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Abstract
In this paper, a novel learning paradigm is pre-
sented to automatically identify groups of infor-
mative and correlated features from very high
dimensions. Specifically, we explicitly incorpo-
rate correlation measures as constraints and then
propose an efficient embedded feature selection
method using recently developed cutting plane
strategy. The benefits of the proposed algorithm
are two-folds. First, it can identify the optimal
discriminative and uncorrelated feature subset to
the output labels, denoted here as Support Fea-
tures, which brings about significant improve-
ments in prediction performance over other state
of the art feature selection methods considered
in the paper. Second, during the learning pro-
cess, the underlying group structures of corre-
lated features associated with each support fea-
ture, denoted as Affiliated Features, can also be
discovered without any additional cost. These af-
filiated features serve to improve the interpreta-
tions on the learning tasks. Extensive empirical
studies on both synthetic and very high dimen-
sional real-world datasets verify the validity and
efficiency of the proposed method.

1. Introduction
Many real-world datasets in text and digital media do-
mains are typically represented with very high dimensional
features, bringing significant challenges in data mining.
Learning performance is often degraded with inflating of
dimensions, leading to the well-known notion of “curse of
dimensionality”. This problem becomes particularly crit-
ical when the number of informative features is relatively
small, but involved with a vast variety of irrelevant features
and redundant features (Yu & Liu, 2004).
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To address this issue, a plethora of feature selection meth-
ods have been developed in the recent decades. In general,
these methods have been categorized as three core themes
(Guyon, 2008): filter methods (Yu & Liu, 2003; Peng et al.,
2005), wrapper methods (Guyon & Elisseeff, 2003; Zhu
et al., 2007) and embedded methods (Yuan et al., 2011;
Tan et al., 2010; Mao & Tsang, 2011). Specifically, fil-
ter methods select informative features based on their in-
dividual discriminative power or correlation criterion. The
benefits of filter methods lie in their low computational re-
quirements. The drawback however is that it may not iden-
tify the optimal feature subset suitable for the predictive
model of interest. On the contrary, since wrapper meth-
ods, such as SVM-RFE (Guyon & Elisseeff, 2003), se-
lect the discriminative features solely based on the induc-
tive learning rule, they typically exhibit higher predictive
performance but at the expense of a lower computational
efficiency on large scale and very high dimensional prob-
lems. Embedded methods refer to approaches that directly
optimize some regularized risk function w.r.t. two sets of
parameters: parameter of the learning machine, and param-
eter to control the feature sparsity (Guyon, 2008). As such
they are usually more efficient than wrapper methods.

Figure 1. ORL face dataset (Left: original face images; Middle:
face images with selected support features (white pixels); Right:
face images with selected affiliated features (white pixels).

To date, it is worth noting that most methods in all three cat-
egories generally assume a good feature subset has strong
prediction ability pertaining to the output labels; mean-
while the selected features should also maintain low cor-
relations. In other words, correlated features are deemed as
redundant, and this redundancy should be minimized (Hall,
1999; Guyon, 2008; Zhao et al., 2011; 2012). Though elim-
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inating redundant features has been widely used in practice
and regarded as the guiding principle behind the develop-
ment of feature selection methods, it may not always hold
since these correlated features can be useful and informa-
tive for the tasks on hand. As also discussed in (O’Sullivan
et al., 2000; Caruana & de Sa, 2003; Xu et al., 2012), such
feature redundancy has the benefits of bringing about stable
generalization performances. Here, we present an illustrat-
ing example using Figure 1. Despite a perfect prediction
by the classifier on the male and female face images based
on the optimal features identified (denoted here as support
features), these uncorrelated features which are depicted
by the white pixels in the middle of Figure 1, can be ob-
served to be sparsely spread across the entire image, thus
giving little cue to assist the human user in the interpreta-
tion of the features. The white pixels shown in the right col-
umn of Figure 1, denoting the highly correlated features, on
the other hand, are much more informative. To be precise, it
is easy for the human user to spot the core group features in
the regions of the mustache and beard, which can be help-
ful to the users in grasping a better understanding on the
critical objects in the images so that further analysis can be
made. On the contrary, existing feature selection methods
usually eliminate these correlated features and treat them
as pure redundancies. Further, the act of identifying these
correlated features from high dimensions is typically very
compute intensive.
Taking this cue, in this paper, we introduce an efficient fea-
ture selection method that can identify the optimal feature
subset to the output labels; while minimizing the correla-
tion among the selected features. Each selected feature is
defined as Support Feature; while the correlated features
associate with this support feature are denoted as Affiliated
Features, and are discovered during the feature selection
process without any additional cost. The core contributions
of this paper are listed as follows:

