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Abstract

Batch Normalization (BN) has been a standard component in
designing deep neural networks (DNNs). Although the stan-
dard BN can significantly accelerate the training of DNNs
and improve the generalization performance, it has several
underlying limitations which may hamper the performance in
both training and inference. In the training stage, BN relies on
estimating the mean and variance of data using a single mini-
batch. Consequently, BN can be unstable when the batch size
is very small or the data is poorly sampled. In the inference
stage, BN often uses the so called moving mean and mov-
ing variance instead of batch statistics, i.e., the training and
inference rules in BN are not consistent. Regarding these is-
sues, we propose a memorized batch normalization (MBN),
which considers multiple recent batches to obtain more ac-
curate and robust statistics. Note that after the SGD update
for each batch, the model parameters will change, and the
features will change accordingly, leading to the Distribution
Shift before and after the update for the considered batch.
To alleviate this issue, we present a simple Double-Forward
scheme in MBN which can further improve the performance.
Compared to related methods, the proposed MBN exhibits
consistent behaviors in both training and inference. Empiri-
cal results show that the MBN based models trained with the
Double-Forward scheme greatly reduce the sensitivity of data
and significantly improve the generalization performance.

Introduction

Deep neural networks (DNNs) have become the workhorse
of many learning tasks and real-world applications including
computer vision (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016; Szegedy et al. 2017), natural language un-
derstanding (Goldberg 2016; Vendrov et al. 2015; Zhou and
Yu 2017) and speech recognition (LeCun, Bengio, and Hin-
ton 2015; Xiong et al. 2017; Heymann, Drude, and Haeb-
Umbach 2016). Training very deep DNNs is an important
problem and comes with its own set of challenges. One
of the most challenging issues is brought by the so called
Internal Covariate Shift (Ioffe and Szegedy 2015), which
refers to the data distribution changes for each layer during
training. Specifically, when training DNNs with mini-batch
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stochastic gradient descent (SGD) (Bottou 1998), the input
of each layer will change due to the update of model param-
eters of the previous layers. As a result, the gradient van-
ishing or exploding problems may occur with a large proba-
bility, which severely hampers the performance (Glorot and
Bengio 2010; Srivastava, Greff, and Schmidhuber 2015).

To address this issue, Ioffe and Szegedy (Ioffe and
Szegedy 2015) proposed the Batch Normalization (BN)
method, which seeks to reduce the Internal Covariate Shift
by applying data normalization for the input of each layer.
The data in each batch B can be normalized by

x̂i =
xi − μB

σB
, yi = γx̂i + β, (1)

where μB and σB are the mean and variance of the data
batch, and γ and β are learnable parameters to restore the
representative power of the model. In fact, by setting γ to
σB and β to μB, one can recover the original input xi. When
doing the inference, however, the statistics of a single mini-
batch can be very unstable due to insufficient data or the
unreliable data quality. To address this, one may average the
statistics of more batches. For example, in many deep learn-
ing packages, such as PyTorch and TensorFlow, the so called
moving mean μmov and moving variance σmov are used for
inference. By moving averages over all the training batches,
μmov and σmov can be computed recursively via

μmov := θμB+(1−θ)μmov, σmov := θσB+(1−θ)σmov, (2)

where θ ≤ 1 is the coefficient of the linear combination.
Batch normalization can significantly accelerate the train-

ing of DNNs by effectively addressing the gradient van-
ishing issue. Moreover, as BN is able to reduce the distri-
bution bias of each layer, we can train deep models with
a large learning rate and without the need of careful ini-
tialization (He et al. 2016). Batch normalization has also
been extended to other models such as recurrent neural net-
works(RNNs) (Laurent et al. 2016; Amodei et al. 2016;
Cooijmans et al. 2016) and successfully been applied on
many challenging tasks (Ba, Kiros, and Hinton 2016; Du-
moulin, Shlens, and Kudlur 2017; Li et al. 2016; Tang, Hua,
and Wang 2017; Zhang, Zheng, and Qi 2017).

