CCA regularization.

We note that the fusion layer in a multi-view network of
Figure 1-(b) is computationally equivalent to any hidden layer
in a generic deep neural network (DNN), by partitioning neu-
rons of the hidden layer into multiple subsets (cf. Figure 1-(c)
for an illustration). This equivalence suggests a multi-view
feature learning perspective of generic DNNs: when consider-
ing hidden neurons of generic DNNs as pattern detectors that
characterize different patterns of the input data [17], features
learned at each neuron subset of a hidden layer could be
considered as a specific view of the input data. Ideally, each
of such feature views is to learn salient or discriminative

patterns of the input data, which should also be generalizable
to unseen data. However, there exists an issue of overfitting,
a phenomenon that specific subsets of layer neurons are trained
to be co-adapted to certain patterns in the training data,
but cannot generalize well on the held-out test data [18].
As suggested by traditional learning theory [19], the risk of
overfitting could be severe for generic DNNs, since modern
DNNs have large model capacities and are usually over-
parameterized in the sense that they can be trained to fit
randomly labeled datasets [20]. Such a risk for generic DNNs
can be addressed implicitly by SGD training [21], [22], and
explicitly by additional regularization [16], [18]. Our proposed
CorReg takes the second regularization approach: improving
correlations of neuron subsets reduces co-adaptation to pos-
sibly noisy or irrelevant, subset-specific patterns, and thus
alleviates the problem of overfitting. Such a connection with
generic DNNs enables us to study CorrReg in the context
of regularized network training, and to compare with modern
regularization techniques (e.g., Dropout [18]) for deep multi-
view representation learning.

We finally summarize our contributions as follows.
• We study in this work the problem of learning deep

representations from multi-view data in end-to-end net-
works. We take a regularization approach via multi-view
learning criteria, and propose a novel, effective, and
efficient neuron-wise correlation-maximizing regularizer.
We implement our proposed regularizers collectively as
a correlation-regularized network layer (CorrReg), which
will be made publicly available. CorrReg can be applied
to either FC or conv based fusion layers, simply by
replacing these layers with their CorrReg versions. Cor-
rReg fusion layer has the same computational complexity
as a plain one does, which is significantly lower than that
of CCA regularization.

• We consider a multi-view feature learning perspective of
generic DNNs, by partitioning neurons of a hidden layer
in a generic DNN into multiple subsets. Such a connec-
tion with generic DNNs enables us to study deep multi-
view representation learning in the context of regularized
network training, and to compare CorrReg with modern
regularization techniques (e.g., Dropout [18]). We note
that such a comparison is largely ignored in existing deep
multi-view learning methods.

• To investigate the efficacy of CorrReg for regularization
of network training, we conduct control experiments
on benchmark image classification [23] using generic
DNNs [24]–[27]. CorrReg consistently improves perfor-
mance of these networks. To investigate how CorrReg is
useful for practical multi-view learning problems, we con-
duct experiments of RGB-D object/scene recognition and
multi-view based 3D object recognition, using networks
with fusion layers that concatenate intermediate features
of individual modalities or views for subsequent classifi-
cation. Applying CorrReg to fusion layers of these net-
works consistently improves classification performance.
In particular, we achieve the new state of the art on the
benchmark RGB-D object [28] and RGB-D scene [29]
datasets.
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II. THE PROPOSED NEURON-WISE CORRELATION-
MAXIMIZING REGULARIZERS

In this section, we first use generic DNNs to present our
proposed regularization method, and explain how our method
is applied to their hidden layers. Our method is readily applied
to fusion layers of deep networks that take practical multi-view
data, which will be introduced in Section III.

We start with a DNN composed of L FC layers. Denote its
network parameters as � = {W l , bl}L

l=1, where W l and bl are
respectively the weight matrix and bias vector associated with
the lth network layer. In the setting of supervised learning,
given M training samples S = {si }M

i=1 of categorical data,
the network parameters in � are optimized by minimizing
the empirical risk 1

M

∑M
i=1 Loss(si ; �), where Loss(·) is a

properly chosen loss function, e.g., cross-entropy loss for
image classification, and optimization is typically based on
SGD or its variants [30]. As discussed in Section I, DNNs of
high model capacities are able to learn complex functions but
susceptible to overfitting. To remedy, one may apply regular-
ization to reduce their model capacities. Adding regularization
to the network training objective results in the following
optimization problem

min
�

1

M

M∑

i=1

Loss(si ; �) + λR(�), (1)

where R(·) is the regularizer to be specified, and λ is a trade-
off parameter.

In this work, we are interested in regularizing network train-
ing using CCA based multi-view learning criteria [2], [13].
More specifically, for a specified lth network layer and a
training sample s, denote as x ∈ R

nl the feature vector
of s computed all the way up from the input layer to the
lth layer. The lth layer computes f (z) = f (W�x+b) ∈ R

nl+1 ,
where f (·) is an element-wise nonlinear activation function
such as ReLU [31], W ∈ R

nl×nl+1 and b ∈ R
nl+1 are the

weight matrix and bias vector respectively, and where we omit
the superscript l to make the following notations of better
clarity. By randomly partitioning nl input neurons/dimensions
of the lth layer into two subsets 1, we get feature subvectors
x1 ∈ R

nl1 and x2 ∈ R
nl2 from x, and the corresponding weight

submatrices W 1 ∈ R
nl1 ×nl+1 and W2 ∈ R

nl2 ×nl+1 from W .
We simply have W�x = W�

1 x1 + W�
2 x2. Discussions in

Section I suggest that x1 and x2 can be analogously considered
as two feature views of the input data. The co-adaptation of
features in each view is likely to cause network training to
pay more attention to the extraction of view-specific patterns,
rather than the category related patterns that are desired to be
learned by network training. To address this issue and benefit
more from both views of the features, one may use CCA
criteria to regularize network training, which aim to increase
the feature correlations between the two views. Given the two-
view features X1 = [x1

1, . . . , x M
1 ] and X2 = [x1

2, . . . , x M
2 ] of

training set S, applying CCA to the lth network layer amounts

1For simplicity, we only consider in this work the case of partitioning
neurons of a hidden layer in a generic DNN into two subsets.

to optimizing W1 and W2 by

max
W1,W2

1

M
tr

(
W�

1 X1 X�
2 W2

)
(2)

s.t.
1

M
W�

1 X1 X�
1 W1 = 1

M
W�

2 X2 X�
2 W2 = I,

where I is an identity matrix of compatible size. The data
matrices have been assumed centered for simplicity. Applying
the above problem to the lth network layer also assumes
implicitly that nl+1 ≤ min(nl1 , nl2 ).