1. We develop an efficient Correlation Redundancy
Matching (CRM) algorithm, which accommodates
the correlation constraints among features, to identify
both discriminative features and correlated features.
Similar to L1-SVM, the proposed method can be cat-
egorized as an embedded feature selection approach
and attains global convergence. Theoretical analysis
and empirical studies show that our method is scalable
to very high dimensional problems.

2. For each support feature, the respective associated af-
filiated feature subset contains correlated features that
are informative to the output labels and further, with
these two types of features, a group structure of fea-
tures can be established. These affiliated groups main-
tain redundancy for robust prediction, and help users
understand the learning tasks for further analysis.

3. Empirical studies on both synthetic and real-world ex-
periments verify the superior performance of the pro-

posed method over the state-of-the-art feature selec-
tion methods in terms of both testing accuracies and
redundancy rate (Zhao et al., 2012).

2. Preliminaries and Related Works
In this paper, we denote a data point by xi ∈ Rn and the
dataset by X = [x1, . . . ,xn] = [f ′1, . . . , f

′
m]′ ∈ Rm×n,

where fj represents a row vector corresponding to the jth

feature of the data points in X. Each xi is associated with
an output yi ∈ {±1}. We also define y as the vector of the
label for the data. Symbols 0 and 1 are the column vectors
with all zeros and all ones, respectively. For any vector f ,
we denote the mean and standard deviation of the entries
in f as µf and σf , respectively. Additionally, we denote the
element wise product between two matrices A and B by
A�B. Finally, we denote |S| to be the size of a set S.
As previously stated, feature correlation is of particular in-
terest in our present research. In the past decades, a large
branch of feature selection approaches have targeted on re-
ducing the redundancy among the selected features. The
notion of feature redundancy is usually measured by means
of feature correlation. The major motivation has been to
find the optimal or minimized feature subset corresponding
to the output labels. Thus, when a feature is selected, other
features that are highly related to this feature is typically
rejected so as to minimize feature redundancies.

2.1. Feature Correlation Measures
To date, various criteria have been introduced for defining
the correlation between features. For instance, a widely
used correlation criterion is the Pearson’s correlation co-
efficient (PCC), which measures the linear correlation be-
tween variables. In more details, given two feature vectors
fj and fk, the metric ρ in PCC can be defined as follows,

ρ(fj , fk)=
cov(fj , fk)

σfjσfk

=
1
n
(fj − µfj1

′)(fk − µfk1′)′

σfjσfk

. (1)

Notice that ρ is a symmetrical measure that ranges in
[−1, 1]. If two variables are fully independent, ρ = 0. On
the other hand, when the two variables are completely cor-
related to each other, namely, one variable can exactly pre-
dict another variable, we have |ρ| = 1. Other metrics such
as information gain IG(fj |fk) and symmetrical uncertainty
SU(fj |fk) have also been discussed in (Yu & Liu, 2003).

2.2. Feature Redundancy Reduction
Based on these correlation measures, several methods have
attempted to reduce the redundancy among the selected
features. For instance, in Fast Correlation Based Filter
(FCBF) (Yu & Liu, 2003), feature importance and feature
correlation are assessed by means of SU measure. FCBF
first selects a set of predominant features that are relevant to
the output labels. Subsequently, the informative features to
labels are kept while the correlated features are removed
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based on some elegantly designed intuitive rules (Yu &
Liu, 2003). Another notable redundancy reduction method
is Minimum Redundancy Maximum Relevance (mRMR)
(Peng et al., 2005), which selects the most correlated fea-
tures to the labels such that they are mutually far apart
from each other by maximizing the dependency between
the joint distribution of the selected features and the output
labels.
Zhou et al. (2010) proposed Redundancy Constrained
Feature Selection (RCFS), which first performs feature
clustering by using some distance measures (e.g., 1 −
|ρ(fj , fk)|). Hence the correlated features may be grouped
into several clusters. After that, some features are then
identified from each cluster. Next, a feature subset is
further identified from the selected features in each clus-
ter group using graph based feature selection criteria (Nie
et al., 2008) that capture the global and local intrinsic struc-
tures of the data. This strategy however is heavily sensitive
to the choice of graph Laplacian matrices used. For ex-
ample, the Laplacian score is usually constructed using K
nearest neighbor (KNN). In practice, on very high dimen-
sional problems, KNNs can be very far away from each
other in reality due to the effect of the curse of dimen-
sionality. Besides, the high computational cost of feature
clustering on high dimensional data and graph based meth-
ods (taking O(n2m)) make this approach less attractive on
large scale data. Recently, Zhao et al. (2012) proposed
a framework to unify different criteria for removing fea-
ture redundancies. Nevertheless, existing methods have re-
mained to focus on reducing these redundancies. More im-
portantly, to date the discovery of correlated yet informa-
tive features has been relatively unexplored.