However, the standard BN which relies on a single batch
of data has some underlying limitations. First, the train-
ing and inference are inconsistent, which means that the
learned rules are not optimal. Second, the mean and vari-
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ance computed on a small batch can be inaccurate and un-
stable. In this sense, batch normalization with a single batch
may fail when the batch size is very small (even a single
sample) (Ba, Kiros, and Hinton 2016; Salimans and Kingma
2016). Moreover, the normalization is sensitive to data qual-
ity. Even if the data batch is sufficiently large, the input dis-
tribution can still vary greatly due to the strong dependency
on sampled data at each iteration.

To amend the above issues, a straightforward approach is
to take more batches to estimate the data statistics, such as
the moving mean μmov and moving variance σ2

mov (Dinh,
Sohl-Dickstein, and Bengio 2016). However, directly ap-
plying moving mean and moving variance may incur con-
vergence issues and blow up the model (Ioffe and Szegedy
2015). One possible reason, as argued in (Ioffe and Szegedy
2015; Ioffe 2017), is that while gradient step is designed
to decrease the loss, the normalization step would can-
cel the effect of these changes in the loss, leading to lit-
tle performance improvement but an unbounded growth of
model parameters. Another reason can be the inaccurate
moving mean and variance, which are simple weighted sum
of means and variances at previous iterations. Instead, we
propose a memorized batch normalization (MBN) method
which directly considers the mean and variance of the data
from multiple batches.

In MBN, we consider multiple batches, but pay particular
attention on the current batch and the next batch. In this set-
ting, the current batch will have non-negligible distribution
shift when going to the next iteration due to the update of
model parameters, which will lead to inaccurate estimation
of mean and variance for the next iteration. Regarding this
issue, we present a Double-Forward training scheme by sim-
ply performing one additional forward propagation, which
can further improve the learning performance.

In this paper, we make the following contributions:
• We propose a memorized batch normalization (MBN)

method which considers data information from multiple
recent batches (or all batches in an extreme case) rather
than a single batch to produce more accurate and stable
statistics. Since MBN considers data information from
multiple batches, SGD with a very small batch sizes can
be still applied to train DNNs.

• We propose a Double-Forward scheme to address the is-
sue of distribution shift among iterations in MBN. Thus,
the estimation of mean and variance at the current itera-
tion is kept up-to-date, which benefits the training at the
next iteration.

• Based on the proposed MBN, the training and inference
of DNNs will share the same normalization and forward
propagation rules. Empirical results show that, equipped
with the proposed MBN and training scheme, DNN mod-
els exhibit improved generalization performance com-
pared to several state-of-the-arts.

Related Studies

To alleviate Internal Covariate Shift, one can whiten the out-
put of each layer, but it turns out to be very computationally
expensive (Wiesler et al. 2014; Raiko, Valpola, and LeCun

2012). Batch Normalization (BN) (Ioffe and Szegedy 2015)
approximates the whitening by normalizing the layer acti-
vations using data statistics of the current mini-batch. How-
ever, while BN only considers single batch statistics during
training, the moving mean and moving variance are utilized
for inference, which brings in a representation gap between
training and inference.

Another kind of methods conducts normalization using
the model parameters rather than data statistics, such as
Weight Normalization (WN) (Salimans and Kingma 2016)
and Normalization Propagation (NormProp) (Arpit et al.
2016). WN proposes to use model parameters to normal-
ize the layer activations but does not guarantee its effective-
ness on nonlinear components. NormProp further extends
the parameter-based normalization method to more kinds
of operations, including convolution, linear transformation,
and ReLU activation (Nair and Hinton 2010), by performing
layer-wise normalization. However, the assumption that the
input of each layer has to follow N(0, 1) is too strong. Es-
pecially for ReLU, after discarding the negative part of sam-
ples, the residual positive part does not follow the normal
distribution. Thus, the input of the next layer will not satisfy
this assumption. Moreover, the harmful effects of failing the
assumption will accumulate as the model goes deeper.

