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Abstract

Unsupervised domain adaptation aims to learn a model

of classifier for unlabeled samples on the target domain,

given training data of labeled samples on the source do-

main. Impressive progress is made recently by learning

invariant features via domain-adversarial training of deep

networks. In spite of the recent progress, domain adaptation

is still limited in achieving the invariance of feature distri-

butions at a finer category level. To this end, we propose in

this paper a new domain adaptation method called Domain-

Symmetric Networks (SymNets). The proposed SymNet is

based on a symmetric design of source and target task clas-

sifiers, based on which we also construct an additional clas-

sifier that shares with them its layer neurons. To train the

SymNet, we propose a novel adversarial learning objective

whose key design is based on a two-level domain confusion

scheme, where the category-level confusion loss improves

over the domain-level one by driving the learning of inter-

mediate network features to be invariant at the correspond-

ing categories of the two domains. Both domain discrim-

ination and domain confusion are implemented based on

the constructed additional classifier. Since target samples

are unlabeled, we also propose a scheme of cross-domain

training to help learn the target classifier. Careful ablation

studies show the efficacy of our proposed method. In partic-

ular, based on commonly used base networks, our SymNets

achieve the new state of the art on three benchmark domain

adaptation datasets.

1. Introduction

Deep learning methods have achieved great success in

various machine learning tasks. A common pre-requisite

for such success is the availability of massive amounts of

annotated training data. For many other tasks, however,
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these training data are either difficult to collect, or anno-

tating them costs prohibitively. Therefore, to address the

scarcity of annotated data on some target tasks/domains,

there is a strong motivation to leverage the massively avail-

able annotated data on related source ones via a manner of

transfer learning or domain adaptation [17]. Unfortunately,

this attractive learning paradigm suffers from the problem

of domain shift [8], which stands as a major obstacle for

adapting the learned models on source domains to be useful

for target ones.

Domain adaptation aims to obtain models that have

smaller risks on target data. Theoretical analysis [2] sug-

gests that such a target risk can be minimized by bounding

the risk of a model on the source data and the discrepancy

between distributions of the two domains, which inspires

many of existing methods [28, 31, 11, 32, 25, 3, 4, 26, 27,

10, 19]. Among existing methods, those based on domain-

adversarial training of deep networks [3, 4] achieve the cur-

rent state of the art on many benchmark domain adapta-

tion datasets [21, 1, 29]. Inspired by generative adversarial

networks [6], domain-adversarial training typically plays a

minimax game to learn a domain discriminator, which aims

to distinguish features of source samples from those of tar-

get samples, and a feature extractor, which aims to learn

domain-invariant feature representations in order to confuse

the domain discriminator. Domain alignment is expected

when the minimax optimization reaches an equilibrium.

In spite of the remarkable empirical results achieved by

domain-adversarial training methods, they still suffer from

a major limitation: even though the feature extractor is well

trained to give domain-invariant features of both the source

and target samples, the corresponding model/classifier is

trained on the source samples and cannot perfectly gener-

alize to the target ones, i.e., the joint distributions of fea-

ture and category are not well aligned across data domains.

Some of existing methods have paid attention to this issue.

For example, in [22, 34, 30], pseudo labels are assigned

to target samples, on which the category-level alignment
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is promoted. In [12, 18], multiplicative interactions be-

tween feature representations and category predictions are

exploited as high-order features to help adversarial training.

These existing methods have to some extent alleviated

the above issue. To push further along this line, we pro-

pose in this paper a novel design of Domain-Symmetric

Networks (SymNets) to facilitate, via adversarial training,

the alignment of joint distributions of feature and category

across data domains. Similar to [13], our proposed Sym-

Net contains an explicit task classifier for the target domain.

Different from [13], we also construct an additional classi-

fier that shares its neurons with those of the source and tar-

get classifiers (cf. Section 3.1 for how the three classifiers

are constructed). In this work, we propose a novel adversar-

ial learning method to train the thus constructed SymNet,

which includes category-level and domain-level confusion

losses and can thus enhance domain-invariant feature learn-

ing towards the category level. To make the target classifier

more symmetric with the source one in terms of predict-

ing task categories, we also propose a cross-domain train-

ing scheme to help training of the target classifier. Careful

ablation studies show the efficacy of key designs of our pro-

posed SymNet.

