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Abstract. We address the problem of Peripheral Anterior Synechiae (PAS)
recognition, which aids clinicians in better understanding the progression
of the type of irreversible angle-closure glaucoma. Clinical identification of
PAS requires indentation gonioscopy, which is patient-contacting and time-
consuming. Thus, we aim to design an automatic deep-learning-based method
for PAS recognition based on non-contacting anterior segment optical coherence
tomography (AS-OCT). However, modeling structural differences between tis-
sues, which is the key for clinical PAS recognition, is especially challenging for
deep learning methods. Moreover, the class imbalance issue and the tiny region
of interest (ROI) hinder the learning process. To address these issues, we propose
a novel Focal Contrastive Network (FC-Net), which contains a Focal Contrastive
Module (FCM) and a Focal Contrastive (FC) loss to model the structural dif-
ferences of tissues, and facilitate the learning of hard samples and minor class.
Meanwhile, to weaken the impact of irrelevant structure, we introduce a zoom-in
head to localize the tiny ROI. Extensive experiments on two AS-OCT datasets
show that our proposed FC-Net yields 2.3%–8% gains on the PAS recognition
performance regarding AUC, compared with the baseline models using different
backbones. The code is available at https://github.com/YifYang993/FC-Net.

Keywords: PAS recognition · Contrastive loss · AS-OCT · Glaucoma

1 Introduction

Peripheral Anterior Synechiae (PAS), an eye condition in which the iris adheres to the
cornea, causes closure of the anterior chamber angle [1,2] and further increases the risk
of angle-closure glaucoma [3]. Clinically, experts identify PAS by measuring whether
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Fig. 1.A description of the motivation for the proposed FC-Net. (a) The structural differences (the
dashed boxes) of the eye observed by indentation gonioscopy [9], (b) the eye in different light
conditions, (c) the paired AS-OCT sequence, (d) the normal case with the existence of structural
differences, (e) the PAS case without a significant structural difference. (Color figure online)

the adhesion between iris and cornea could be disrupted (i.e., structural differences, as
shown in Fig. 1(a)) using indentation gonioscopy [4]. However, this diagnostic approach
is patient-contacting. Anterior segment optical coherence tomography (AS-OCT), with
the characteristics of easy-to-perform and non-contact, has become a critical tool to
evaluate the anterior segment of an eye [5]. Thus, we seek to design an AS-OCT based
algorithm to detect the PAS automatically.

Currently, there are a few deep-learning-based research endeavors pertaining to AS-
OCT based automatic recognition of PAS, whereas several attempts have been made to
recognize glaucoma related disease. Fu et al. combined clinical parameters and multi-
scale features to improve the accuracy of a angle-closure screening method [6]. Hao
et al. proposed a coarse-to-fine method to localize anterior chamber angle regions and
then classified them into primary open-angle glaucoma (POAG), primary angle-closure
suspect (PACS) and primary angle-closure glaucoma (PACG) [7]. Recently, Hao et al.
proposed a novel MSDA block and multi-loss function to classify AS-OCT images into
POAG, PACG and synechiae [8]. Although these deep learning methods can improve
the performance of automatic recognition of glaucoma related diseases, they lack infor-
mation regarding the structural differences of an eye (see Figs. 1(a), 1(d) and 1(e)),
which is critical in identifying PAS in clinic [3]. Moreover, these methods ignore the
class imbalance problem, which is unavoidable due to the difficulty in collecting pos-
itive data (e.g., In the two AS-OCT datasets used in the experiment, the PAS samples
accounted for 7.5% and 30.4%, respectively).

In view of the shortcomings of the above methods, we propose a novel framework
to recognize PAS by considering distinguishing the structural differences of an eye,
which requires a paired data representing conditions during indentation gonioscopy and
a strategy to measure the differences between the paired data. Inspired by the diagnostic
processes of doctors, PAS is identified if the adhesion of iris and cornea cannot be sep-
arated using indentation gonioscopy [4]. We introduce a medical prior [3], which states
that the structural differences of the eye observed by indentation gonioscopy (Fig. 1 (a))
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Fig. 2.Our proposed framework takes paired AS-OCT sequence under bright and dark conditions
as input. The zoom-in head crops the discriminative area. Differences of the paired AS-OCT
sequence are distinguished by means of the focal contrastive module in global and local views.

is analogized to the structural difference of an eye in different light conditions (Fig. 1
(b)), which can be observed from the paired AS-OCT sequence (Fig. 1 (c)). In normal
cases, bright conditions cause pupillary constriction, which results in separation of iris
and cornea (see the red dashed boxes in Fig. 1 (d)). For patients with PAS, the adhesion
of iris and cornea prevents the separation (Fig. 1 (e)).