Recently, performing normalization using multiple
batches has been studied in several works. AdaBN (Li et
al. 2016) apply data normalization over all the samples
using a pre-trained model for domain adaptation. (Dinh,
Sohl-Dickstein, and Bengio 2016) proposes to combine the
current batch statistics with the moving averages to stabilize
the training with data normalization. While preparing this
work, we were aware that Ioffe had proposed Batch Renor-
malization (BRN) (Ioffe 2017) method very recently, which
has similar motivations with ours. Batch Renormalization
aims to gradually make use of popular statistics μmov, σmov

by projecting the single batch normalized values x̂i to its
moving averages normalized values yi during training,
which can be computed by an affine function:

yi = rx̂i + d, (3)

with r and d being set to clip[1/rmax,rmax]

(
σB

σmov

)
and

clip[−dmax,dmax]
μB−μmov

σmov
, respectively. Specifically, the pa-

rameters are set to rmax = 1, dmax = 0 at the early
training stage, which makes the affine function an identity
mapping, and reduces the BRN to the original Batch Nor-
malization. Then the parameters are gradually relaxed to
rmax = 3, dmax = 5. However, BRN still uses the moving
averages during inference. In this sense, once the clip opera-
tions take effect, the training and inference will show incon-
sistent behaviors. Moreover, Batch Renormalization uses a
“fairly high” decay rate θ in Eqn. (2) to update the mov-
ing averages, thus these moving averages can be very close
to the current batch statistics μB, σB and BRN can be close
to BN. Unlike BRN, our method takes multiple batches to
perform normalization during the whole training procedure
and keep the consistent behaviors in forward and backward
propagations.
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Memorized Batch Normalization

In this section, we propose to use memorized statistics over
multiple batches for data normalization. After that, to allevi-
ate the distribution shift issue incurred by SGD update, we
present an effective Double-Forward training scheme.

Memorized Statistics

Normalization depending on single data batch can be inac-
curate and unstable when the batch size is very small or the
data is poorly sampled (Li et al. 2016). A natural solution
is to take multiple batches into account to obtain more ac-
curate mean and variance (Dinh, Sohl-Dickstein, and Ben-
gio 2016). Specifically, (Dinh, Sohl-Dickstein, and Bengio
2016) performs the normalization by combining the batch
mean and batch variance with the moving mean and moving
variance:

μmov =

∑T
i=1 αi · niμi∑T
i=1 αi · ni

, σ2
mov =

∑T
i=1 αi · niσ

2
i∑T

i=1 αi · ni

, (4)

where T is the number of iterations, αi is the weight for
the i-th batch and ni denotes the number of samples in
the batch. However, performing normalization directly using
moving mean and moving variance may incur convergence
issue (Ioffe and Szegedy 2015).

Differently, we propose a memorized batch normalization
(MBN) which directly considers the mean and variance of
the data from multiple batches. Specifically, MBN considers
the data of the current batch and the recent k batches, which
means that we take (k + 1) batches as a large batch to com-
pute the corresponding mean and variance. Then, these esti-
mations are utilized to normalize the layer activations for the
next iteration. Let x(j)

i be the j-th sample of the i-th batch.
Then, the memorized statistics for the data of all (k + 1)
batches can be computed by

μ̂ =

∑k+1
i=1 αi

∑ni
j=1 x

(j)
i∑k+1

i=1 αini

, σ̂2 =

∑k+1
i=1

∑ni
j=1 αi(x

(j)
i − μ̂)2

∑k+1
i=1 αini

,

(5)
where μ̂ and σ̂2 denote the mean and variance, respectively.
Here, αi denotes the weight of the i-th pair of mean and
variance in memory. And αk+1 = 1 is set for the current
batch mean and batch variance by default. Eqn. (5) can be
equivalently transformed into the following form:

μ̂ =

∑k+1
i=1 αi · niμi∑k+1
i=1 αi · ni

, σ̂2 =

∑k+1
i=1 αi · ni

(
(μi − μ̂)2 + σ2

i

)
∑k+1

i=1 αi · ni

,

(6)
where μi and σi denotes the estimations of mean and vari-

ance for the i-th batch. Note that if the batch size is kept
the same for all the batches, the ni in (6) can be cancelled
out. Different from (4), the variance σ̂2 in (6) considers the
statistics among batches with a correction term (μi − μ̂)

2.
The correction term considers the distribution shift of pre-
vious iterations, which will alleviate the estimation bias of
mean and variance for the current SGD update.

According to Eqn. (6), when computing μ̂ and σ̂2, we only
need to record the mean and variance in memory rather than
the whole feature map of each layer. Therefore, the compu-
tation of μ̂ and σ̂ is quite simple and MBN exhibits compa-
rable time complexity to BN.

Similar to BN, in MBN, we also use a learnable pair of
parameters γ and β to conduct normalization by

x̂
(j)
i =

xi − μ̂

σ̂
, y

(j)
i = γx̂

(j)
i + β. (7)

The parameters γ and β are capable of restoring the original
representations if the model is not optimal.

Backward Propagation. When doing the training, we
need to propagate the gradients through MBN transforma-
tion via backward propagation. Based on the chain rule, we
can compute the gradients of MBN for the data of the current
batch Bk+1 as follows:

∂�

∂x
(j)
k+1

=
∂�

∂y
(j)
k+1

· γ,

∂�

∂σ̂2
= −1

2

∑nk+1

j=1

∂�

∂x
(j)
k+1

(x
(j)
k − μ̂)(σ̂2 + ε)−3/2,

∂�

∂μ̂
=

∑nk+1

j=1

∂�

∂x
(j)
k+1

−1√
σ̂2 + ε

− 2
∂�

∂σ̂2

∑k+1
i=1 αini(μi − μ̂)∑k+1

i=1 αini

,

∂�

∂x
(j)
k+1

=
∂�

∂x̂
(j)
k+1

1√
σ̂2 + ε

+
∂�

∂σ̂2

2∑k+1
i=1 αini

(
x
(j)
k+1 − μ̂

)

+
∂�

∂μ̂

1∑k+1
i=1 αini

,

∂�

∂γ
=

∑nk+1

j=1

∂�

∂y
(j)
k+1

x
(j)
k+1,

∂�

∂β
=

∑nk+1

j=1

∂�

∂y
(j)
k+1

.

Forward Propagation and Inference. In MBN, once the
parameters μ̂, σ̂2, γ and β are computed, they will be fixed
and used for the Forward Propagation in the training stage
or in the testing stage as in (7). In other words, in MBN, the
training and inference become consistent since they share
the same rules.

Dynamic Setting of Weights

Due to the distribution shift incurred by SGD update, the
more recent batch should be more important for the current
iteration. We thus assign larger weights α on the more re-
cent batches. Similar to (Dinh, Sohl-Dickstein, and Bengio
2016), we set

αi = ηk−i, ∀ 1 ≤ i ≤ k

where η ≤ 1 is a weight decaying parameter. Note that when
i = k, we set αk = 1, which means that the importance of
the most recent batch Bk is equal to the current batch Bk+1.
This setting is reasonable in the sense that the distribution
shift between adjacent batches is often small.

Another important issue is that, the strength of the Distri-
bution Shift among iterations is time dependent. Specifically,
the model parameters change more violently at the very be-
ginning of training due to larger step size and/or large mag-
nitude of the gradients. As a result, the statistics of differ-
ent batches at the earlier stages change more significantly,
leading to unstable estimations of the mean and variance.
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To address this, we introduce an additional weight decaying
parameter so that

αi = ληk−i, (8)

where λ ≤ 1. When seting λ = 0, MBN is reduced to the
standard Batch Normalization.