We summarize our main contributions as follows.

• We propose in this paper a novel method termed Sym-

Net for adversarial domain adaptation. Our proposed

SymNet is based on a symmetric design of source and

target task classifiers, based on which we also con-

struct an additional classifier that shares with them its

layer neurons. Both domain discrimination and do-

main confusion are implemented based on the con-

structed additional classifier.

• To train the SymNet, we propose a novel adversar-

ial learning method based on two-level domain con-

fusion losses, where the category-level confusion loss

improves over the domain-level one by driving the

learning of intermediate network features to be invari-

ant at the corresponding categories of the two domains.

Since target samples are unlabeled, we also propose a

scheme of cross-domain training to help learn the tar-

get classifier.

• We conduct careful ablation studies to investigate the

efficacy of key designs of our proposed SymNet.

These studies empirically corroborate our designs. In

particular, based on commonly used base networks,

our proposed SymNets achieve the new state of the art

on benchmark domain adaptation datasets of Office-31

[21], ImageCLEF-DA [1], and Office-Home [29].

2. Related Works

In this section, we briefly review recent domain adapta-

tion methods, in particular those aiming to align the joint

distributions of feature and category across two data do-

mains [22, 34, 30, 13, 23, 12, 18].

Existing domain adaptation methods [28, 11, 32, 25, 3,

4, 26, 27, 13, 22, 34, 30, 12, 18] typically learn domain in-

variant features to minimize the domain discrepancy. Some

of the existing methods [28, 11, 32, 25, 3, 4, 27] neglect the

alignment between the corresponding categories of the two

domains. In contrast, to align the joint distributions of fea-

ture and category across two data domains, Saito et al. [22]

proposes to asymmetrically use three task classifiers, where

two task classifiers are utilized to label the unlabeled target

samples according to their prediction consistency and the

confidence, and another task classifier is trained by these

target samples with pseudo labels. However, the trueness of

pseudo labels is doubtful and false labels have a profoundly

negative impact on the performance. To improve the relia-

bility of pseudo labels for target samples, Zhang et al. [34]

reweights the target samples by the degree of confusion be-

tween domains, specifically those target samples which well

confuse the domain discriminator in domain labels, are thus

assigned by higher weights. Xie et al. [30] aligns the cen-

troid of each category between the two domains, instead of

treating the pseudo labels as true ones directly. Long et al.

[13] uses a residual function to model the shift between the

learned task classifiers of the two domains, which can be

useful in the adaptation tasks of small domain discrepancy

but inadequate to tackle the large domain discrepancy. In

[12, 18], multiplicative interactions between feature repre-

sentations and category predictions are exploited as high-

order features to help adversarial training. By taking the

category decision boundaries into account, Saito et al. [23]

proposes to detect the target samples near the category de-

cision boundaries by maximizing the discrepancy between

the outputs of two separate task classifiers and learn a fea-

ture extractor to generate features near the source support

for these target samples to minimize the discrepancy.

To further promote the alignment of joint distributions

of feature and category across data domains, our SymNets

contain an explicit task classifier for the target domain and

an additional classifier to enable domain discrimination and

domain confusion, and have two-level domain confusion

losses, where the category-level confusion loss improves

over the domain-level one by driving the learning of inter-

mediate network features to be invariant at the correspond-

ing categories of the two domains.

3. The Proposed Domain-Symmetric Networks

In unsupervised domain adaptation, we are given a

source domain Ds = {(xs
i , y

s
i )}

ns

i=1 of ns labeled samples
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Figure 1. The architecture of our proposed SymNet, which includes a feature extractor G and three classifiers of Cs, Ct and Cst. Note that

the classifier Cst shares its layer neurons with Cs and Ct. The red and blue colors indicate the target data and source data, and the losses

generated by them, respectively. The yellow and green colors represent the feature extractor and classifiers, and the losses applied to them,

respectively. The middle dashed rectangle presents a toy example of the features of the SymNet that are invariant at the corresponding

categories of two domains. Please refer to the main text for how the two-level domain confusion training objectives are defined.

and a target domain Dt = {(xt
j)}

nt

j=1 of nt unlabeled sam-

ples. The i.i.d. assumption is violated as the source domain

Ds and target domain Dt are assumed to be different. The

goal of unsupervised domain adaptation is to learn a feature

extractor G and a classifier C such that the expected target

risk E(xt,yt)∼Dt
[L(C(G(xt)), yt)] can be minimized for a

certain loss L.