When directly using (2) as the regularizer R(·) in (1), net-
work training requires solving (2) with stochastic optimization
methods. Unfortunately, as pointed out in [9], the objective
(2) does not easily admit a stochastic optimization due to
the involvement of data covariance matrices in the con-
straints. One may use batch gradient descent to solve (2).
It computes gradients of the correlation objective w.r.t. the
CCA projected features W�

1 X1 and W�
2 X2, which in turn will

be used through back-propagation to compute the gradients
w.r.t. W1 and W 2, and w.r.t. all the network parameters
in the layers below [2]. This is expensive as it involves
computation of covariance matrices (of W�

1 X1 and W�
2 X2),

their inverse square roots, and also performing matrix sin-
gular value decomposition (SVD). One may nevertheless
try mini-batch based gradient descent to solve (2), which,
however, may produce singular data covariance matrices;
[2] also points out that solving (2) by mini-batch based sto-
chastic optimization empirically gives unsatisfactory results.
Given these challenges of directly using CCA as the regu-
larizer R(·), we are motivated to find an alternative way to
improve the correlations between the two feature views X1
and X2.

Inspired by batch normalization [16], we propose to simplify
the full CCA regularization in DNNs by considering the
following two aspects. Firstly, instead of learning W1 and W2
to increase correlations at all the nl+1 dimensions of the
resulting features jointly, we propose to learn w1,i and w2,i ,
i ∈ {1, . . . , nl+1}, independently for each output neuron of the
lth layer, where w1,i and w2,i are the i th columns of W1 and
W2 respectively. Note that such a decoupling suggests that the
resulting features at the nl+1 dimensions could be correlated,
but at the same time the constraint of nl+1 ≤ min(nl1 , nl2 )
is also relaxed, enabling its flexible use in DNNs as tasks
demand. Secondly, we use mini-batches of m training samples,
rather than all the M ones, to approximate the statistics (i.e.,
mean and variance) necessary for computing correlations.
This second simplification is enabled by the independent
neuron-wise learning of w1,i and w2,i : since in the joint case,
the size m of mini-batches is required to be big enough to
avoid singularity of covariance matrices.

For a specified output neuron of the lth layer, we first
introduce the (scalar) random variables Y1 and Y2 whose
samples are respectively computed as y1 = w�

1 x1 and y2 =
w�

2 x2, as illustrated in Figure 2, where we omit the neuron
index for notational clarity. Given a mini-batch of m training
samples, we propose in this work the following neuron-wise



5124 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 10, OCTOBER 2019

Fig. 2. Two sub-layers are formed by randomly partitioning the input neurons
and the corresponding weights of a network layer into two subsets (Left). For
a specified output neuron of the layer, two internal features y1 = w�

1 x1 and
y2 = w�

2 x2 can be computed from the partition (Right). Blank circles and
dashed lines represent one sub-layer, and filled circles and solid lines represent
the other.

correlation-maximizing regularizer

Corr(Y1, Y2) ≈
∑m

i=1(yi
1 − μ1)(yi

2 − μ2)
√

σ 2
1 σ 2

2 + ε
, (3)

where the scalar ε is introduced for numerical stability, and

yi
1 = w�

1 xi
1 i = 1, . . . , m,

yi
2 = w�

2 xi
2 i = 1, . . . , m,

μ1 = 1

m

∑m

i=1
yi

1, μ2 = 1

m

∑m

i=1
yi

2,

σ 2
1 =

∑m

i=1
(yi

1 − μ1)
2, σ 2

2 =
∑m

i=1
(yi

2 − μ2)
2.

Based on the neuron-wise regularizer (3), we specify the
general objective function (1) as the following regularized
problem to improve network training

min
�

1

M

M∑

i=1

Loss(si ; �) − λ
∑

g∈G
Corr(S; θg), (4)

where g indexes the group G of neurons in the network layers
that are specified to apply regularization, θg denotes a subset
of network parameters � that are involved in the computation
of the incoming features of the neuron g, and we have slightly
abused the use of notation Corr with that in (3). Note that
θg and θg′ may contain overlapped parameters, i.e., those
parameters associated with the common layers below g and g′.
The main objective (4) can be optimized using SGD or its
variants [30], by sampling mini-batches of training samples
in iterative steps. Details are presented shortly. Complexity
analysis presented in Section II-A.1 shows that compared
with standard SGD training, our regularizer (3) increases
computation cost only by a constant factor.

A. Correlation-Regularized Network Layer

We still use the illustration in Figure 2 as the running
example. In the forward pass of a mini-batch of size m, any
output neuron of the lth layer that is specified to apply the
regularization (3) computes yi

1 = w�
1 xi

1 and yi
2 = w�

2 xi
2,

i = 1, . . . , m, which give output features of the neuron, before
nonlinear activation f (·), as zi = yi

1 + yi
2 + b, i = 1, . . . , m,

where b is the bias associated with this neuron. 2 In the

2For each neuron that is applied the regularization, we have ever introduced
trainable scalar parameters v1 and v2 to re-scale the internal features y1 and
y2, i.e., z = v1 y1+v2 y2+b, which is similar to the scheme introduced in [32].
In our experiments this alternative scheme does not necessarily improve the
performance.

backward pass, we need to compute the gradients of the
neuron-wise regularizer w.r.t. the weight vectors ∂Corr

∂w1
and

∂Corr
∂w2

, and also those w.r.t. the input features ∂Corr
∂xi

1
, ∂Corr

∂xi
2

, i =
1, . . . , m. These gradients can be derived via multi-variable
chain rule, and we give their explicit forms in supplementary
material. Note that the later ones are used to compute through
back-propagation gradients of the regularizer w.r.t. network
parameters in the lower layers that are also involved in the
computation of {zi }m

i=1.
We usually apply (3) to all the nl+1 output neurons of

the specified lth layer. To make regularized network training
efficient, we note that for these nl+1 neurons, their respective
internal features and statistics, i.e., {yi

1}m
i=1, {yi

2}m
i=1, μ1, μ2,

σ 2
1 , and σ 2

2 , and also the corresponding gradients can be
computed independently and in parallel. Given the mini-batch
of layer inputs of the two-view features xi = [xi

1, x i
2],

i = 1, . . . , m, we write gradients of the nl+1 neuron-

wise regularizers in the compact forms as

[
∂Cor r
∂xi

1
, ∂Cor r

∂xi
2

]

,

i = 1, . . . , m, and
[

∂Cor r
∂W1

, ∂Cor r
∂W2

]
, where Cor r denotes

the nl+1 correlation objectives compactly. More specifically,
∂Cor r
∂xi

1
sums the gradients of neuron-wise regularizers in the

layer w.r.t. the input xi
1, and ∂Cor r

∂W1
independently computes

the gradient of each neuron-wise regularizer w.r.t. its associ-
ated weight vector w1; the same operations apply to ∂Cor r

∂xi
2

and ∂Cor r
∂W2

.
In other words, we implement our proposed scheme (3)

as a correlation-regularized network layer (CorrReg): in the
forward pass, the computation is the same as a standard
network layer, i.e., we do not explicitly compute the internal
features y1 = W�

1 x1 and y2 = W�
2 x2, and instead we directly

compute z = W�x + b, followed by element-wise nonlinear
activation; in the backward pass, we compute the gradients of
the correlation-regularized loss w.r.t. layer weights and layer
inputs, which we spell out as

1

m

∑m

i=1

∂Loss(xi )

∂W
− λ

[
∂Cor r
∂W1

,
∂Cor r
∂W2

]

∂Loss(xi )

∂xi − λ

[
∂Cor r

∂xi
1

,
∂Cor r

∂xi
2

]

i = 1, . . . , m,

where ∂Loss(xi )
∂W and ∂Loss(xi )

∂xi can be computed via standard
back-propagation. The gradient of the main loss w.r.t. the layer
bias vector b can be obtained in the same way.