In practice, we can gradually increase λ from a small
value after the changing of step size. For example, in the
experiments of this paper, we set the parameter λ = 0.1 at
the beginning and then change it to 0.5 and 0.9 at 40% and
60% of the training procedure. Therefore, we choose λ from
{0.1, 0.5, 0.9}.

Double-Forward Propagation

Since MBN considers information of multiple data batches,
after multiple SGD updates, the distribution shift of batches
at previous iterations can accumulate to affect the resultant
estimations. Especially when the memory size is very large,
the previous recorded means and variances will cause an es-
timation bias on the mean μ̂ and variance σ̂ for the current
iteration.

To address this, we here propose a simple scheme, called
the Double-Forward Propagation, as in Algorithm 1. Specif-
ically, we first perform a standard forward-backward propa-
gation to train the model. The estimations of mean and vari-
ance before updating the model parameters are used to com-
pute the loss and gradients of the current SGD update. After
updating the model parameters, we perform a second for-
ward propagation step on the same batch using the updated
weights. We then record the updated mean and variance in
memory before going to the next iteration. In this way, the
distribution shift caused by the change of model parameters
can be significantly reduced by keeping the statistics up-to-
date.

Computational Complexity

The computation of memorized statistics in MBN is a simple
linear transformation over recorded means and variances,
thus MBN has the same cost as BN. In practice, we observe
that the backpropagation often takes twice more time than
the forward propagation during training. Therefore, in the
training, the Double-Forward scheme with MBN takes about
30% more time than that with BN. For the inference, MBN
takes the same complexity to BN. Nevertheless, MBN based
models perform data normalization with more accurate and
robust statistical estimations and thus often yield better gen-
eralization performance than BN models.

Experiments

In this section, we evaluate the proposed MBN method in
image classification tasks. We apply MBN on several well-
known models, including VGG (Krizhevsky, Sutskever, and
Hinton 2012) and ResNet (He et al. 2016). Note that the
original VGG models proposed in (Krizhevsky, Sutskever,
and Hinton 2012) do not have BN layer. However, in many
popular deep learning packages such as Tensorflow, Torch
and PyTorch, they have a so called “VGG-BN” model in
their canonical model zoo, which add a BN layer after each

Algorithm 1 Training MBN in Single Iteration.
Require: Recorded statistics in memory:

{μi}ki=1, {σi}ki=1;
Mean and variance of the current batch:

μB , σB ;
Weights for batches in memory: {αi}ki=1;
Learnable parameters: γ, β.

We define μk+1 = μB , σk+1 = σB for convenience.
1: First Forward Propagation:

2: μ̂ ←
k+1∑

i=1
αi·niμi

k+1∑

i=1
αi·ni

// memorized mean

3: σ̂2 ←
k+1∑

i=1
αi·ni((μi−μ̂)2+σ2

i )

k+1∑

i=1
αi·ni

// memorized variance

4: x̂
(j)
i ← x

(j)
i −μ̂√
σ̂2+ε

// normalization transformation

5: y
(j)
i ← γx̂

(j)
i + β // scale and shift

6: Backpropagation:
7: compute gradients ∂�

∂γ
, ∂�

∂β
, ∂�

∂x
(j)
k+1

8: backpropagate ∂�

∂x
(j)
k+1

to previous layers

9: γ := γ − η ∂�
∂γ

, β := β − η ∂�
∂β

10: Second Forward Propagation
11: compute μB ; record the updated mean of the current batch
12: compute σB ; record the updated variance of the current batch

convolutional layer in the original VGG-16 model. We adopt
this VGG with BN model for comparisons. For each model,
we simply replace their original BN layers with the proposed
MBN layers and keep the other parts unchanged. Several
state-of-the-art methods are adopted as baselines, including
BN (Ioffe and Szegedy 2015), BRN1(Ioffe 2017) and Norm-
Prop (Arpit et al. 2016).