3. Group Discovery Machine
In this section, we present an efficient automatic feature
grouping method, which identifies groups of discrimina-
tive yet correlated features. Similar to (Guyon, 2008), a
vector δ = [δ1, . . . , δm]′ ∈ {0, 1}m is introduced to indi-
cate whether the corresponding feature is selected (δj = 1)
or not (δj = 0), such that the decision function is defined
as: f(x) = w′(x � δ), where w = [w1, · · · , wm]′ is the
weight vector. To limit the number of selected features to
be less than B, the `0 constraint ‖δ‖0 ≤ B is imposed for
the purpose of feature selection (Nie et al., 2008).

3.1. Correlation Constraints
To control the correlation among the selected features, we
explicitly introduce the following constraint on δ such that,

δjδk = 0, |ρ(fj , fk)| ≥ 1− τ, ∀j 6= k, (2)

which states that any selected feature pair should not be
correlated so long as their coefficient defined in (1) does
not exceeds (1− τ ) where τ ∈ (0, 1). We also define ∆ =
{δ|
∑m

j=1 δj ≤ B; δj ∈ {0, 1}, ∀j = 1, · · · ,m; δjδk =

0, |ρ(fj , fk)| ≥ 1−τ,∀j 6= k} as the domain of δ. Here, (2)
defines O(m2) quadratic constraints with m integer vari-
ables, thus finding the solution δ ∈ ∆ involves combina-
torial subset selection, resulting in high computational cost
especially when the dimension m is high.

3.2. Proposed Formulation
Here, we aim to find a large margin decision function f(x)
for robust prediction, and seamlessly identify the informa-
tive yet uncorrelated feature subset that satisfies the con-
straint in (2). For the sake of simplicity, we use the square
hinge loss in SVM, and arrive at the following problem:

min
δ∈∆

min
w,γ,ξ

1

2
‖w‖22 − γ +

C

2

n∑
i=1

ξ2i (3)

s.t. yiw
′(xi � δ) ≥ γ − ξi, i = 1, · · · , n,

where ξi ≥ 0 is the slack variable, γ/‖w‖ denotes the mar-
gin and C is a tradeoff parameter to regulate the function
complexity ‖w‖22 and the training error (ξi’s). Note, as dis-
cussed in Section 3.1, the optimization problem in (3) with
the constraints defined in ∆ is very challenging.

3.3. Cutting Plane Algorithm
To tackle this, we first transform the inner minimization in
(3) w.r.t. w, γ, ξi into the dual of SVM, then (3) becomes
a minimax saddle-point problem. Inspired by (Tan et al.,
2010), by applying the minimax optimization theory, one
can obtain a tight convex relaxation to (3), which is in the
form of the following Quadratically Constrained Quadratic
Programming (QCQP) problem:

min
α∈A,θ

θ : θ ≥ gδ(α), ∀δ ∈∆ or min
α∈A

max
δ∈∆

gδ(α), (4)

where gδ(α) = 1
2

∥∥∑n
i=1 αiyi(xi � δ)

∥∥2 + 1
2Cα′α,

α = [α1, . . . , αn]
′ is the vector of dual variables, A =

{α
∣∣∑n

i=1 αi = 1, αi ≥ 0,∀i = 1, · · · , n} is the do-
main of α, and θ is the upper bound of gδ(·). Never-
theless, since there are as many as (

