
145

2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)

2332-5666/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCSW56584.2022.00036

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s W

or
ks

ho
ps

 (I
CD

CS
W

) |
 9

78
-1

-6
65

4-
88

79
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DC

SW
56

58
4.

20
22

.0
00

36

2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)

Downscaling and Overflow-aware Model
Compression for Efficient Vision Processors

~mooo
N
No
N
~
00
L/")
~
L/")

$
V')

uo
u
.:::::::.
eno
M
M
o
M

oo

Haokun Li
South China University of Technology

Peng Cheng Laboratory
selihaokun@mail.scut.edu.cn

Yun Liangt
Peking University

Peng Cheng Laboratory
ericlyun@pku.edu.cn

Jing Liu
Faculty of Information Technology

Monash University
jing.liul @monash.edu

Yaowei Wangt
Peng Cheng Laboratory

wangyw@pcl.ac.cn

Liancheng Jia
Peking University
jlc@pku.edu.cn

Mingkui Tant
South China University of Technology

Peng Cheng Laboratory
mingkuitan@scut.edu.cn

UJ
UJ
UJ

~
V')

uo
~
V'la.o

..c
V'l

~o
$
E
~
V'l
>

V')

tlO
C

'.j:i
:::Ja.
Eo
U
"'C
~
:::J

..c
'.5
V'l

(5
Co
OJu
c
OJ

~
Co
u
co
co

'.j:i
co
c

~
C

"'C
C

N
o::::t
UJ
UJ
UJ

N
No
N

Abstract-Network pruning and quantization are two effective
ways for model compression. However, existing model compres­
sion methods seldom take hardware into consideration, resulting
in compressed models that still take high energy and chip area
cost on a vision processor. To address this issue, one may
reduce the bit-widths of the accumulator and the multiplier in
fixed-point inference to significantly reduce the energy and chip
area. However, the numerical error brought from the low-bit
multiplier in the downscaling procedure is large, while the low­
bit accumulator suffers from the overflow issue. Both of them
lead to significant performance degradation. In this paper, we
propose downscaling and overflow-aware model compression for
efficient vision processors. Specifically, we propose downscaling­
aware training to simulate the downscaling procedure during
training so that the models are adjusted to inference with
low bit-width multipliers. To address the overflow issue, we
apply overflow-aware training to gradually reduce the range of
quantized values. We further restrict the channel's number of
each layer to be the multiple of some value (e.g., 16) to take
advantage of parallel computing by channel pruning. With the
proposed method, we are able to obtain the compressed model
with low bit-width accumulators and multipliers during inference
while maintaining the performance. As a result, the energy and
chip area cost can be significantly reduced. To demonstrate this,
we further co-design an agilely customizable vision processor
and its SoC. Extensive experiments on image classification,
object detection, and semantic segmentation demonstrate the
effectiveness of our proposed method. For example, on ImageNet,
our compressed 8-bit ResNet-50 achieves lossless performance
with 16-bit accumulators and 12-bit multipliers.

Index Terms-Downscaling-aware; Overflow-aware; Model
Compression; Efficient Vision Processor

I. INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous
success in many challenging vision tasks, such as image
classification [1]-[3], object detection [4], [5], and semantic
segmentation [6]. Despite the promising performance, DNNs
are extremely difficult to be deployed into edge-AI devices
(e.g., vision processor) with limited computational resources

t Co-corresponding author.

TABLE I
ENERGY AND AREA COST FOR FLOATING-POINT AND FIXED-POINT

OPERATIONS (ON 45NM 0.9V CMOS) [8]-[10].

Operation Energy (pJ) Area (J.Lm~)
32-bit Floating-point Add 0.9 4184

32-bit Fixed-point Add 0.1 137
8-bit Fixed-point Add 0.03 36

32-bit Floating-point Mult 3.7 7700
32-bit Fixed-point Mult 3.1 3495
8-bit Fixed-point Mult 0.2 282

due to their massive number of parameters and high compu­
tational overhead.

To reduce the model size and the computational overhead,
network quantization is an effective way that maps the full­
precision weights and activations into the low-precision ones.
In this case, the floating-point operations can be replaced
by the fixed-point operations, which significantly reduces the
energy and area cost (See Tab. I). For example, we can re­
place a 32-bit convolution operation with an 8-bit convolution
operation. Specifically, we convolve 8-bit weight and 8-bit
input using multiply-accumulate (MAC) operation, and store
the MAC result in a 32-bit accumulator. Then, we use a 32­
bit multiplier to downscale the 32-bit convolution result to
the 8-bit one and feed it into the next layer [7]. In this case,
the downscaling procedure can be implemented as a fixed­
point multiplication with a 32-bit integer (called multiplier)
and a bit-shift operation. Due to the high bit-widths of the
accumulator and multiplier, it still consumes a lot of energy
and chip area cost for the existing vision processors.

In order to reduce the chip area and energy cost, an
intuitive method is to use a lower bitwidth multiplier in the
downscaling procedure and use a lower bit-width accumulator
to store the MAC results. However, the above methods suffer
the following limitations. First, when using low bit-width
multipliers (e.g., 12-bit), the numerical error brought from
each layer's downscaling procedure will be large, leading to
significant performance degradation. Second, when using a

2332-5666/22/$31.00 ©2022 IEEE
DOll0.1109/ICDCSW56584.2022.00036

145

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

146

low bit-width accumulator (e.g., 16-bit), numerical overflow
on MAC results becomes a frequently-happening problem
that must be explicitly considered [11]. To further reduce the
energy cost, we can further improve the computing efficiency
by convoluting a group of channels in parallel.