1) Analysis of Computational Complexity: We analyze the
additional computation cost incurred by imposing CorrReg
on a network layer. Consider an lth layer that computes
f (z) = f (W�x + b) ∈ R

nl+1 for a mini-batch of m samples,
and that has layer parameters W ∈ R

nl×nl+1 and b ∈ R
nl+1 .

Assume arithmetic with individual elements has complex-
ity O(1). In the forward pass, the computation for the layer
with or without CorrReg is the same, and its complexity is
O(mnlnl+1). In the backward pass, without using CorrReg
the complexity for back-propagating gradients through this
layer is O(mnlnl+1). By simplifying the gradient formulas
given in supplementary material and also writing them in



JIA et al.: DEEP MULTI-VIEW LEARNING USING NEURON-WISE CORRELATION-MAXIMIZING REGULARIZERS 5125

matrix forms, we have the same complexity of O(mnlnl+1)
when using CorrReg. In summary, the complexity by imposing
CorrReg on a network layer increases only by a constant factor.
In contrast, using the CCA objective (2) as the regularizer
involves computing inverse square root of covariance matrices
of the size nl+1 × nl+1, and also performing SVD for matrix
of the same size (one may refer to [2] for gradient formulas of
CCA objective); it has the overall complexity of O(mnlnl+1 +
mn2

l+1 + n3
l+1) in the backward pass, which is significantly

worse than that of CorrReg.

B. Correlation-Regularized Convolutional Networks

Our proposed CorrReg can regularize both FC and conv
layers. As discussed above, for an FC layer computing f (z) =
f (W�x + b), we apply regularization to the input z of f by
performing a random two-way partition on feature dimensions
of x, producing two internal features y1 = W�

1 x1 and y2 =
W�

2 x2, where the partition is fixed once determined. CorrReg
is indeed to improve correlations between each dimension
pair of y1 and y2. It is straightforward to extend the above
scheme of single two-way partition in CorrReg to its version of
multiple two-way partitions. For a specified FC layer, one may
simply perform multiple, random two-way partitions on fea-
ture dimensions of x; each of them produces their respective
internal features, and also their respective gradients w.r.t. layer
weights and layer inputs. The overall regularization imposed
on this layer can be obtained by averaging the gradients from
these multiple two-way partitions. Experiments investigating
the efficacy of this scheme of multiple two-way partitions are
reported in Section V-A.

For a conv layer, we perform single or multiple random two-
way partitions on its input feature maps in the same way as
for an FC layer. Each two-way partition produces two internal
feature maps (corresponding to y1 and y2 in Figure 2) for each
output feature map of the layer. Although features/observations
at nearby locations of an image are generally correlated, we do
not explicitly exploit such correlations. Instead, we indepen-
dently apply regularization at each spatial location/pixel of
each output feature map of the layer, so that correlations
between the corresponding spatial locations in each pair of
the internal feature maps are improved, where regularization
is again applied before nonlinear activation. Applying our pro-
posed CorrReg to modern architectures of DNNs (e.g., Con-
vNets [33], variants of ResNets [25], [26], or DenseNets [27])
is very simple: one simply replaces FC or conv layers with
their CorrReg versions.

III. USE OF CORRREG FUSION IN DEEP REPRESENTATION

LEARNING FROM MULTI-VIEW DATA

We present in this section how CorrReg can be readily
applied to deep networks that take as inputs data of multiple
views/modalities and learn deep representations from them.
Different from generic DNNs, these networks by design have
lower, parallel streams for data of individual views, and it is
natural to apply CorrReg to the fusion layers where features
of different views are concatenated for use in the subsequent
layers. The fusion layer in such a network is usually based

Fig. 3. Illustration of a CorrReg fusion layer (inside the dashed box).

on FC or conv layers. To use CorrReg, one may simply treat
output features of two parallel streams as the input two-view
features of CorrReg (corresponding to x1 and x2 in Section II),
and replace the fusion layer with its CorrReg version, resulting
in a CorrReg fusion layer. Figure 3 gives the illustration.
In the following, we take network architectures used in our
RGB-D recognition experiments to instantiate the use of
CorrReg fusion.

Our networks for RGB-D object recognition and scene
recognition are based on ConvNets [34] and ResNets [25].
Take an 8-layer ConvNet as the example. We modify it by
enabling it to take inputs of both RGB and depth channels. The
8-layer ConvNet is composed of two lower, parallel streams
followed by an upper, single stream. Outputs of the two lower
streams are concatenated as inputs of the upper stream, and
CorrReg is applied to the first layer of the upper stream,
which thus becomes a CorrReg fusion layer. In this work,
we also investigate the effects when the CorrReg fusion layer
is at different “heights” (lower, middle, or upper layers) of
the network. Figure 5 gives the illustration. Adaptation of
ResNets is similar as above. We use such adapted network
architectures for experiments of RGB-D object recognition and
scene recognition in Section V-B.

IV. RELATIONS WITH EXISTING WORKS

Our proposed CorrReg method is related to four cate-
gories of existing research: regularization of generic DNNs,
deep learning research that specially focuses on multi-view
representation learning, RGB-D object/scene recognition, and
multi-view recognition of 3D object shapes. We respectively
discuss the relations as follows.

A. Network Regularization

In the literature of DNNs, various regularization techniques
have been proposed to address the issue of overfitting in
network training, including the traditional early stopping,
weight decay, and data augmentation, and also the more recent
Dropout [18], Dropconnect [35], batch normalization [16],
and all conv layer based networks [36], [37]. Among them,
Dropout and Dropconnect are most related to our proposed
method. In the original proposal of Dropout [18], each hidden
neuron is randomly dropped (usually with a probability of 0.5)
at each training iteration, and the network is then updated on
weights that are connected to the remaining neurons. During
inference, all network weights are used after halving their
values. Baldi and Sadowski [38] quantitatively analyze that
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random operations of dropout training and the associated infer-
ence can be understood as a good approximation to the expec-
tation of outputs of a subnetwork ensemble, by introducing
a bridging quantity Normalized Weighted Geometric Mean.
They further show that the expectation of dropout gradients
w.r.t. a network weight is approximately the gradient of the
subnetwork ensemble regularized by adaptive weight decay.
Wager et al. [39] present alternative interpretation of dropout
training as adaptive weight decay by treating dropout as feature
noising in generalized linear models. Analysis similar to [38]
can be applied to Dropconnect [35] by randomly dropping
weight connections rather than network neurons.