Theoretical analysis [2] suggests that the target risk can

be minimized by bounding the source risk and the discrep-

ancy between two domains. Inspired by GANs [6], domain-

adversarial training [3, 4] is explored to achieve the later

objective. As summarized in [27], there are three ways to

implement the domain-adversarial training losses: minimax

[3, 4], confusion [26], and GAN [27]. We introduce the do-

main confusion loss [26] that is most related to our method.

Given a deep neural network that is composed of convo-

lutional and fully-connected (FC) layers, the domain confu-

sion method uses the lower convolutional layers as the fea-

ture extractor G and upper FC layers as the task classifier

C. The domain discriminator D, which is in parallel with

C, is added on top of G to distinguish features of samples

from the two domains. Source risk minimization is achieved

based on a standard supervised classification objective:

min
C,G

Etask =
1

ns

ns∑

i=1

Ls (C(G(xs
i )), y

s
i ) , (1)

where Ls is typically a cross-entropy loss. Due to the ex-

istence of domain discrepancy, there is a large drop in per-

formance when directly applying the model trained by (1)

to the target data. Given feature representations of different

domains extracted by G, we can learn a domain discrimina-

tor D using the following objective:

min
D

Edomain =−
1

ns

ns∑

i=1

log(1−D(G(xs
i ))

−
1

nt

nt∑

j=1

log(D(G(xt
j)). (2)

Given a D, the domain confusion loss aims to learn G to

maximally “confuse” the two domains, by computing the

cross entropy between the domain predictions and a uni-

form distribution over domain labels:

min
G

Fdomain =
1

2
Edomain −

1

2ns

ns∑

i=1

log(D(G(xs
i ))

−
1

2nt

nt∑

j=1

log(1−D(G(xt
j)). (3)

Domain alignment is achieved by learning a domain-

invariant G based on the following adversarial objective of

domain confusion:

min
G,C

Etask(G,C) + λFdomain(G,D)

min
D

Edomain(G,D), (4)

where λ is a trade-off parameter.

3.1. A Symmetric Design of Source and Target Task
Classifiers

As discussed in Section 1, although impressive results

are obtained by existing methods of domain-adversarial

training, they still suffer from the fundamental challenge

of unsupervised domain adaptation, i.e., the joint distribu-

tions of feature and category cannot be well aligned across

data domains. To address this challenge, we propose in this
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paper a novel domain-symmetric network (SymNet), with

the corresponding domain-adversarial training method. We

first present architectural design of our proposed SymNet as

follows (cf. Figure 1 for an illustration).

The design of a SymNet starts with two parallel task clas-

sifiers Cs and Ct. Assume each of the two classifiers is

based on a single FC layer (with a subsequent softmax oper-

ation). Cs and Ct respectively contain Ks and Kt neurons

corresponding to the numbers of categories on the source

and target domains. In unsupervised domain adaptation, we

have Ks = Kt = K. For an input x of the SymNet,

we respectively denote as v
s(x) ∈ R

K and v
t(x) ∈ R

K

the output vectors of Cs and Ct before the softmax op-

eration, and p
s(x) ∈ [0, 1]K and p

t(x) ∈ [0, 1]K after

the softmax operation. Except for Cs and Ct, our Sym-

Net also has a classifier Cst whose design is as follows.

Given v
s(x) and v

t(x) for an input x, we first concate-

nate them to form [vs(x);vt(x)] ∈ R
2K , and we then

apply the softmax operation to the concatenated vector to

have a probability vector pst(x) ∈ [0, 1]2K . We thus have

Cst(G(x)) = p
st(x). For ease of subsequent notations, we

also write psk(x) (resp. ptk(x) or pstk (x)), k ∈ {1, . . . ,K},

for the kth element of the category probability vector ps(x)
(resp. p

t(x) or p
st(x)) predicted by Cs(G(x)) (resp.