To distinguish the differences between the paired AS-OCT sequence for PAS recog-
nition, we design a Focal Contrastive Network (FC-Net) with a focal contrastive (FC)
loss. The network consists of two modules including a zoom-in head module and a
Focal Contrastive Module (FCM). The zoom-in head module is designed to address the
difficulty in capturing the tiny region, where the iris and cornea intersect. The main
idea of FCM is to distinguish differences of features from two light conditions, and
to guide the network to focus on hard samples and minor class by the designed FC
loss. The major contributions of this paper are threefold. (1) We introduce a medical
prior of clinical PAS recognition to the deep-learning-based method, and experimen-
tally demonstrate that this medical prior knowledge can enhance the performances. (2)
We design a novel focal contrastive module with a focal contrastive loss, which can
distinguish the differences between the paired AS-OCT images, as well as alleviate the
class imbalance problem and focus on the hard samples. (3) Our proposed FC-Net can
be implemented with different backbones, and the promising experimental results show
that the FC-Net has strong generalizability and can be applied to 3D data such as video
or CT volume for difference measurement.

2 Methodology

Dividing an eye into 12 paired sectors (Fig. 3 (a1)–(a2)), a paired sectors (e.g.,2–3
o’clock, shown as the yellow fan area) of the eye under dark and bright conditions
is represented by a paired AS-OCT sequence, i.e.,2× 21 AS-OCT images (Fig. 1 (c))
[2]. We aim to classify the 12 paired sectors of an eye into normal or PAS, respectively.
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Fig. 3. (a1–a2) Illustration of the paired sectors of an eye in different light conditions. Colored
paired sectors shares same label and is represented by paired AS-OCT sequence. (b) Overview
of the focal contrastive module (FCM). (Color figure online)

The pipeline of our FC-Net is illustrated in Fig. 2 given a paired AS-OCT sequence
{Xd,Xb} that represents a paired sectors of an eye from different light conditions. First,
a zoom-in head module is implemented to extract the discriminative area by cropping
{Xd,Xb} into local version {X l

d,X l
b}. After the dual stream backbone, the learned fea-

tures {Hd,Hb}, and {Hl
d,Hl

b} are sent to the focal contrastive module(FCM) to distin-
guish the differences between two light conditions (C(Hd,Hb) → Lg

FC ,C(Hl
d,Hl

b) →
Ll
FC), generating corresponding global focal contrastive (FC) loss Lg

FC and local FC
loss Ll

FC which measure the difference between the paired AS-OCT sequence in global
and local views. Note that the FC loss in FCM introduces two factors to guide the con-
trastive module to focus on hard samples and minor class simultaneously. Finally, the
supervised information of FC loss (Ll

FC and Lg
FC ) and classification loss (Lc) is fused

by the decay learning strategy, which iteratively decreases the weight of FC loss. The
overall training procedure of PAS recognition aims to minimize the following objective
function:

Lall = Lc + decay(LFC), LFC = Lg
FC + μLl

FC (1)

where decay is our proposed decay learning strategy to balance between Lc and LFC ,
and μ is a given ratio between local FC loss and global FC loss. The details of our
FC-Net are illustrated as follows.

2.1 Focal Contrastive Neural Network

The focal contrastive network (FC-Net) contains a zoom-in head module for crop-
ping the AS-OCT sequence, a dual-stream backbone for learning representation of the
paired AS-OCT sequence and a focal contrastive module for measuring the differences
between the dark and bright conditions.