Dropout and Dropconnect achieve regularization by first
sampling features/subnetworks (of shared weights), and then
averaging over outputs of the subnetwork ensemble. Differ-
ent from them, our CorrReg scheme explicitly increases the
correlations between (internal) features of different views, and
regularization is achieved by suppressing view-specific noisy
patterns. We empirically show in this work the usefulness
of CorrReg in improving network training, and leave its
theoretical connections with classical regularization to future
research. Note that a few recent methods of network regular-
ization explicitly reduce correlations across dimensions of the
output features of a layer [40], or achieve similar effects by
enforcing orthogonality of the layer weight matrix [41], [42].
These methods impose regularization complementary to our
proposed CorrReg, and we are interested in the investigation
of their combined use in future research.

B. Deep Multi-View Representation Learning

Recent deep multi-view representation learning methods
include those based on CCA [2], [13], [43] and those based
on auto-encoders (AE) [3]. AE based methods typically learn
a shared bottleneck layer on top of lower view-specific layers,
and the learned joint representation at the bottleneck layer
is used for reconstruction of multiple views. Deep CCA [2]
directly applies CCA to the output layers of two deep net-
works, so that the learned networks can produce maximally
correlated features at the output layers. Wang et al. [13] extend
deep CCA as Deep Canonically Correlated Auto-Encoders,
by balancing the correlation objective between the two views
with their respective reconstruction objectives.

Most of existing deep multi-view learning works take a two-
stage strategy for the final tasks of interest: they first learn from
data of multiple views/modalities deep features in a common
space, and then use the learned features in the common space
either to train classifiers for multi-view or across-view classifi-
cation, or to reconstruct data of missing views. In contrast, our
use of correlation based multi-view learning is to regularize
training of end-to-end networks, where parameters that project
multi-view data into a common space are exactly those of an
intermediate network layer.

C. RGB-D Object and Scene Recognition

RGB-D object recognition [8], [44]–[46] has drawn research
attention recently as a typical application of multi-view learn-
ing. Lai et al. [28] collect the first large-scale, hierarchial

RGB-D object dataset using a Kinect camera; they show
that depth information substantially helps object recognition,
by concatenating hand-crafted depth features with those of
RGB ones, and using the concatenated features for classifica-
tion. In [14], a hierarchical learning model of Convolutional
and Recursive Neural Networks (CNNs and RNNs) are pro-
posed, where CNNs are used for learning low-level features
and RNNs with random weights for efficiently extracting
higher-order features; this combined model is applied to RGB
and depth images separately, and the resulting features are
concatenated for classification.

Eitel et al. [45] propose a multi-modal deep learning archi-
tecture for RGB-D object recognition, which fuses, via feature
concatenation, outputs of two parallel streams of modality-
specific subnetworks (composed of conv and FC layers),
and uses two additional FC layers for feature transformation
and softmax classification; the whole network is trained via
standard back-propagation with no consideration of multi-view
learning/regularization criteria. Built on top of two parallel
streams of ResNets (after removing their respective last layers
of classifier) [25], a Correlated and Individual Multi-modal
(CIM) learning layer is proposed in [47]; CIM aims to learn,
in a discriminative and complementary manner, both correlated
and modality-specific features from output vectors of the two
ResNets, where “correlation” is measured by the Euclidean
distance between projected features of the two ResNets’ out-
puts; parameters of the whole network in [47] are updated
in an alternating manner: those of the two lower streams of
ResNets are updated after updating of the CIM parameters
(projection matrices) converges. In [48], a deep learning
framework termed MDSI-CNN is proposed to learn highly
discriminative and spatially invariant multi-modal feature rep-
resentations at different hierarchical levels. The problem of
RGB-D image classification with limited training samples is
addressed in [49]. It takes a domain adaptation approach and
enforces the prediction consistency between two classifiers that
are respectively learned either from the combined RGB and
depth features or from the RGB features alone. Results on
RGB-D object recognition show the efficacy of the proposed
approach.

Methods for RGB-D scene recognition [50]–[53] largely
follow those of RGB-D object recognition. In particular, multi-
modal deep architectures similar to that of [45] are still the
main workhorse to get good recognition performance. We also
use such a type of networks for RGB-D recognition, but
with our proposed CorrReg fusion layers that have in-built
neuron-wise correlation regularization. Training of CorrReg
fusion based networks has no difference from standard back-
propagation.

D. Multi-View Recognition of 3D Object Shapes

Recent research shows that multi-view images are of a
promising representation for recognition of 3D object shapes.
Given a 3D object model (mesh), multiple 2D images can be
rendered by placing virtual cameras around the object, and
recognition is based on the rendered 2D images of multiple
views. Among recent methods, MVCNN [54] is a representa-
tive one that uses parallel streams of conv layers to extract
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TABLE I

ERROR RATES (%) ON CIFAR-10 [23] WHEN APPLYING CORRREG, WITH VARYING NUMBERS nReg OF RANDOM TWO-WAY PARTITIONS,
TO DIFFERENT LAYERS OF A VARIANT OF LENET [24]. SETTING nReg AS 0 INDICATES NO CORRREG IS APPLIED TO ANY NETWORK

LAYER. EXPERIMENTS OF EACH SETTING ARE RUN FOR 5 TIMES, AND RESULTS ARE

IN THE FORMAT OF MEAN (STANDARD DEVIATION)

features from individual views, and then aggregates these
features as a global signature simply via max pooling across
different views. Subsequent works improve over MVCNN by
strengthening interaction among feature learning of individual
views. For example, MHBN [55] uses harmonized bilinear
pooling to aggregate local features, and GVCNN [56] proposes
a group-view framework to model correlations among different
views at a hierarchy of multiple levels. In this work, we adapt
the architectural design of MVCNN by incorporating into it
CorrReg fusion layers. We use such an adapted architecture
to verify the usefulness of CorrReg for multi-view based 3D
object recognition.