∑B
i=0

(
m
i

)
) quadratic

constraints in (4), it remains computationally expensive to
solve (4). Rather than solving the original problem with
a large collection of constraints, the cutting plane strategy
(Mutapcic & Boyd, 2009) can be employed to iteratively
generate a set of active constraints and then solve this re-
duced optimization problem with the current constraint set.
Since maxδ∈∆ gδ(α) ≥ gδt(α),∀δt ∈ ∆, with a re-
duced active constraint set C ⊂ ∆, the lower bound ap-
proximation of (4) can be obtained by maxδ∈∆ gδ(α) ≥
maxt=1,...,T gδt(α) with T = |C|, where T is the maxi-
mum number of constraints that will be added. This leads
to solving a reduced problem of (4) as follows,

min
α∈A,θ

θ : θ ≥ gδt(α), ∀ δt ∈ C. (5)

The details to solve (5) are outlined in Algorithm 1, where
some notations will be explained later. Specifically, at each
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Algorithm 1 Group Discovery Machine
Input: Given a dataset (X,y), parameter B and τ .
Output: S and Q are the index sets of support features and
affiliated features, respectively.
Set α = 1/n,S = ∅ andQ = ∅.
for t = 1 to T do

1: Call δt = CRM(X,y, B, τ,α,S,Q) to find the most
violated δt and acquire S,Q
2: Set C = C ∪ {δt}
3: Solve (5) defined on C while updating α

end for

Algorithm 2 CRM(X,y, B, τ,α,S,Q)
Input: Given a dataset (X,y), parameter B and τ , S and Q
are the index sets of support features and affiliated features,
respectively. Initialize an index set B = ∅.
Output: A zero-one vector δ ∈ Rm, initialized as δ = 0m.
1: Compute c =

∑n
i=1 αiyixi, sort |cj | in the descending or-

der, and record the feature ranking list as E .
2: G = ∅ denotes a temporary affiliated feature set and k = 1.
while |B| ≤ B do

Pick the kth feature fz from X, where z = E(k)
Set B = B ∪ {z} and G = G ∪ {z}
while k < m do
k = k + 1
Pick the current kth feature fh from X, where h = E(k)
if (|ρ(fz, fh)| ≥ 1− τ) then

Update G = G ∪ {h}
end if
if (|cz| −

√
2τ‖α‖ > |ch|) then

break
end if

end while
SetQ = Q∪ {G} and G = ∅.

end while
Update S = S ∪ {B} and δB = 1.

iteration of Algorithm 1, one needs to solve the worst case
analysis (the same as finding the most violated constraint
δt) of Problem (4), which shall be described in Section 3.4.
Subsequently, the obtained δt would be appended into the
active constraint set C. Finally, the problem w.r.t. a re-
duced active constraint set C can be solved by some effi-
cient QCQP solvers (Tan et al., 2010).
To summarize, the cutting plane algorithm generally con-
verges to a robust optimal solution within tens of iterations
with the exact worst case analysis and shows good perfor-
mance in many real applications (Mutapcic & Boyd, 2009).

3.4. Correlation Redundancy Matching
In this subsection, we discuss the worst case analysis of
problem (4) (i.e., equivalent to finding the most violated
constraints), which plays the key role in cutting plane algo-
rithms (Mutapcic & Boyd, 2009). In our setting, this trans-
late to solving the following integer optimization problem:

max
δ∈∆

∥∥∥ n∑
i=1

αiyi(xi � δ)
∥∥∥2. (6)

In general, solving this problem is NP hard. However, since
1
2‖
∑n

i=1 αiyi(xi � δ)‖2 = 1
2‖
∑n

i=1(αiyixi) � δ‖2 =
1
2

∑m
j=1 c

2
jδj , where cj =

∑n
i=1 αiyixij = fjα̃, and

α̃ = [α1y1, . . . , αnyn]
′, this indicates that the informative

features accord with the features with the highest |cj | ’s. In
addition, based on this observation, the following proposi-
tion1 will further show that for a set of correlated features,
if one of them is informative to the output labels, all of them
can be deem as informative to the output labels as well.

Proposition 1. Given a nonzero column vector α̃, and any
two feature vectors f1 and f2 that σf1 = σf2 = 1/

√
n

and µf1 = µf2 = 0. Suppose |ρ(f1, f2)| ≥ 1 − τ , then
| |f1α̃| − |f2α̃| | ≤

√
2τ‖α̃‖, where τ ∈ (0, 1).