Zoom-in head: Clinically, PAS is identified by the adhesion of iris and cornea [4], yet
the adhesion region is tiny comparing with an eye. Hence, we introduce a localization
method termed the zoom-in head to crop the tiny ROI of the AS-OCT sequence, based
on an observation that the horizontal centerline of the ROI is close to the horizontal line
with max sum of pixels. Consider a matrix X representing an image, the zoom-in head
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module traverses each row of X to search the row with the largest sum of pixels (i.e.,
maxi{

∑
j Xij}), then we set the row as the horizontal centerline of the ROI. With the

centerline, we crop X at a fixed size to obtain the ROI. The original and the cropped
sequence are simultaneously learned by the dual-stream backbone.

Dual Stream Backbone: Motivated by an observation that the AS-OCT sequence in
different light conditions differ on both global scale (e.g., change in lens size) and local
scale (i.e., adhesion and separation of the conjunction of iris and cornea), we design
a dual-stream neural network that includes global and local information of the paired
data. The backbone aims to extract features of the sequence from multiple levels in the
two light conditions. Specifically, the global and local sequence (Xd and X l

d) captured
in the dark condition are fed into a global dark stream (i.e.,Xd → Hd) and a local
dark stream (i.e.,X l

d → Hl
d ), and their counterparts (Xb and X l

b ) work in the same
manner. Note that the backbones of the same scale share weights to benefit from the
corresponding representation learning and to reduce computational complexity.

Focal Contrastive Module: Modeling the difference between the dark and bright
sequence is the core procedure for PAS recognition, which is achieved by our proposed
FCM, as shown in Fig. 3 (b). Taking the global branch as an example, the feature vectors
Hg

d, Hg
b are fed into FCM to generate representation vectors of corresponding AS-OCT

sequence (i.e.,Cd, and Cb). Then, the difference, i.e.,Euclidean distance d between Cd

and Cb, is selected by the mining strategy in [10] and then measured by the FC loss.

2.2 Designed Loss Function

Focal Contrastive Loss: The novel FC loss is designed to measure the difference of
the paired AS-OCT sequence and to alleviate the class imbalance problem. Inspired by
contrastive loss [11] and focal loss [12], the FC loss is designed as follows.

LFC =
S

m

m∑

i=1

{

αP ∑

yi=1

βP
i d2i + αN ∑

yi=0

βN
i ([M − di]+)

2

}

(2)

where m denotes the number of training samples, S is a scale factor that determines the
largest scale of the FC loss, and M is a fixed margin for similarity separation, which is
set as 2 following [11]. d is the Euclidean distance that measures similarity between a
data pair (e.g.,paired AS-OCT sequence from different light conditions). β and α are a
focal factor and a balance factor following the focal loss style. β is formulated as:

βP = [sigmoid (d)]2, βN = [1 − sigmoid (d)]2 (3)

where P and N denote PAS and normal samples(i.e., similar pairs and dissimilar pairs).
β measures the amount of information that a data pair contains. Starting from scal-

ing non-negative value d to range [0.5, 1) by a sigmoid function, we then measure the
information of each pair according to how far the distance d is from the expected dis-
tance by Eq. 3 (e.g., the expected distance of a pair is near 1, thus a hard dissimilar pair
with a close distance contains much information). We specify a property of the focal
factor. When a similar pair is a hard one and leads to sigmoid(d) near 1, the correspond-
ing βP approaches 1. In this way, the loss for the hard similar pair is up-weighted.
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Table 1. The statistics of AS-I and AS-II. Note that a sample in the table denotes a paired
sequence (Fig. 1 (c)) consisting of 2× 21 AS-OCT images, except for the last column, which
represents the number of eyes.

Dataset Set Category #Total #Eye

#Normal #PAS

AS-I Train 212 64 276 23

Test 202 62 264 22

AS-II Train 2109 159 2268 189

Test 2099 157 2256 188

α balances the impact of the similar and dissimilar pairs. Since class imbalance
problem leads the training to be dominated by the dissimilar pairs, we design αP and
αN subject to αP+ αN = 1. Specifically, for a normal pair that occupies the majority,
αN is set to less than 0.5 and hence down-weights the impact of the major class.