V. EXPERIMENTS

In this section, we first present control experiments of
image classification to investigate the effectiveness of our
proposed CorrReg for regularization of network training.
We use generic DNNs including ConvNet (LeNet) [24],
and modern deep architectures of ResNet [25], Wide
ResNet [26], DenseNet [27], and ResNeXt [57]. These experi-
ments are conducted on the benchmark datasets of CIFAR-10,
CIFAR-100 [23], and ImageNet [58]. We then present exper-
iments of RGB-D object/scene recognition and multi-view
3D object recognition to evaluate the usefulness of CorrReg for
practical multi-view learning problems. We use the benchmark
datasets of RGB-D object [28], RGB-D scene [29], and
ModelNet40 [59] for these experiments, and compare with
the state-of-the-art results.

We use cross-entropy loss to train all these networks.
Training is based on SGD with momentum. Without mention-
ing otherwise, we use mini-batches of size 128, momentum
of 0.9, and weight decay of 0.0001; network parameters are
initialized using Gaussian random weights; batch normaliza-
tion is applied, before ReLU nonlinearity, in all networks
to accelerate their training. In each experiment, the initial
learning rate, the value of λ in (4), and also the dropping rate of
Dropout (when using Dropout regularization) are determined
by using 10% of training samples as the validation set. As (4)
suggests, we use constant λ values for all neurons that are
specified to apply CorrReg. Learning rates are decayed at the
rate of 0.1 when learning curves plateau. Our implementation
and experiments are based on the Torch library [60].

A. Control Experiments of Image Classification

We use the CIFAR-10 dataset for our controlled studies on
a plain ConvNet (a variant of LeNet [24]). The CIFAR-10
dataset consists of 10 object categories of 60, 000 color

images of size 32 × 32 (50, 000 training and 10, 000 testing
ones). We follow [61] and preprocess the data using global
contrast normalization and ZCA whitening. Our used LeNet
variant consists of 3 conv layers, followed by 3 FC lay-
ers. Max or average pooling layers are applied after each
conv layer. More layer specifics are given in supplementary
material.

We first investigate the regularization effects when applying
CorrReg to different network layers. To this end, we replace
each of the network layers (except the input one), namely
Conv2, Conv3, FC4, FC5, and FC6, with their CorrReg ver-
sions respectively, and compare the recognition performance.
As indicated in Section II-B, the scheme of multiple (random)
two-way partitions can be used when applying CorrReg to
any network layer. We also investigate how different numbers
nReg of two-way partitions in CorrReg achieve regularization,
for which we set nReg = 1, 3, 5, or 10. Note that when
nReg = 1, we use the first half neurons/feature maps of the
layer as a subset, and use the other half as the second subset;
when nReg > 1, regularization is achieved by averaging over
those of the multiple two-way partitions. We run experiments
of each setting (the layer/nReg pair) for 5 times, and report
results in the format of mean (standard deviation). Error rates
reported in Table I tell that applying CorrReg, with any
number nReg of two-way partitions, to these layers con-
sistently achieves performance boost over the LeNet variant
baseline. In general, CorrReg is more effective for (upper)
FC layers; this is reasonable since a densely connected FC
layer contains much more trainable parameters than a conv
layer does, and is thus more susceptible to overfitting. Setting
nReg > 1 sometimes helps in getting even better results, but
at the cost of slightly increased computation. In the subsequent
experiments, we simply set nReg = 1 for computational
efficiency.

As a technique for regularization of network training, Cor-
rReg is related to the methods [16], [18], [35] discussed
in Section IV, in particular Dropout [18]. To compare Cor-
rReg with Dropout, we apply them to the FC5 layer of
LeNet variant. Since their working mechanisms are differ-
ent, one might be also interested in using them together.
Table II reports the comparative results. CorrReg achieves
improvement comparable to that of Dropout, where the
dropping rate is optimally set as 0.2 by tuning from the
range of (0, 1) on the validation set. Using CorrReg together
with Dropout further improves the performance, showing the
complementary regularization benefit of CorrReg to that of
Dropout.
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TABLE II

COMPARISON OF IMAGE CLASSIFICATION ON CIFAR-10 [23] WHEN
APPLYING CORRREG AND/OR DROPOUT TO AN UPPER FC LAYER OF

A VARIANT OF LENET [24]. EXPERIMENTS ARE RUN FOR 5 TIMES,
AND RESULTS ARE IN THE FORMAT OF

MEAN (STANDARD DEVIATION)

TABLE III

EXPERIMENTS ON CIFAR-10 [23] USING A VARIANT OF LENET [24].
CORRREG IS OPTIONALLY APPLIED TO AN UPPER FC LAYER WITH

VARYING NUMBERS OF LAYER NEURONS. RESULTS ARE IN THE

FORMAT OF ERROR RATE (%)/CORRELATION COEFFICIENT
(1e−2). REFER TO THE MAIN TEXT FOR

HOW CORRELATION IS COMPUTED

CorrReg achieves regularization via improving correlations
between the internal features produced by two-way partition
of a layer, which suggests a natural alternative that halves the
number of layer neurons. Halving the number of layer neu-
rons reduces the model capacity and creates “bottlenecking”
of information flow, thus implicitly imposing regularization.
Oppositely, one may be also interested in alternatives that
increase the number of layer neurons with varying factors.
To investigate the efficacy of CorrReg for models with dif-
ferent capacities, we apply these alternatives again to the
FC5 layer of LeNet variant. Results in Table III show that
larger models perform better than smaller ones do, and apply-
ing our proposed CorrReg to larger models further improves
the performance. We also compute in Table III the averaged
(pair-wise) correlation among features of training samples
learned at different layer neurons, in order to understand how
network capacities relate to the behavior of feature correlations
across layer neurons and how CorrReg plays a role here as
a regularization. Results show that as the numbers of layer
neurons increase, feature correlations between layer neurons
increase, and applying CorrReg further enhances this effect.

CorrReg is a neuron-wise scheme of CCA regularization.
One might be interested in the performance when using CCA
as the regularizer. To this end, we apply the CCA objective
(2) as a regularizer to the FC5 layer of the LeNet variant,
where regularization parameter is set as 1e−6 by optimally
tuning on the validation set. Computational complexity of
CCA regularization is significantly worse than that of CorrReg,
and Table IV shows that it practically consumes more time per
iteration of SGD training (measured on an M40 GPU and Intel
Xeon CPU running at 2.2 GHz). Although CCA regularization
improves performance over that of plain LeNet variant, its
results with different sizes of mini-batches are worse than
those of CorrReg; we hypothesize that this is because opti-
mization of CCA objective (particularly the constraints in (2))
is incompatible with SGD based network training.

Fig. 4. Investigation of the penalty parameter λ on CorrReg’s performance.
Each line represents the validation errors on CIFAR-10 [23] when applying
CorrReg to a layer of a variant of LeNet [24] using a range of λ values. Each
error rate is a mean out of 5 runs. These results are obtained by using 10%
of CIFAR-10 training samples as validation.