For fair comparisons, we follow the experimental settings
in (He et al. 2016) for in all the experiments. All compared
models are implemented based on PyTorch. Without special
specification, we train the models through SGD with a mini-
batch size of 128. The momentum for SGD is 0.9 and the
weight decay is set to 10−4. The learning rate is initialized
as 0.1 and then is divided by 10 at 40% and 60% of the
training procedure, respectively. For MBN methods, we first
set the parameter λ = 0.1 and then increase it to 0.5 and 0.9
at 40% and 60% of the training procedure, which is referred
to as λ = {0.1, 0.5, 0.9}. And the decaying parameter η in
Eqn.(8) is set to 0.9. All the experiments are conducted on a
GPU Server with one Titan X GPU.

Datasets. In the experiments, three benchmark datasets
are used: CIFAR-10, CIFAR-100 (Krizhevsky and Hinton
2009) and ImageNet (Russakovsky et al. 2015). CIFAR-
10 contains 10 classes of 32x32 natural color images, each
with 5,000 training samples and 1,000 testing samples. For
CIFAR-100, it has 100 classes, each of which has 500 train-
ing samples and 100 testing samples. ImageNet contains
128 million high-resolution images belonging to 1000 cate-
gorise, and has become the canonical dataset for image clas-

1We implement BRN ourselves in PyTorch.
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Figure 1: Demonstration of the effectiveness of Double-Forward Propagation for MBN. Based on ResNet-56 model, BN-1 and
BN-2 denote the training with BN using single forward and double forwards, respectively; While MBN-1 and MBN-2, BRN-1
and BRN-2 have the same definition.

sification, object detection and localization over the years.
The form of data augmentation consists of generating image
translations and horizontal reflections (He et al. 2016). All
the experiments are performed with 200 training epochs.

Demonstration of Double-Forward Propagation

To verify the effectiveness of the proposed Double-Forward
scheme, we apply it to train ResNet-56 for BN, BRN and
MBN. Note that NormProp conduct normalization with
model parameters, but the second forward propagation can-
not change the model parameters. Therefore this scheme will
have no effect on NormProp in the second forward propa-
gation. The convergence results are shown in Figure 1. We
observe that first of all, MBN with single forward scheme
(MBN-1) yields better performance than BN with whether
single or Double-Forward scheme (6.53% vs. 6.97% and
6.81%), and MBN with Double-Forward scheme (MBN-2)
generates the best performance among all comparisons.

Furthermore, both MBN and BRN benefit greatly from
the Double-Forward scheme at training and testing stage, but
BN does not gain any improvement from this scheme during
training and merely improves negligibly at testing stage. For
BN, it only takes the mean and variance of current batch dur-
ing training. In this situation, forward once or twice makes
no difference. However, moving mean and moving variance
are used for BN during testing, which can be more accurate
when the Double-Forward scheme is applied. In contrast,
MBN and BRN gain much from this scheme in both training
and testing, because they additionally utilizing the statistics
of multiple previous batches to conduct the normalization,
therefore the Double-Forward Propagation scheme can keep
their current normalization statistics up-to-date.

For example, on ResNet model with 56 layers, MBN-2
achieves 0.30% improvement in terms of testing error com-
pared with MBN-1, and BRN-2 decreases the testing error
by 0.47% compared with BRN-1. Similar observations can
be obtained on ResNet with 20 layers. To be clear, in the fol-
lowing experiments, if not explicitly mentioned, MBN and
BRN are set to use the Double-Forward Propagation scheme

Table 1: Performance comparisons of MBN and different
normalization methods on CIFAR-10, where ‘-’ stands for
the absence of results.

method NIN ResNet-20 ResNet-56 VGG
NormProp 7.25 - - 11.18

BN 7.54 8.41 6.97 6.75
BRN - 8.18 6.46 6.64
MBN - 7.93 6.23 6.43

while BN and NormProp are set to use the single forward
scheme. Note that the number of SGD updates for all the
methods is kept the same for fair comparisons.