Ct(G(x)) or Cst(G(x))).
Note that there exists no an explicit domain discriminator

in our design of SymNet. Both the domain discrimination

and domain confusion is achieved by applying appropriate

losses to the classifier Cst, which we will present shortly.

We first present in the following how to train Cs and Ct.

Learning of Source Task Classifier

The task classifier Cs is trained using the following

cross-entropy loss over the labeled source samples:

min
Cs

Es
task(G,Cs) = −

1

ns

ns∑

i=1

log(psys
i
(xs

i )). (5)

Cross-Domain Learning of Target Task Classifier

Since target samples are unlabeled, there exist no direct

supervision signals to learn a task classifier Ct. Our idea is

to leverage the labeled source samples, and use the follow-

ing cross-entropy loss to train Ct:

min
Ct

Et
task(G,Ct) = −

1

ns

ns∑

i=1

log(ptys
i
(xs

i )). (6)

At a first glance, it seems that (6) learns Ct that is a du-

plicate of Cs. However, a domain discrimination training

via Cst will make them distinguishable. In fact, the use of

(6) is essential to establish a neuron-wise correspondence

between Cs and Ct, which provides the basis to achieve

category-level domain confusion presented in Section 3.2.

The use of labeled source samples in (6) also makes the

learned Ct more discriminative among task categories. We

Figure 2. An intuitive presentation of how the loss (7) differenti-

ates the target classifier Ct from the source classifier Cs.

present ablation studies in Section 4.3 that confirm the effi-

cacy of our way of learning the target task classifier Ct.

Domain Discrimination

Both Cs and Ct are trained using the labeled source sam-

ples. To differentiate between them, we leverage the con-

structed classifier Cst in the SymNet. We train Cst using

the following two-way cross-entropy loss:

min
Cst

Est
domain(G,Cst) =−

1

nt

nt∑

j=1

log(

K∑

k=1

pstk+K(xt
j))

−
1

ns

ns∑

i=1

log(

K∑

k=1

pstk (xs
i )), (7)

where
∑K

k=1 p
st
k (x) and

∑K

k=1 p
st
k+K(x) can be viewed as

the probabilities of classifying an input sample x as the

source and target domains respectively. The objective of

the loss (7) is intuitively illustrated in Figure 2.

Ideally, for the total 2K neurons of Cst, the combined

effect of imposing losses (5), (6), and (7) would be to make

the set of first K neurons discriminative among task cate-

gories, the set of last K neurons discriminative among task

categories, and to make the two sets distinguishable from

each other. For example, for a source sample x
s of the

category k, both Cs and Ct tend to make accurate predic-

tions, and for Cst, the probability of pstk would be larger

than pstk+K , due to the use of loss (7). Similarly, for a target

sample x
t of the category k, both Cs and Ct tend to make

accurate predictions, and for Cst, the probability of pstk+K

would be larger than pstk .

3.2. A Twolevel Domain Confusion Training of
DomainSymmetric Networks

Similar to existing methods, we adopt the general strat-

egy of adversarial training to learn an invariant feature ex-

tractor G for the SymNet. More specifically, we propose a

novel two-level domain confusion method that is based on

a domain-level confusion loss and a category-level confu-

sion loss. The proposed two-level losses aim to maximally
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“ confuse” the two domains in order to align the joint distri-

butions of feature and category across them.

To have a category-level confusion loss, we again rely on

labeled source samples. For a source sample of category k,

we identify its corresponding pair of the kth and (k+K)th

neurons in Cst, and use a cross-entropy between predictions

on this neuron pair and uniform distribution, which gives

the following objective to learn the feature extractor G:

min
G

Fst
category(G,Cst) =−

1

2ns

ns∑

i=1

log(pstys
i
+K(xs

i ))

−
1

2ns

ns∑

i=1

log(pstys
i
(xs

i )). (8)

To have a domain-level confusion loss, we use the unla-

beled target samples, since label information is unnecessary

for confusion at the domain level. For a target sample, we

simply use a cross-entropy between aggregated predictions

from the two half sets of neurons in Cst, and uniform dis-

tribution, which gives the following objective to learn the

feature extractor G:

min
G

Fst
domain(G,Cst) =−

1

2nt

nt∑

j=1

log(

K∑

k=1

pstk+K(xt
j))

−
1

2nt

nt∑

j=1

log(

K∑

k=1

pstk (xt
j)).