The penalty parameter λ in (4) controls the amount of
regularization that CorrReg imposes on network training.
To investigate how performance of CorrReg depends on
λ values, we use 10% of training samples as validation,
and apply CorrReg to different layers of the LeNet variant
(i.e., the settings of Table I with nReg = 1) using a range of
λ values. Results are plotted in Figure 4. Figure 4 shows that
smaller values of λ are usually better when applying CorrReg
to (lower) conv layers, and larger values of λ are usually better
for (upper) FC layers. This is reasonable due to two compound
reasons: (1) when applying CorrReg to an upper network layer,
larger values of λ are needed in order to back-propagate the
regularization for better learning of features/parameters of all
the layers below; (2) conv layers already have intrinsic regu-
larization via weight sharing. This inconsistency of optimal λ
values across different network layers makes use of CorrReg
less convenient. Fortunately, results in this section suggest that
to get the most effective regularization, one may simply apply
CorrReg to an upper (FC) network layer, and set the optimal
λ values accordingly. Setting λ ∈ [1e−3, 1e−1] typically gives
good results. Experiments in the subsequent sections follow
this empirical rule.

1) Results on Modern Deep Architectures: We further inves-
tigate the regularization effects of CorrReg on modern deep
architectures. For the datasets of CIFAR-10 and CIFAR-100,
we use the representative architectures of ResNet [63], Wide
ResNet [26], and DenseNet [27]. The CIFAR-100 dataset is an
adaptation of CIFAR-10, consisting of 100 object categories
of 60, 000 color images. We use simple data augmentation
following [62]: during training, we zero-pad 4 pixels along
each image side, and sample a 32 × 32 region crop from the
padded image or its horizontal flip; during testing, we sim-
ply use the original non-padded image. Our use of ResNet,
Wide ResNet, and DenseNet for the CIFAR datasets is as
follows: we use a pre-activation ResNet [63] of 68 weight
layers, whose layer specifics are given in supplementary
material; we use the exactly same top-performing architecture
of “WRN-28-10” as in [26]; we also use the exactly same top-
performing architecture of “DenseNet-BC” (with the growth
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TABLE IV

COMPUTATION AND RECOGNITION PERFORMANCE ON CIFAR-10 [23] WHEN APPLYING CORRREG OR CCA REGULARIZATION, WITH DIFFERENT
SIZES m OF MINI-BATCHES, TO AN UPPER FC LAYER OF A VARIANT OF LENET [24]. WALL-CLOCK TIME IS MEASURED ON AN M40 GPU

AND INTEL XEON CPU RUNNING AT 2.2 GHZ. EXPERIMENTS ARE RUN FOR 5 TIMES, AND ACCURACIES ARE IN THE FORMAT OF MEAN

(STANDARD DEVIATION). nl = 256 AND nl+1 = 64 DENOTE THE NUMBERS

OF INPUT AND OUTPUT NEURONS OF THE LAYER RESPECTIVELY

TABLE V

RESULTS (ERROR RATES %) ON CIFAR-10 AND CIFAR-100 [23] OF SEVERAL DEEP ARCHITECTURES WITH OR WITHOUT REGULARIZATION.
STANDARD DATA AUGMENTATION IS USED AS IN [62]. REFER TO THE MAIN TEXT FOR HOW DROPOUT-S1, DROPOUT-S1S2,

CORRREG, AND CORRREG-DROPOUTS2 ARE APPLIED TO THESE ARCHITECTURES

rate k = 40) as in [27]. These architectures commonly
aggregate features of lower layers via a top global average
pooling layer, followed by a final FC layer of classification.
For each network, we follow the empirical rule established
in Section V-A and apply CorrReg to the final FC layer.
We fix λ of CorrReg as 5e−3 for all the three networks.
We train ResNet and Wide ResNet for a total of 160 epochs;
learning rates are initialized as 0.1, and decay after 80 and
120 epoches of training. For DenseNet, we follow [27] and
train for an extended duration of 300 epochs, using mini-
batches of size 64. All other training hyperparameters are
the same as described in the beginning of Section V (not
necessarily the same as used in [26], [27], [63]). To compare
with Dropout regularization, we use two schemes (denoted as
Dropout-S1 and Dropout-S1S2 respectively): scheme 1 applies
Dropout to (inputs of) the final FC layer of each network,
which is the same as our use of CorrReg; scheme 2 follows
the way in [26] and additionally applies Dropout to (inputs of)
the second one of the two conv layers in each residual block
of these networks. Dropping rates are tuned on the validation
set with the optimal one set as 0.2. We also try CorrReg
together with the above scheme 2 (denoted as CorrReg-
DropoutS2), to compare fairly with Dropout regularization.
Results in Table V show that Dropout-S1S2 improves over
Dropout-S1 by providing additional regularization, especially
for the CIFAR-100 dataset that contains much fewer training
samples per category than CIFAR-10 does. When applying
to the top FC layer alone, our proposed CorrReg consis-
tently outperforms Dropout-S1. Moreover, the best results are
obtained by CorrReg-DropoutS2 that has the combined benefit
of CorrReg and Dropout regularization.

For the ImageNet dataset, we use the representative archi-
tectures of ResNet [25], Wide ResNet [26], and ResNeXt [57]
(more specifically, the “ResNet-101”, and the top-performing
“WRN-50-2-bottleneck” and “ResNeXt-101 (64×4d)” of

TABLE VI

RESULTS OF SINGLE-CROP TESTING ON THE IMAGENET VALIDATION

SET [58] OF SEVERAL DEEP ARCHITECTURES WITH OR WITHOUT
REGULARIZATION. RESULTS ARE IN THE FORMAT

OF TOP-1/TOP-5 ERROR RATES (%)

these architectures). For data augmentation, we adopt the same
scheme as in [25]: during training, we randomly sample a
224 × 224 region crop from an image or its horizontal flip;
during testing, we use a single crop of size 224×224. Learning
rates are initialized as 0.1, and decay by a factor of 0.1 at 50%
and 75% of the total 90 training epochs, using mini-batches
of size 256. For each network, we again apply CorrReg to the
top FC layer, using a fixed λ value of 1e−3. We also apply
Dropout to (inputs of) the same FC layers of these networks,
where dropping rate is again set as 0.2. Table VI shows
the comparative results. While Dropout regularization may
not have effect on these architectures, our proposed CorrReg
steadily achieves performance improvement.
Remarks We note that experiments in this section are not
intended to compare with the best results on the benchmark
image classification datasets. They are to show the efficacy of
our proposed CorrReg for regularization of network training:
even though input data are from the same source, intermediate
features may be learned to be overfitting to view-specific
patterns. CorrReg effectively regularizes network training so
that the final task of classification can collaboratively benefit
from all feature views.