Performance on Image Classification

Comparisons on CIFAR-10. Firstly we study the conver-
gence behavior and the evolution of testing errors of the
three aforementioned models trained with MBN and BN,
respectively. From Figure 2, we have the following obser-
vations. First, the models trained with MBN consistently
outperform their BN based counterparts. Interestingly, the
testing error of MBN based models decreases at the 120th
epoch where the learning rate is changed to 10−3, while the
BN based models do not show such distinct improvements.
This illustrates that MBN has unearthed the generalization
potential of deep models. Second, the abrupt increase of pa-
rameter λ at 80th epoch and 120th epoch can raise the train-
ing error rates for a small moment, after that the error rates
decrease rapidly, demonstrating that the MBN based models
are capable to fit the updated hyper-parameters of memo-
rized statistics in a very small number of iterations. Third,
the models trained with MBN generally have lower training
error than those trained with BN.

We further compare MBN with other baselines. The
model details and testing errors are recorded in Table 1.
From the table, we can see that ResNet-56 trained with the
proposed MBN yields the best performance. Specifically,
MBN reduces the testing error by 0.48% and 0.74% for
ResNet-20 and ResNet-56, respectively. On VGG model, the
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Figure 2: Comparisons of MBN and BN when applied on different deep models. Thin curves denote the training error while the
bold curves denote the testing error.

Table 2: Performance comparisons of MBN and different
normalization methods on CIFAR-100, where ‘-’ stands for
the absence of results.

method NIN ResNet-20 ResNet-56 VGG
NormProp 29.24 - - 39.55

BN 30.26 32.28 29.27 27.80
BRN - 32.04 29.17 27.44
MBN - 31.75 28.97 26.79

MBN method still outperforms every other comparison. For
BRN method, the moving averages in BRN can be very close
to the batch statistics μB, σB because of the “fairly high” de-
cay rate θ in Eqn. (2), which makes the result of BRN quite
close to BN. Nevertheless, for NormProp method, it cannot
be directly applied on residual module and it is only suitable
for shallow models like NIN (Arpit et al. 2016). Equipped
with NormProp, even a 16 layers model, i.e. VGG, would
very likely to explode and suffers a large reduction in perfor-
mance. These results demonstrate the superior performance
of the proposed MBN method.

Comparisons on CIFAR-100. We follow the same ex-
perimental settings in CIFAR-10 experiments for all the
compared methods. The results are recorded in Table 2.
Among all the evaluated models, MBN based models yield
the best performance. Compared with BN, MBN exhibits
0.5% and 0.3% performance improvements on ResNet-20
and ResNet-56, respectively. For the VGG model, when
trained with MBN method, it achieves a reduction of 1% in
testing error, which can be a significant improvement. Note
that BRN method is also able to boost the performance com-
pared to BN, but the improvements it brings are not as much
as MBN method does.

Comparisons on ImageNet. We evaluate the proposed
method on a more challenging ILSVRC2015 dataset. We
adopt two state-of-the-art models GoogLeNet (Szegedy et
al. 2015) and PReLU-net (He et al. 2015). To evaluate the
proposed MBN method, We train VGG and ResNet of dif-
ferent depth using BN and MBN. The results are shown in
table 3. Several models are taken into consideration, includ-

ing ResNet-18, ResNet-34, ResNet-50 and VGG with 16
layers. As shown in Table 3, MBN outperforms BN on ev-
ery compared model, and shows significant improvements.
More specifically, MBN decreases the top-1 testing error
rate by 0.74% and 0.88% on VGG and ResNet-34, respec-
tively. These results verify the effectiveness of the proposed
method.