(9)

Note that one may opt for another domain-level confusion

loss by using labeled source samples. We note that effect

of such an additional loss may have been subsumed by the

category-level confusion loss (8), which uses labeled source

samples.

3.2.1 Entropy Minimization Principle

Entropy minimization principle [7] is adopted by some do-

main adaptation methods [13, 33, 24] to enhance discrimi-

nation of learned models for target data. In this work, we

adapt this principle to the symmetric structure of our pro-

posed SymNet. We propose the following entropy mini-

mization objective that enhances discrimination among task

categories by summing over the probabilities at each pair of

category-corresponding neurons in Cst:

min
G

Mst(G,Cst) = −
1

nt

nt∑

j=1

K∑

k=1

qstk (xt
j)log(q

st
k (xt

j)),

(10)

where qstk (xt
j) = pstk (xt

j) + pstk+K(xt
j), k ∈ {1, . . . ,K}. As

suggested by [33], instead of using (10) for updating both

the feature extractor G and the classifier Cst, the entropy

minimization loss is only used here to update G, in order to

reduce the side effect that due to large domain shift, target

samples may be stuck into wrong category predictions in

the early stage of training, and are difficult to be corrected

later on.

3.3. The Overall Training Objective of Domain
Symmetric Networks

Combining the losses (5), (6), and (7) for updating clas-

sifiers, (8) and (9) of category- and domain-level confusion

for updating the feature extractor G, and also the regularizer

(10), we have the following training objective for a SymNet:

min
Cs,Ct,Cst

Es
task(G,Cs) + Et

task(G,Ct) + Est
domain(G,Cst)

min
G

Fst
category(G,Cst) + λ(Fst

domain(G,Cst) +Mst(G,Cst)),

(11)

where λ ∈ [0, 1] is a trade-off parameter to suppress

noisy signals of Fst
domain(G,Cst) and Mst(G,Cst) at

early stages of training. The Fst
category(G,Cst) is noise-

free since it is based on the labeled source samples.

4. Experiments

We evaluate our SymNets on unsupervised domain adap-

tation tasks of three benchmark datasets and investigate the

effects of the components in detail. The codes are available

at http://sites.scut.edu.cn/GPI/main.psp

4.1. Setup

Office-31 The office-31 dataset [21] is a standard bench-

mark dataset for domain adaptation, which contains 4, 110
images of 31 categories shared by three distinct domains:

Amazon (A), Webcam (W) and DSLR (D). We follow the

common evaluation protocol on all six adaptation tasks.

ImageCLEF-DA The ImageCLEF-DA dataset [1] is a

benchmark dataset for ImageCLEF 2014 domain adapta-

tion challenge, which contains three domains: Caltech-256

(C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P).

For each domain, there are 12 categories and 50 images in

each category. The three domains in this dataset are of the

same size, which is a good complementation of the Office-

31 dataset where different domains are of different sizes.

We evaluate all methods on all six adaptation tasks.

Office-Home The Office-Home dataset [29] is a very chal-

lenging dataset for domain adaptation, which contains

15, 500 images from 65 categories of everyday objects in

the office and home scenes, shared by four significantly dif-

ferent domains: Artistic images (Ar), Clip Art (Cl), Product

images (Pr) and Real-World images (Rw). We evaluate all

methods on all 12 adaptation tasks.

We compare our SymNets with shallow domain adapta-

tion methods [16, 5] and the state-of-the-art deep domain
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Table 1. Accuracy (%) on the Office-31 dataset [21]. All methods are based on models adapted from a 50-layer ResNet.