B. RGB-D Object and Scene Recognition

In this section, we use RGB-D object dataset [28] and
SUN RGB-D scene dataset [29] to investigate the efficacy of
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Fig. 5. Network architectures used for experiments of RGB-D object recog-
nition. The corresponding layer parameters (numbers of feature maps, filter
sizes, etc) are given in supplementary material. (a) The plain (RGB or depth)
ConvNets. (b)-(d) The RGB-Depth ConvNets concatenating features of the
two lower streams respectively at lower, middle, or upper “heights” of network
layers.

CorrReg for practical problems of multi-view learning. The
RGB-D object dataset contains 207, 920 RGB-D video frames
of 51 classes of 300 object instances captured from different
views, with roughly 600 frames per object instance. We sample
these videos by every 5th frame of each video. We use the
10 random dataset splits provided by [28], with each split
containing different object instances of all the 51 classes. For
these splits, there are on average about 34, 000 images for
training and 6, 900 images for testing. This dataset is inten-
sively used for comparative studies of alternative baselines,
investigation of our proposed method under different settings,
and also for robustness test against contamination of input
data. SUN RGB-D scene dataset is a benchmark suite for
indoor scene understanding, including 10, 355 RGB-D images.
For scene recognition, we follow [29] and select the 19 most
common categories, each of which has at least 80 RGB-D
images in the dataset; we then divide the data into training and
test sets, giving 4, 845 images for training and 4, 659 ones for
testing. For both RGB-D object and SUN RGB-D datasets,
we compute surface normal (SN) [64] from each depth image
as input depth features.

1) Comparative Studies of Alternative Baselines: Our com-
parative studies of alternative baselines for RGB-D object
recognition are based on adaptations of an 8-layer ConvNet.
The adaptations consist of two lower, parallel streams followed
by one upper, single stream, whose model architectures are
shown in Figure 5 and whose layer parameters (numbers of
feature maps, filter sizes, etc) are given in supplementary
material. RGB and depth/SN images are respectively taken as
inputs of the two lower streams, whose outputs are concate-
nated as inputs of the upper stream. We term such adapted

TABLE VII

RECOGNITION ACCURACIES(%) ON RGB-D OBJECT DATASET [28]
USING ARCHITECTURES IN FIGURE 5 AND VARIOUS

REGULARIZATION METHODS. RESULTS ARE IN THE

FORMAT OF MEAN ± STANDARD DEVIATION

TABLE VIII

ACCURACIES(%) OF DIFFERENT λ VALUES WHEN APPLYING CORRREG

TO A RGB-DEPTH CONVNET (FIGURE 5-(D))
FOR RGB-D OBJECT RECOGNITION [28]

networks as RGB-Depth ConvNets. In this work, we inves-
tigate the effects of concatenating features of the two lower
streams at different “heights” (lower, middle, or upper layers)
of RGB-Depth ConvNets, as illustrated in Figure 5. Alternative
to RGB-Depth ConvNets are plain ConvNets that consist of
one of the two lower streams of RGB-Depth ConvNets and
the upper stream, as shown in Figure 5. Such plain ConvNets
can be used for both RGB and depth images, and we term
them as RGB ConvNet and Depth ConvNet respectively.

The above networks suggest several baseline methods for
RGB-D object recognition. In particular, given existence of
both RGB and depth images during training and test phases,
one may separately train RGB ConvNet or Depth ConvNet
using single-modal images, and use the trained models for
single-modal inference. Alternatively, one may use the above
RGB-Depth ConvNets that concatenate features of individ-
ual modalities at different heights for multi-modal training
and inference. To train these baseline networks, we use
common data augmentation practices on the RGB-D object
dataset: we first re-scale each training image to the size
of 150 × 150, from which or the horizontal flip of which
we randomly crop a region of the size 143 × 143. The
learning rate is initialized as 0.01 and decays by a factor
of 0.1 when learning curves plateau. Table VII shows that
while concatenating features at lower or middle layers of
RGB-Depth ConvNets is not effective, feature concatenation
at an upper layer of RGB-Depth ConvNet achieves improved
performance over single-modal networks.

The above baselines fuse multi-modal features via direct
concatenation. Discussions in Section I suggest that one may
apply network regularization at fusion to help collaboratively
learn from multi-view features, which includes existing meth-
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TABLE IX

ROBUSTNESS TEST BY ADDING RANDOM OCCLUSION BLOCKS OF VARYING SIZES TO TEST RGB AND DEPTH (SN) IMAGES OF THE RGB-D OBJECT
DATASET [28]. TRAINED NETWORKS IN SECTION V-B.1 ARE USED FOR THESE EXPERIMENTS.

RESULTS ARE IN TERMS OF RECOGNITION ACCURACY(%)

ods such as Dropout [18], and also our proposed CorrReg
that explicitly leverages multi-view learning criteria. More
specifically, we apply CorrReg to the first layer of the upper
stream of RGB-Depth ConvNet that concatenates multi-view
features at upper “height”, making it become a CorrReg fusion
layer, or alternatively apply Dropout to inputs of the first layer
of the upper stream. As noted in Section IV, an approximate
measure of correlation is used in [47] that simply computes the
(squared) Euclidean distance between features of individual
views. We also consider this simple correlation measure as
a baseline regularizer of (1), and term such a method as
L2Regu. We compare with L2Regu by applying it to the
same first layer of the upper stream of RGB-Depth ConvNet.
We set the λ value of CorrReg as 1e−1, the same penalty
parameter of L2Regu as 1e−1, and the dropping rate of
Dropout as 0.5, which are determined by tuning on the
validation set. Results in Table VII show that either Dropout,
L2Regu, or CorrReg improves performance over that of direct
concatenation, and CorrReg outperforms Dropout and L2Regu,
showing the advantage of CorrReg in practical multi-view
learning problems. Table VIII also gives results of CorrReg
when using different λ values. To investigate whether the effect
of CorrReg (or L2Regu) is complementary to that of Dropout,
we also use both CorrReg (or L2Regu) and Dropout in RGB-
Depth ConvNet. Using L2Regu together with Dropout may not
improve over L2Regu itself; instead, using CorrReg together
with Dropout further improves the performance, showing the
advantage of CorrReg for complementary regularization.

2) Robustness against Contamination of Input Data: An
important property of multi-view learning is that inference
should be less influenced when input data are contami-
nated [65]. In this section, we simulate such testing scenarios
by adding random occlusion blocks to input RGB and depth
images. Occlusion blocks are obtained by setting pixel values
of the occluded regions as 0. We use the trained networks
in Section V-B.1 for these investigations. Table IX reports
comparative results under different sizes of random occlusion.
Compared with RGB ConvNet and Depth ConvNet, direct
feature concatenation using RGB-Depth ConvNet may not
provide better robustness against contamination of input data.
RGB-Depth ConvNet with our proposed CorrReg improves
the robustness, and performs consistently better than plain
RGB-Depth ConvNet and the one with Dropout do.