Proof. With |ρ(f1, f2)| ≥ 1 − τ , using (1), we have
|ρ(f1, f2)| = |f1f ′2| ≥ 1 − τ , namely, f1f

′
2 ≥ 1 − τ

(positive correlation) or f1f
′
2 ≤ τ − 1 (negative correla-

tion). Suppose f1 and f2 are positive correlated, we have
‖f1 − f2‖2 = ‖f1‖2 + ‖f2‖2 − 2f1f

′
2 = 2(1 − f1f

′
2) ≤ 2τ ,

as ‖f1‖2 = ‖f2‖2 = 1 when σ2
f1

= σ2
f1

= 1/n. Note that
| ‖f2− α̃′‖2−‖f1− α̃′‖2 | = |2(f1− f2)α̃| ≤ 2‖α̃‖‖f1−
f2‖ ≤ 2

√
2τ‖α̃‖. In other words, |f1α̃− f2α̃| ≤

√
2τ‖α̃‖.

Hence, we have | |f1α̃| − |f2α̃| | ≤
√
2τ‖α̃‖. In the case

of negative correlation, we define a positive correlated vec-
tor f̂2 = −f2 and the proof follows the derivation of the
positive correlation case, we complete the proof.

The above results state that if two feature vectors f1 and f2
are highly correlated, their distance (or correlation) to any
exemplar vector α̃′ will be very similar to one other. Then a
natural question arises, considering the correlated features,
which feature poses greater importance to the output labels
for a given α̃? To address this question, we first offer the
definitions of Support Features and Affiliated Features.
In particular, support features refer to informative features
with relatively low correlations. affiliated features, on the
other hand, refer to the correlated features associated with
each support feature.

Definition 1. Support and Affiliated features: Given any
exemplar vector α̃ ∈ Rn and a collection of feature vec-
tors {fi}, where f ′i ∈ Rn. The support feature is given
by maxi |fiα̃| for the given α̃. The remaining correlated
features in {fj} w.r.t. fi denote the affiliated features.

For the sake of conciseness, we let S be the index set of the
support features and introduce a data structure Q = {Gi}
to represent the hierarchical structure of features, where Gi
denotes the index set of the affiliated features for the ith

support feature. Notice that the support feature is corre-
lated to itself, we have S ⊂ Q. By taking this scheme,
we can keep all the correlated features rather than omitting
them. Based on these definitions, once a support feature is

1Here, only the linear correlation is considered.
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identified (i.e., the feature with the largest cj), all relevant
features that correlate with this support feature will form
the corresponding affiliated feature group or cluster. Since
the proposed method can discover the correlated feature
groups, we name it Group Discovery Machine (GDM).
Note that, alternatively, one could use a brute-force ap-
proach to search across all features and identify all features
that are correlated to the support feature as the affiliated
features to achieve the same goal. However, such a strategy
can be computationally infeasible. Fortunately, we show in
what follows a theorem to illustrate that in practice one can
address this problem by scanning only a small subset of the
features on very high dimensional problems.

Theorem 1. Given a nonzero column vector α̃ and any
two feature vectors fj and fk that µfj = µfk = 0 and σfj =
σfk = 1/

√
n, if |ρ(fj , fk)| ≥ 1 − τ and fj is the support

feature with score |cj | = |fjα̃|, then the score of the feature
fk will satisfy |ck| = |fkα̃| ≥ |cj | −

√
2τ‖α̃‖.

Proof. From Proposition 1, we know that | |fjα̃| − |fkα̃| |
≤
√
2τ‖α̃‖, if |ρ| > 1− τ . Since fj is the support feature,

so |fjα̃| ≥ |fkα̃|, we have |fkα̃| ≥ |fjα̃| −
√
2τ‖α̃‖. This

completes the proof.