Methods A → W D → W W → D A → D D → A W → A Avg

ResNet-50 [9] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

GFK [5] 72.8±0.0 95.0±0.0 98.2±0.0 74.5±0.0 63.4±0.0 61.0±0.0 77.5

TCA [16] 72.7±0.0 96.7±0.0 99.6±0.0 74.1±0.0 61.7±0.0 60.9±0.0 77.6

DAN [11] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4

RTN [13] 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

RevGrad [3] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

ADDA [27] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN-A[14] 86.0±0.4 96.7±0.3 99.7±0.1 85.1±0.4 69.2±0.3 70.7±0.5 84.6

MADA [18] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2

iCAN [34] 92.5 98.8 100.0 90.1 72.1 69.9 87.2

Kang et al. [10] 86.8±0.2 99.3±0.1 100.0±.0 88.8±0.4 74.3±0.2 73.9±0.2 87.2

CDAN+E [12] 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

SymNets 90.8±0.1 98.8±0.3 100.0±.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4

Table 2. Accuracy (%) on the ImageCLEF-DA dataset [1]. All methods are based on models adapted from a 50-layer ResNet.

Methods I → P P → I I → C C → I C → P P → C Avg

ResNet-50 [9] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7

DAN [11] 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5

RevGrad [3] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0

MADA [18] 75.0±0.3 87.9±0.2 96.0±0.3 88.8±0.3 75.2±0.2 92.2±0.3 85.8

iCAN [34] 79.5 89.7 94.7 89.9 78.5 92.0 87.4

CDAN+E [12] 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7

SymNets 80.2±0.3 93.6±0.2 97.0±0.3 93.4±0.3 78.7±0.3 96.4±0.1 89.9

adaptation methods [11, 13, 3, 27, 14, 18, 19, 10, 12]. We

follow standard evaluation protocols for unsupervised do-

main adaptation [3, 11]: all labeled source samples and all

unlabeled target samples are used for training. The average

classification accuracy and the standard error of each adap-

tation task are reported on three random experiments. Our

SymNets and all comparative methods are based on models

adapted from a 50-layer ResNet [9]. Especially, the deep

representations output by the layer pool5 of ResNet are used

as features for shallow methods.

We implement our SymNets based on PyTorch. A 50-

layer ResNet pre-trained on the ImageNet dataset [20],

which excludes the last FC layer, is adopted as the feature

extractor G. We fine-tune the feature extractor G and train

a classifier Cst from scratch through back propagation. The

learning rate of the classifier Cst is 10 times that of the fea-

ture extractor G. All parameters are updated by stochastic

gradient descent (SGD) with momentum of 0.9. The batch

size is set to 128. We follow [3] to employ the annealing

strategy of learning rate and the progressive strategy of λ:

the learning rate is adjusted by ηp = η0

(1+αp)β
, where p is

the progress of training epochs linearly changing from 0 to

1, η0 = 0.01, α = 10 and β = 0.75, which are optimized

to promote convergence and low error on source samples; λ

is gradually changed from 0 to 1 by λp = 2
1+exp(−γ·p) − 1,

where γ is set to 10 in all experiments. Our classification

results are obtained from the target task classifier Ct unless

otherwise specified, and the comparison between the perfor-

mance of the source and target task classifiers is illustrated

in Figure 4.

4.2. Results

The classification results on the Office-31 [21],

ImageCLEF-DA [1] and Office-Home [29] datasets are re-

ported in Table 1, Table 2 and Table 3, respectively. For fair

comparison, results of other methods are either directly re-

ported from their original papers if available or quoted from

[12]. Our SymNets outperform all state-of-the-art methods

on three benchmark datasets, highly affirming the effective-

ness of our SymNets in aligning the joint distributions of

feature and category across domains. It is compelling that

our SymNets substantially enhance the classification accu-

racies on difficult adaptation tasks (e.g. A → D and D →
A) and the challenging dataset (e.g. Office-Home). The

Office-Home dataset is a very challenging dataset for do-

main adaptation due to following reasons as described in its

original paper [29]: (1) the number of categories is large

in each domain; (2) different domains are visually very dis-

similar; (3) the in-domain classification accuracy is low. Es-

pecially, the presence of large number of categories preju-

dices the domain alignment methods [3, 11, 27] for their ig-

norance of the alignment between corresponding categories

of the two domains. It is desirable that our SymNets dramat-
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Table 3. Accuracy (%) on the Office-Home dataset [29]. All methods are based on models adapted from a 50-layer ResNet.