Decay Learning Strategy: To use the information obtained from the structural differ-
ences, we design a decay learning strategy to fuse the above FC loss and a classification
loss. In our network, the α-balanced focal loss [12–14] is used as the classification loss.
Specifically, recall that the overall loss is formulated as in Eq. 1, where decay controls
the impact of FC loss. We down-weight the ratio of FC loss by:

decay = 1 −
(

T

Tmax

)

(4)

where T denotes the current training epoch, and Tmax denotes the total epochs. During
the training procedure, the decay learning strategy aims to first learn an embedding by
distinguishing the difference via the FC loss and then gradually focus on the classifica-
tion by making use of the difference. Thus, in our designed decay strategy, as T→Tmax,
decay goes to 0 and the impact of FC loss is down-weighted.

3 Experimental Results

Datasets: Our experiments utilize AS-I and AS-II, which are captured from 377 eyes
using a CASIA II machine and from 45 eyes using a CASIA I machine, respectively.
Each eye is collected in bright and dark conditions to obtain bright and dark vol-
umes, and contains 2× 128 AS-OCT images with 800× 1876 pixels in AS-II, with
800× 1000 in AS-I. Differences between the AS-OCT images in these two datasets lie
in noise, iris and crystalline lens, which lead to variation in prediction performance.
Following [15], we crop 128 images of an AS-OCT volume into 256 left/right images.
Then, 256 images are divided into 12 AS-OCT sequence, each of which denotes a sector
of an eye under dark or bright light condition. The statistics of the category distribution,
as well as the data distribution in training and testing processes, are shown in Table 1.
Note that we carefully checked the datasets to ensure that there was no patient overlap
between the training and testing sets.
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Table 2. Performance comparison based on two datasets. The suffix “*-FC” represents FC-Net
with “*” as the backbone, “*-B(D)” denotes methods taking bright(dark) sequence as input only,
and “*-C” indicates baselines concatenating features extracted from paired AS-OCT sequence.

Method AS-I AS-II

AUC F1 AUC F1

SMA-Net-D [8] 0.8675 0.6400 0.9271 0.4013

SMA-Net-B [8] 0.8521 0.5856 0.9024 0.5086

S3D-D [16] 0.8084 0.5492 0.8581 0.3402

S3D-B [16] 0.8204 0.5665 0.8532 0.3303

S3D-FC(ours) 0.8986 0.6853 0.9381 0.5428

I3D-D [17] 0.8713 0.6345 0.9360 0.4945

I3D-B [17] 0.8403 0.6341 0.9340 0.5056

I3D-FC(Ours) 0.8986 0.6906 0.9599 0.5646

NL I3D-D [18] 0.8907 0.6667 0.9082 0.4103

NL I3D-B [18] 0.8897 0.6212 0.9162 0.3657

NL I3D-C(Ours) 0.9016 0.6667 0.9359 0.4217

NL I3D-FC(Ours) 0.9342 0.6526 0.9401 0.4778

Implementation Details: We implement FC-Net via Pytorch. During training, we use
an SGD optimizer with learning rate = 10−3 and weight decay = 10−4 on NVIDIA
TITAN X GPU. The learning rate is decayed by 0.01 at the 120-th and 160-th epochs.
We implement the decay learning strategy to trade off between classification loss (LC)
and FC loss (LFC). For the trade-off parameters, we set μ= 0.5, M = 2, and α = 0.25 on
all datasets, and set S = 16 and S = 24 for AS-I and AS-II, respectively.

Baselines: We compare our FC-Net with 4 3D deep learning models: S3D [16], I3D
[17], NL I3D [18], and SMA-Net [8]. For fair comparisons, we evaluate each model
on both dark and bright AS-OCT sequence, which are termed as “*-D” and “*-B”. In
addition, “*-C” denotes a variation of our proposed method that simply concatenates
features of dark and bright sequence, while our proposed method “*-FC” considers the
difference between both AS-OCT sequence. Note that “*” denotes different backbones.

Metrics:We use AUC and F1-score as the metrics. Both metrics are robust with respect
to the class imbalance problem. The AUC shows desirable properties in the binary clas-
sification task [19], and the F1-score can trade off between precision and recall [20].