The above theorem says that if two features are highly cor-
related, their scores will be very close. In other words, for
a given support feature fj , the feature with a score lower
than |cj | −

√
2τ‖α̃‖ shall not be considered as an affiliated

feature to fj , at the correlation level of (1 − τ ). Based on
this, the worst case analysis can be conducted in Algorithm
2, which is termed here as Correlation Redundancy Match-
ing (CRM). The basic idea of CRM is that, for every iter-
ation, we first find the support features with larger feature
scores. Once the support features are identified, the cor-
responding affiliated features are then identified from the
remaining unselected features. The whole procedure is re-
peated until a maximum of B numbers of support features
(see (2)) is selected. Thus, the computational cost of this
worst case analysis can be substantially reduced, which we
will go through details in the upcoming subsection.

Proposition 2. With the Correlation Redundancy Match-
ing algorithm, Problem (6) can be globally solved.

Proof. From Algorithm 2, once a support feature fz is iden-
tified, all corresponding correlated features of fz (features
with scores (|ch| > |cz|−

√
2τ‖α‖)) will be identified and

stored inQ. This fact also implies that all the subsequently
selected support features will not be correlated to any of the
previously selected support feature. Finally, the top scoring
features that satisfy the constraint in (2) then form the sup-
port features, hence maxδ,fj /∈XQ

1
2‖
∑n

i=1 αiyi(xi � δ)‖2
will be maximized. Inductively, it becomes possible to con-
clude that the proposed CRM algorithm can solve (6) glob-
ally and exactly. This completes the proof.

The following theorem indicates that the proposed al-
gorithm can globally converge and exhibits the non-
monotonic property for feature selection.

Theorem 2. Given that in each iteration of Algorithm 1,
the reduced minimax subproblem (5) and the most active
constraint selection (6) can be exactly and globally solved,
Algorithm 1 stops after a finite number of iterations with a
global solution of (4).

The proof can be adapted from (Tan et al., 2010).

3.5. Complexity Analysis
As finding the most violated δ can be obtained exactly via
the Correlation Redundancy Matching algorithm, which
firstly sorts the m features, followed by scanning of the
B features and then computes the PCC w.r.t. the other fea-
tures. Here, sorting takes O(m logm) and finding the sup-
port and affiliated features consumes O(Bmn). Therefore,
with T iterations on hand, the overall time complexity for
CRM is O(T (m logm+Bmn)). As there are at most TB
selected features, the training time complexity to solve (5)
isO(TBn). Note, by taking benefits from the cutting plane
strategy, a relative small T is needed for convergence: as it
is noted to converge well within 10 iterations in the experi-
mental studies.

4. Experiments
In this section, we conduct experiments to study the feature
selection performances of several state-of-the-art meth-
ods, including: 1) ReliefF (Robnik-Sikonja & Kononenko,
2003), 2) mRMR2 (Peng et al., 2005), 3) FCBF3 (Yu
& Liu, 2003), 4) RCFS (Zhou et al., 2010), 5) SVM-
RFE (Guyon & Elisseeff, 2003), 6) L1-SVM4 (Yuan et al.,
2011), 7) FGM5 (Tan et al., 2010), and 8) our proposed
GDM using only support features for prediction. The
first four algorithms belong to filter methods. SVM-RFE
is a wrapper method, while the last three are embedded
methods. For fair comparisons, all methods except Reli-
efF, which is integrated in MATLAB R2011b, are imple-
mented in C++ with MATLAB interface. Moreover, the
parameters of these methods are configured as suggested
by the respective authors. For ReliefF, we report the best
results of with K ∈ {1, 2, 3, . . . , 100} (KNN classifier).
Further, C is configured to 1 for all methods except L1-
SVM, where C varies with different number of selected
features. In the experimental study, we set our τ = 0.25
and consider 10, 20, . . . , 200 features for each method and
report the corresponding resultant training time. Therefore,
to facilitate a fair comparison, standard SVM classifier is
used to judge the accuracy according to the number of se-

2http://penglab.janelia.org/proj/mRMR.
3http://www.cs.man.ac.uk/˜gbrown/fstoolbox.
4http://www.csie.ntu.edu.tw/˜cjlin/liblinear.
5http://c2inet.sce.ntu.edu.sg/Mingkui/FGM.htm.
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Figure 2. Results on Synthetic Dataset.

lected features and their indexes. Further, all experiments
are conducted on a PC with Intelr CoreTM i7 Processor and
24.0GB memory under Windows Serverr 2008.
To evaluate the feature selection performances, three cri-
teria, namely, 1) Classification Accuracy, 2) Training
Time Complexity and 3) Redundancy Rate are consid-
ered. Following the consistent definition of (Zhao et al.,
2012), and assuming F is the set of selected feature sub-
set with size m̂, the redundancy rate can be measured by
RED(F) = 1

m̂(m̂−1)
∑

fi,fj∈F,i>j |ρ(fi, fj)|. The metric
assesses the averaged correlation among all selected fea-
ture pairs. Obviously, for the same accuracy level, a smaller
redundancy rate is deem to be more meaningful.