Methods Ar→Cl Ar→Pr Ar→RwCl→Ar Cl→Pr Cl→RwPr→Ar Pr→Cl Pr→RwRw→ArRw→ClRw→Pr Avg

ResNet-50 [9] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [11] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

RevGrad [3] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

CDAN+E [12] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

Table 4. Ablation experiments on the Office-31 dataset [21]. All methods are based on models adapted from a 50-layer ResNet. Please

refer to the main text for the detail definitions of these methods.
Methods A → W D → W W → D A → D D → A W → A Avg

ResNet-50 [9] 79.9±0.3 96.8±0.4 99.5±0.1 84.1±0.4 64.5±0.3 66.4±0.4 81.9

ResNet-50 (Adding Em) [9] 89.3±0.1 99.0±0.1 100.0±.0 89.2±0.7 73.4±0.1 69.0±0.2 86.6

Domain Confusion [26] 83.0±0.1 98.5±0.3 99.8±0.0 83.9±0.0 66.9±0.4 66.4±0.1 83.1

Domain Confusion (Adding Em) [26] 89.8±0.7 99.0±0.2 100.0±.0 90.1±0.3 73.9±0.7 69.0±0.8 87.0

SymNets (w/o Et
task) 75.3±0.9 95.9±0.2 99.6±0.2 75.1±0.9 60.2±0.3 62.7±0.7 78.1

SymNets (w/o Mst) 87.9±0.1 98.4±0.2 99.9±0.1 90.8±0.5 67.4±0.6 69.7±0.7 85.7

SymNets (w/o confusion) 89.2±0.6 99.0±0.3 100.0±.0 93.8±0.3 73.7±0.2 65.9±0.6 86.9

SymNets (w/o category confusion) 89.9±0.6 98.1±0.1 99.8±0.0 93.7±0.5 71.9±0.2 73.5±0.1 87.8

SymNets 90.8±0.1 98.8±0.3 100.0±.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4

ically improve the performance on most adaptation tasks,

demonstrating the efficiency of our proposed two-level do-

main confusion training of SymNets in aligning the joint

distributions of feature and category across domains.

4.3. Analysis

Ablation Study In this section, we conduct ablation ex-

periments on the Office-31 dataset [21] to investigate the

effects of different components in our SymNets, which are

based on models adapted from a 50-layer ResNet. We begin

with the simplest baseline that fine-tunes on source sam-

ples the ResNet-50 model that is pre-trained on the Ima-

geNet dataset [20], which is denoted as “ResNet-50”. To

find out how the existing domain confusion method intro-

duced in Section 3 performs, we conduct the experiment us-

ing the adversarial objective of domain confusion (4), which

is denoted as “Domain Confusion”. To make it clear how

our adopted entropy minimization loss presented in Sec-

tion 3.2.1 can help the above two baselines, we additionally

optimize the entropy minimization loss of target samples

over their feature extractors and denote them as “ResNet-50

(Adding Em)” and “Domain Confusion (Adding Em)” re-

spectively. To investigate how different components in our

SymNets benefit the adaptation performance, we remove

the cross-domain category supervised loss Et
task(G,Ct) (6)

and the entropy minimization loss Mst(G,Cst) (10) from

the overall adversarial training objective (11), the training

settings of which are denoted as “SymNets (w/o Et
task)” and

“SymNets (w/o Mst)”, respectively. Note that classifica-

tion accuracies for SymNets (w/o Et
task) are obtained from

the source task classifier Cs due to the inexistence of the di-

rect supervision signals in target task classifier Ct. Besides,

to explore the effects of our proposed two-level domain con-

fusion losses, we degenerate the category-level confusion

loss Fst
category (8) for source samples to a domain-level one:

min
G

−
1

2ns

ns∑

i=1

log(

K∑

k=1

pstk (xs
i ))−

1

2ns

ns∑

i=1

log(

K∑

k=1

pstk+K(xs
i )),

(12)

the training setting of which is denoted as “SymNets (w/o

category confusion)”. We remove the domain-level con-

fusion loss Fst
domain (9) for target samples from the over-

all adversarial training objective (11) and degenerate the

category-level confusion loss Fst
category (8) for source sam-

ples to a general category classification loss:

min
G

−
1

2ns

ns∑

i=1

log(psys
i
(xs

i ))−
1

2ns

ns∑

i=1

log(ptys
i
(xs

i )),

(13)

the training setting of which is denoted as “SymNets (w/o

confusion)”.