3) Comparisons with the state of the art: State-of-the-
art results on RGB-D object recognition are obtained by
using either advanced base models (e.g., ResNets [25]) with

TABLE X

RECOGNITION ACCURACIES (%) OF DIFFERENT METHODS ON THE

RGB-D OBJECT DATASET [28]. RESULTS ARE IN THE

FORMAT OF MEAN ± STANDARD DEVIATION

parameters pre-trained on ImageNet [47], or advanced fea-
ture encoding scheme [48]. We follow [47] and use two
ResNet-50 [25] (after removing its last FC layer of classi-
fier) as the lower, parallel streams, whose 2048-dimensional
output feature vectors are concatenated as the input vector of
a FC based CorrReg fusion layer, followed by the last layer
of 51-way classifier. The two lower streams respectively
take RGB and SN images as inputs. We term such a con-
structed network as RGB-Depth ResNet. For data augmenta-
tion, we follow [46] by first re-scaling training images to the
size of 256 × 256, and then randomly cropping regions of the
size 224×224 from them or their horizontal flips. RGB-Depth
ResNet is fine-tuned with the initial learning rates of 0.0001
for the lower streams and 0.01 for the upper stream. We use
mini-batches of size 64, and set the λ value of CorrReg
as 1e−1 and the dropping rate of Dropout as 0.8. Other training
hyperparameters are the same as described in the beginning
of Section V.

Note that the method [47] uses the same ImageNet pre-
trained base models (i.e., ResNet-50) as we do. It is inter-
esting to observe in Table X that our result of RGB-Depth
ResNet that concatenates RGB and depth features directly is
better than those from most of existing methods. Regularizing
RGB-Depth ResNet with either Dropout or CorrReg further
improves the result, with CorrReg achieving better improve-
ment. Using CorrReg together with Dropout achieves the new
state of the art of 93.6%.
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TABLE XI

RECOGNITION ACCURACIES (%) OF DIFFERENT METHODS
ON THE SUN RGB-D SCENE DATASET [29]

4) Results on RGB-D Scene Recognition: In this section,
we report experiments of RGB-D scene recognition on the
SUN RGB-D dataset [29]. We use the same network archi-
tectures and training manners as in Section V-B.3, with the
only difference that replaces the 51-way softmax classifiers
with the 19-way ones. Results in Table XI tell that RGB-
Depth ResNet using simple feature concatenation outperforms
existing methods that have complicated feature fusion schemes
and/or training criteria. Regularizing RGB-Depth ResNet with
CorrReg and/or Dropout further improves the result to the new
state of the art.

C. Multi-view Recognition of 3D Object Shapes

We conduct experiments of multi-view 3D object recog-
nition on the ModelNet40 dataset [59] to investigate the
efficacy of CorrReg for practical problems with data of
more than two views. The ModelNet40 dataset contains
12, 311 CAD models (meshes) of 40 object categories, with
9, 843 models for training and 2, 468 ones for testing. To pre-
pare images of multiple views from each object model,
we follow the 1st camera set-up in [54] and assume that each
model is upright oriented; 12 virtual cameras, pointing towards
the model centroid, are evenly distributed (with intervals of
30 degrees) around a horizontal circle that is elevated
30 degrees from the ground plane; 2D images are rendered
from these 12 camera views.

Based on a very simple architecture of MVCNN [54] for
multi-view based 3D object recognition, where features of
individual views extracted from lower, parallel layer streams
are aggregated via feature-wise max pooling, we design
a Multi-view Fusion Network (MvFusionNet) as shown
in Figure 6. By pairing neighboring views, MvFusionNet
re-organizes feature vectors of individual views from lower
streams into an equal number of pairs of feature vectors. Each
of such pairs is then fed into a fusion layer where CorrReg
can also be applied to form a CorrReg fusion layer. Feature-
wise max pooling is subsequently applied to outputs of these
fusion layers, and MvFusionNet ends with a FC layer of
classifier. We investigate here whether CorrReg is helpful for

Fig. 6. Illustration of the multi-view fusion network used for experiments
of multi-view 3D object recognition. Thick right arrows represent data re-
organization by pairing feature vectors of individual views.

TABLE XII

ACCURACIES (%) OF MULTI-VIEW 3D OBJECT RECOGNITION ON THE

MODELNET40 DATASET [59]. ALL METHODS USE THE 1st CAMERA

SET-UP IN [54] (12 CAMERA VIEWS POINTING TOWARDS UPRIGHT

ORIENTED MODEL). BEST RESULTS OF SOME METHODS AND
THE CORRESPONDING VIEW NUMBERS ARE ALSO

QUOTED IN PARENTHESES

feature aggregation of different views by regularizing such a
constructed MvFusionNet.

Lower streams of MvFusionNet are adapted from
ResNet-101 [25] that is pre-trained on ImageNet [47]. To train
MvFusionNet, we use a mini-batch of 16 (i.e., 16 × 12 = 192
images); the learning rates start at 0.001 and decay at the
rate of 0.1 when learning curves plateau. The penalty λ of
CorrReg is set as 5e−4. We report in Table XII results of
MvFusionNet without or with CorrReg regularization, where
we also compare with recent state-of-the-art results [55],
[56], [68] on ModelNet40 whose multi-view images are pre-
pared following the same style of 1st camera set-up in [54]
(i.e., 12 camera views pointing towards upright orientation of
object models). Due to varying architectural designs, network
optimizers, and feature aggregation schemes, results of dif-
ferent methods in Table XII may not be directly comparable;
nevertheless, it confirms the efficacy of CorrReg for better fea-
ture learning and aggregation from multiple views of 3D object
shapes. We note that results of multi-view based methods on
ModelNet40 depend heavily on how multi-view images are
prepared by positioning virtual cameras on a sphere enclosing
the object model. For example, the current best result on
ModelNet40 is obtained in [69] by selecting camera set-ups
from a much richer set of camera positioning and viewpoints.
We expect our results can also be boosted by using multi-view
images rendered from these optimal camera set-ups.
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VI. CONCLUSION

We study in this paper deep multi-view learning in the con-
text of regularized network training. We take a regularization
approach via multi-view learning criteria, and propose a novel,
effective, and efficient neuron-wise correlation-maximizing
regularizer. We also implement such regularizers collectively
as a correlation-regularized network layer (CorrReg). CorrReg
can be applied to either FC or conv based fusion layers that
concatenate intermediate features of individual views. Con-
trolled experiments of benchmark image classification show
that CorrReg consistently improves performance of various
modern deep architectures. Applying CorrReg to multi-modal
deep networks achieves the new state of the art on the bench-
mark RGB-D object and scene recognition datasets. In future
research, we are interested in applying CorrReg to other multi-
view learning problems of practical interest.
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