4.1. Evaluation on Synthetic Data
To illustrate the mechanisms of the proposed method, we
first conduct a study on a synthetic dataset where the
ground truth correlated features are known in advance. The
data contains 2,048 observations and 10,000 features, and
the predefined predictive features are categorized as 200
feature groups of different sizes, others then serve as noise.
Moreover, each of the 30 out of 200 feature groups contains
some inner highly correlated features. While in the remain-
ing 170 groups, there is only one feature per group. The
predictive ability of each group follows a normal distribu-
tion N(0, 1). Noticed that the way of constructing testing
set is consistent with training. Our goal is to assess whether
a method can correctly identify the relevant members of the
ground truth feature set. Nevertheless, for this synthetic
data, when the correlated features are truly redundant in the
data, removing it would lead the classifier to achieve high
accuracy performances. To this end, we manually remove
the redundant features directly from the data, (i.e., based on
the ground truth available) to solve (6). So that correlation

Table 1. Summary of the benchmark datasets.
DATASET # FEATURES TRAINING SIZE TESTING SIZE
MNIST 752 11,982 1,984
USPS 676 266,079 75,383
KDD2010 2,990,384 100,000 748,401
WEBSPAM 8,355,099 80,000 70,000

constraint on ρ(fi, fj) has been imposed. Then we name it
as “MethodA”.
The experimental results obtained from the synthetic
dataset are presented in Figure 2, wherein dash line rep-
resented the “MethodA”. As expected, we observe from
Figure 2(a) that the proposed method outperforms oth-
ers in most cases; while filter methods such as ReliefF
and mRMR achieve the worst prediction performances.
Among the filter methods considered, RCFS achieve the
highest accuracy since the use of feature clustering helped
remove redundancy among features. However, since filter
method such as RCFS does not take the classifier into con-
sideration in the feature selection process, the classifica-
tion accuracy is generally lower than the wrapper and em-
bedded counterparts as expected. FGM outperforms L1-
SVM but is noted to be competitive to SVM-RFE when
small portion of the features are selected. However, due to
the non-convexity optimization formulation of SVM-RFE,
which suffers from correlated features, it underperforms
FGM when large amount features are considered. More-
over, as FGM imposes a tight convex approximation in
the `0-model (Tan et al., 2010), it can be observed from
Figure 2(a) that both FGM and GDM achieve competi-
tive accuracy result when the number of selected features
approaches the ground truth. Thus, it is possible to con-
clude that the potential of the proposed method can cor-
rectly identify the ground truth feature groups.
The training time incurred by all the methods considered
is also reported in Figure 2(b). It can be observed that
FGM emerges as the fastest among all, while ReliefF in-
curs the highest training effort. Due to the high cost of
feature clustering involving 10,000 features, RCFS also
consumes significant training time. Though the proposed
GDM incurs slightly more time than FGM, it is noted to be
more efficient than the state-of-the-art L1-SVM. In addi-
tion, the results on metric Redundancy Rate are depicted
in Figure 2(c). Overall, GDM achieves competitive low re-
dundancy rate and superior accuracy performance on the
synthetic problem considered.

4.2. Evaluation on Real-world Data
To assess the practical performance of all feature selec-
tion methods, we include a variety of datasets, in both data
scale and dimension, which consist of two digit recogni-
tion datasets: mnist7, usps6 and two other very high di-
mensional datasets. The first one is the challenge dataset