3.1 Overall Performance

Table 2 shows the PAS recognition results of different methods under different light
conditions for two datasets. Specifically, on AS-II, when using the AS-OCT sequence
captured only in dark or bright condition, the best performance of the methods with
SMA-Net, S3D, I3D and NL I3D as backbones is the AUC = 0.9360 obtained by the
I3D-D method. When adding FCM to I3D, the corresponding performance is improved
by 2.39%. Similarly, on AS-I, using the proposed FCM, the PAS recognition perfor-
mance is increased by 4.35% over the NL I3D-Dmethod, which exhibits the best perfor-
mance among the methods when using only one light condition. Besides, as illustrated
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Table 3. Ablation studies performed on AS-I and AS-II in terms of AUC, where ZIH means
zoom-in head, FCM indicates the focal contrastive module with FC loss, and DSL denotes decay
learning strategy.

Component Dataset

ZIH FCM DLS AS-I AS-II

0.8395 0.8784

� 0.9003 0.9425

� � 0.9177 0.9540

� � � 0.9342 0.9599

Table 4. Effect of α in FC loss on the performance of NL I3D-FC in terms of AUC (on AS-I).

αN ,αP 0.25, 0.75 0.5, 0.5 0.75, 0.25

AUC 0.9342 0.9107 0.8753

in the table, our proposed FC-Net can be added to different backbones, and outperforms
the one stream counterpart by 2.3%–8% in terms of AUC. Such results demonstrate
the superiority as well as the generalizability of our FC-Net. Thus, these experimental
results show that distinguishing the differences between dark and bright sequence with
our proposed FCM and FC loss boosts the performance of PAS recognition.

To verify the effect of only adding AS-OCT sequence of two illumination condi-
tions, we use the NL I3D backbone to extract the features of the paired sequence and
concatenate them (NL I3D-C) for PAS recognition. From Table 2, NL I3D-C achieves
2.77% and 1.97% gains compared with NL I3D-D and NL I3D-B in terms of AUC on
AS-II, respectively. A similar conclusion can be drawn from AS-I, which demonstrates
the effectiveness of the clinical prior, i.e., the differences of an eye observed by clinical
indentation gonioscopy are analogized to the difference of a paired AS-OCT sequence
captured under dark and bright conditions.

3.2 Ablation Studies and Parameter Discussion

In this section, we discuss the ablation studies (Table 3) and the selection of α (Table 4).
We choose I3D as the backbone for AS-II, and NL I3D is set as the backbone for AS-I.
In Table 3, the method in the first line simply concatenates the features of the AS-OCT
sequence from different light conditions. The table demonstrates that the model with
the zoom-in head module (ZIH) achieves 6.41% and 6.08% gains regarding AUC on
AS-II and AS-I compared with that without ZIH, since ZIH can introduce the dis-
criminative information by cropping the AS-OCT sequence. Based on ZIH, the focal
contrastive module with FC loss (FCM) further increases AUC by 1.15% and 1.74% on
AS-II and AS-I respectively, by modeling the structural differences of tissues. More-
over, the decay learning strategy (DLS) also boosts the model performance owint to its
characteristic of gradually down-weighting FC loss that focuses on modeling structural
differences instead of classification. In addition, we introduce parameter α in FC loss to
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re-weight the minority class. To further evaluate the impact of α, we discuss its sensi-
tivity at different values while retaining other parameter settings. According to Table 4,
when we reduce αN from 0.75 to 0.25, the minor class in Eq. 2 is up-weighted and the
re-weighting procedure leads to improvement of the experimental results.

4 Conclusion

In this paper, we demonstrated that the paired AS-OCT sequence captured from dark
and bright conditions can provide fruitful information for PAS recognition. Addition-
ally, we proposed a FC-Net to model the difference of the paired data, which contains
an FCM and an FC loss to distinguish the difference of tissues accompanied by up-
weighting hard samples and minor class, and a zoom-in head to crop the discriminative
area of the AS-OCT sequence. Our FC-Net outperforms the state-of-the-art methods
on both AS-II and AS-I. The ablation study shows that the modules designed in this
paper are meaningful and effective. Moreover, the proposed FCM with the FC loss can
be applied to more tasks aiming at identification of differences between paired 3D data
such as video and CT volume, which we leave to our future work.
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