We also plot the convergence curves of models trained
with BN and MBN in Figure 3. Different from CIFAR
datasets, we do not observe the abrupt increase in training
curves when increasing the hyper-parameter λ on ImageNet.
A reasonable explanation is that the enormous training sam-
ples in ImageNet can make the memorized statistics more
robust to the hyper-parameter λ.

Table 3: Performance comparisons on ImageNet (single-
crop testing).

network top-1 error (%) top-5 error (%)
BN MBN BN MBN

GoogLeNet 27.31 - 9.15 -
PReLU-net 24.27 - 7.38 -

VGG 28.07 27.33 9.33 8.91
ResNet-18 30.43 29.79 10.76 10.23
ResNet-34 26.73 25.85 8.74 8.37
ResNet-50 24.01 23.67 7.02 6.74

Performance Comparison with Small Mini-batches

We investigate the effectiveness of MBN with small mini-
batches by setting the mini-batch size to the values in
{8, 16, 32, 64, 128} to train deep models on CIFAR-10. For
fair comparisons, we keep the same setting to previous ex-
periments but constrain the training stages to have the same
number of SGD iterations. As shown in Table 4, the mod-
els trained with MBN show significant improvements over
their BN counterparts with all kinds of batch size, which il-
lustrates the effectiveness of MBN with small batch sizes.
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Figure 3: Results on ImageNet. Solid curves denote the MBN-based methods while dash curves denote the BN-based methods

Table 4: Testing errors of BN and MBN with different batch
sizes.

network batch size testing error (%)
BN MBN

ResNet-56

8 19.64 15.37
16 13.26 11.87
32 10.45 9.37
64 8.60 7.79

128 6.97 6.23

More Discussions

Effect of the Parameter λ in Eqn. (8)

The choice of the weight decaying parameter λ is critical
to the performance of MBN based models. We here study
the influence of λ on the performance of MBN. We can ei-
ther set λ to a fixed value or adjust it adaptively w.r.t. train-
ing epochs. Different settings and the relevant performance
are recorded in Table 5. We observe that choosing a fixed
value, (e.g. λ = 0.1, 0.5 or 1) fails to produce good results.
Actually, since the distribution shift is different in different
stages, a fixed value of λ is not a reasonable choice. Here,
we suggest setting a small value at the beginning and then
increasing it along training time. For example, in our com-
parison experiments above, we set λ = 0.1 at the beginning
stage, 0.5 and 0.9 at 40% and 60% of the training procedure,
respectively. With this adaptive setting of λ, MBN performs
much better performances compared to other baselines.

Table 5: The effect of the parameter λ on MBN.
network settings of λ testing error (%)

ResNet-56

λ = {0} 6.97
λ = {0.1} 6.87
λ = {0.5} 6.45
λ = {0.9} 6.81

λ = {0.1, 0.5, 0.9} 6.23

Influence of Memory Size

In this experiment, we investigate the influence of the mem-
ory size k on the performance of MBN. We conduct this
evaluation using ResNet with 20 layers on CIFAR-10. The
results are represented in Table 6. From the table, we see
that the performance of MBN is relatively stable across dif-
ferent memory sizes. In other words, carefully adjusting the
memory size is not necessary.

Table 6: The influence of memory size on MBN.
network memory size testing error (%)

ResNet-20
10 7.87
20 7.80
40 7.83

Conclusion

In this paper, we propose a Memorized Batch Normalization
(MBN) method for training DNNs. In contrast to BN which
relies on a single batch to perform data normalization, MBN
considers multiple recent batches to obtain more accurate
estimations of the statistics. We also propose several simple
techniques to alleviate the Distribution Shift among batches.
Unlike BN, the proposed MBN method exhibits consistent
behaviors in both training and inference, and it can play an
effective role in dealing with small mini-batch size cases.
The extensive experiments have demonstrated the effective-
ness of the proposed methods.
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