6http://c2inet.sce.ntu.edu.sg/ivor/cvm.html.
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Figure 3. Testing accuracy (in %) on Real-world datasets.
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Figure 4. Training time (in seconds) on Real-world datasets. (in logarithm scale)

kdd20107 used in the educational data mining competi-
tion and the second is the spam webpage data webspam7.
Detailed information about the datasets is listed in Table 1.
For kdd2010, we use 10,000 points as the training set and
maintain the original testing set. On the webspam data,
we randomly select 80,000 points as the training set, while
70,000 for testing. To provide further evidence on the ro-
bustness performance of each method, we set 50% as the
minimum for accuracy expectation and 1 hour as the max-
imum training time for all the experiments.
Figure 3 summarizes the accuracy performance attained by
the various methods. By appropriately identifying the sup-
port feature set, GDM obtains superb accuracy improve-
ments on mnist, kdd2010, and webspam. On the other
hand, SVM-RFE performs well only for small number of
selected features while deteriorating hereafter as observed
in Figure 3(b). When the correlated features are retained
to form the affiliated feature groups, the performance of
GDM-affiliated is noted to emerge as superior to all the
other methods considered. In particular, the results on
digit identification in Figure 6 highlights the significance
of affiliated feature set, where a comprehensive explanation
shall follows later in the discussion and conclusion section.
Further, as shown in Figure 5, GDM achieves relatively
low redundancy rate in most cases. Although, FCBF and
SVM-RFE exhibits lower redundancy rate than GDM on
the mnist dataset, the accuracies have been impeded by
their high sensitivity to the noise features, as observed from
Figure 3(a). Compared to embedded methods, GDM out-

7http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. As to
mnist dataset, class “3” and “8” are taken to form a binary clas-
sification problem.

performs over FGM and L1-SVM in terms of redundancy
reduction, thus exhibiting the improved accuracy. This also
implies that GDM can identify a good feature subset (Hall,
1999). Since the kdd2010 data is sparse, Figure 4 shows
that L1-SVM takes advantage of the sparseness in the data
to achieve the shortest training time observed. However, on
the webspam data which has more than 8 million features,
GDM is noted to learn faster than L1-SVM.
Moreover, there exists the situation that other methods fail
in handling the data. For example, RCFS is sensitive to the
number of points, thus even on the small mnist dataset
with only 11,982 points, the method fails to perform well.
SVM-RFE could not maintain an average accuracy of 50%
on kdd2010. Both ReliefF and SVM-RFE fail to con-
verge on webspam under the 1 hour maximum training
time budget. Moreover, since no filter methods can handle
very high dimensional data of webspam and kdd2010,
the contests only hold among L1-SVM, FGM and GDM.

5. Discussion and Conclusion
In this paper, we have presented a comprehensive study
on potential correlated features, leading to the concepts of
support feature and affiliated feature. While, superior pre-
diction performance is attained through support features,
maintaining some feature redundancies as affiliated fea-
tures, can be useful for enhanced interpretation of the learn-
ing tasks while improving prediction robustness. By taking
advantage of the cutting plane strategy, the proposed GDM
can handle very high dimensional problems in an efficient
way. Notably, the affiliated features are constructed in the
proposed method without any additional cost, since they
are generated along with the support features.
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Figure 5. Redundancy Rate metric results of various methods.

Original
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RFE
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L1−SVM
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FGM
70

GDM
70

GDM−A
129

Figure 6. Digit identification results of various methods. Exam-
ple and extracted images by different feature selection methods
on usps dataset. (Numbers below method indicate # selected
features and the adjacent icons are the overall extracted results.)

In what follows, we conclude with further details on the
interpretation of the proposed GDM algorithm along with
the affiliated features attained in Figure 6. With respect to
the digit identification result of usps8, the regions high-
lighted by the affiliated features (129 features) can be use-
ful in assisting the human user in identifying a “0” or “1”
from the extracted images of the original pictures. This is
consistent to the observation discussed earlier in Figure 1,
where the feature groups congregate in the regions of the
beard, mustache and silhouette of the face to form the af-
filiated feature groups. Information with great significance
are reserved for further processing. Referring to the af-
filiated features in Figure 6, despite the highest accuracy
achieved by SVM-RFE (70 features) as shown in Figure
3(b), the pixels selected correspond only to the background
of the image rather than the digits, other methods also can-
not manifest the clear structure of entire digits well. To
summarize, we have introduced the notion and significance
of correlated features, namely the affiliated feature group
in the present paper, and have showcased how it can ben-
efits the task of feature selection in general. We aspire to
explore novel constraints that are suitable for the discovery
of new structures in high dimensional tasks.

8Identified digital handwritten characters extracted from the
images of “0” and “1” were gathered in the usps data.
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