The results are reported in Table 4. “Domain Confu-

sion” performs much better than “ResNet-50”, and “Sym-

Nets (w/o category confusion)” improves over “SymNets

(w/o confusion)”, testifying the effectiveness of the domain-

level confusion in the feature alignment. Observed that

the performance of “SymNets (w/o Et
task)” suffers a slump

of 10.3%, manifesting the importance of the cross-domain
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(a) ResNet-50 (b) Domain Confusion (c) Domain Confusion (Adding Em) (d) SymNets

Figure 3. The t-SNE visualization of feature representations learned by (a) ResNet-50, (b) Domain Confusion, (c) Domain Confusion

(Adding Em) and (d) SymNets. Note that the blue and red points are samples from the source domain A and target domain W respectively.

Figure 4. Convergence performance on the adaptation task of A →
W by ResNet-50, Domain Confusion, Domain Confusion (Adding

Em), and the source and target task classifiers of our SymNets,

which are denoted as SymNets-S and SymNets-T respectively.

category supervised loss Et
task(G,Ct) (6) to learn a well-

performed target task classifier in the two-level confusion

training of SymNets. SymNets enhances the adaptation

performance over “SymNets (w/o category confusion)”,

certifying the usefulness of our proposed category-level

confusion in the alignment between corresponding cate-

gories of the two domains. The entropy minimization loss

Mst(G,Cst) (10) consistently improves both the two base-

lines of “ResNet-50” and “Domain Confusion” and our

SymNets by a large margin in performance, demonstrating

its efficacy. By fair comparison, our SymNets achieve the

best result among these ablation experiments, confirming

their excellent effect in aligning the joint distributions of

feature and category across domains.

Convergence Performance We compare the conver-

gence performances of task classifiers of Cs and Ct in

our SymNets with “ResNet-50”, “Domain Confusion” and

“Domain Confusion (Adding Em)” in Figure 4. The test

errors of different methods on the adaptation task A → W

are reported. We observe that our SymNets converge much

smoother. The convergence performances of the source task

classifier Cs and target task classifier Ct are expected. At

the beginning of adversarial training, the performance of

the target task classifier on target samples is better, since

the source task classifier and target task classifier are spec-

ified to corresponding domains. As the training proceeds,

the joint distributions of feature and category are gradually

aligned across domains, thus the performance of two task

classifiers almost converge to the same level.

Feature Visualization We visualize the network activa-

tions from feature extractors of “ResNet-50”, “Domain

Confusion”, “Domain Confusion (Adding Em)” and our

SymNets on the adaptation task A → W by t-SNE [15]

in Figure 3. The source and target domains are not well

aligned for features of “ResNet-50”. For features of “Do-

main Confusion”, the two domains are better aligned, how-

ever, the data structure of target samples is scattered and

the shared categories across domains are not well aligned.

For features of “Domain Confusion (Adding Em)”, the data

structure of target samples is well preserved, but the shared

categories across domains are not well aligned. For fea-

tures of our SymNets, the shared categories across domains

are perfectly aligned while different categories are well dis-

tinguished. The effectiveness of the two-level domain con-

fusion training of SymNets in aligning joint distributions of

feature and category across domains is verified intuitively.

5. Conclusion

We propose a novel adversarial learning method termed

domain-symmetric networks (SymNets) to overcome the

limitation in aligning the joint distributions of feature and

category across domains via two-level domain confusion

losses. The category-level confusion loss improves over

the domain-level one by driving the learning of intermediate

network features to be invariant at the corresponding cate-

gories of the two domains. As a component of the SymNets,

an explicit target task classifier is learned through a cross-

domain training scheme. Experiments on three benchmark

datasets verify the efficacy of our proposed SymNets.
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