To address the above limitations, we propose a downscaling
and overflow-aware model compression scheme for efficient
vision processors. Specifically, on the one hand, the proposed
downscaling-aware training simulates the downscaling proce­
dure of the convolution layer in the forward pass of training.
In this way, the models are adjusted to perform with low
bit-width multipliers. On the other hand, the overflow-aware
training adaptively determines the quantized value range of
the activations and parameters in each layer. In this way,
the proposed method is able to prohibit numerical overflow
with low bit-width accumulators as much as possible. To take
full advantage of parallel computing, we further use channel
pruning methods to restrict the number of channels of each
layer to be the multiple of some value (e.g., 16). With the
proposed method, we obtain the compressed model with low
bit-width accumulators and multipliers during inference while
maintaining the performance. To demonstrate this, we co­
design an agilely customizable vision processor and its SoC
with low bit-width accumulators and multipliers.

Our main contributions are summarized as follows:
• We propose a downscaling and overflow-aware model

compression scheme for efficient vision processors. With
the proposed method, the model can be compressed with
little performance degradation when using low bit-width
accumulators and multipliers during inference.

• We co-design an agilely customizable vision processor
and its SoC with low bit-width accumulators and multi­
pliers, which save the chip area significantly.

• We evaluate our model compression scheme on image
classification, object detection, and semantic segmenta­
tion over various network architectures. Extensive ex­
periments show the superior performance and efficiency
of the proposed method. For example, on ImageNet,
our compressed 8-bit ResNet-50 achieves lossless perfor­
mance with 16-bit accumulators and 12-bit multipliers,
reducing 51.44% chip area of the downscaling unit.

II. RELATED WORK
Network Quantization. To reduce the model size and the

computational overhead, many network quantization meth­
ods [7], [11]-[13] have been proposed to map the full­
precision values to low-precision ones (e.g., 8-bit), which
is an effective way to improve the inference latency and
energy efficiency. It has been shown that quantizing the
network's weights and activations to 8-bit is able to obtain
a compressed network with small model size and lower
computational overhead [7]. However, this method ignores
the numerical error brought from each layer's downscaling
procedure. In this case, when the bit-width of the multiplier is
low (e.g., 12-bit), the numerical error is so large that it leads
to significant performance degradation. As for accumulator, an

Algorithm 1 Pipeline of proposed model compression scheme.
Input: Pre-trained full-precision model M, training data set

1Jtrain == {(Xi, Yi) }~1' the bit-width of the accumulator
B a , the bit-width of the multiplier B m , the bit-width of
activations and weights k.

Output: Trained quantized model Pq .

1: Prune and finetune the full-precision model M until
converge to get the pruned model P.

2: Initialize quantized model Pq using P.
3: Train Pq via overflow-aware training until converge.
4: Finetune Pq via downscaling and overflow-aware training

until converge.

overflow-aware training method [11] is proposed to reduce the
numerical overflow when using a low bit-width accumulator.
However, numerical overflow still occurs occasionally in this
method, which is unacceptable in practical applications.

Channel Pruning. Channel pruning is a kind of struc­
ture pruning, which aims at removing redundant channels to
accelerate the run-time inference [14]. Channel pruning is
friendly to edge-AI devices because the devices do not need
some special implementation to deploy the pruned model.
The resulting pruned models take less storage and lower
computational overhead. Network Slimming [15] is a classic
channel pruning method that automatically identifies unimpor­
tant channels and then prunes them. Another channel pruning
method DCP [16] proposed a discrimination-aware channel
pruning scheme to compress deep models with the introduction
of additional discrimination-aware losses. However, DCP and
many other methods only prune the middle layer in the
bottleneck structure of residual blocks, generating an hourglass
structure. To address this, CURL [17] has been proposed to
prune channels both inside and outside the residual connection,
generating a shape similar to an opened wallet.

III. DOWNSCALING AND OVERFLOW-AWARE MODEL
COMPRESSION

In this paper, we propose a downscaling and overflow­
aware model compression scheme, which aims to compress the
model so that it can be deployed on the processors with lower
bit-width accumulators and multipliers. Given a pre-trained
model, we first conduct channel pruning to take advantage of
parallel computation. Then, we quantize the model and per­
form overflow-aware training. Last, we conduct downscaling
and overflow-aware training to finetune the model. The overall
training method is summarized in Algorithm 1.

A. Preliminary: Quantized Training and Inference
Symmetrical and uniform quantization maps a real number

r to a finite set of integer values as

Q(r,s)=round(~), (1)

where round(.) returns the nearest integer of a given value and
s denotes the real value step size. Without loss of generality,
given a convolutional layer, let x, W, b be the input activations,

146

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

Conv

Discretized
WeightsWeights

Biases

+

Discretized
ActivationsInput

Discretized
Output

Downscale Output

Overflow?
Narrow the range
of quantized value

Yes

Discretized
Biases

147

Discretized
Activations

.....'(.~~..... Narrow the range
of quantized value

Fig. 1. An illustration of downscaling and overflow-aware training with simulated quantization of the convolution layer. First, we quantize the activations,
weights, and biases to the discretized one and perform convolution to get the discretized output. Then, we convert the discretized output into high-precision
integers qacc (e.g., 32-bit) by Eqn. 11 and downscale it to low-precision integers qo (e.g., 8-bit) to simulate the downscaling procedure. What's more, we
narrow down the range of activations and weights' quantized value if overflow happens.

weight parameters, and bias parameters, respectively. Then,
for k-bit quantization, we can apply the following function to
quantize the activations and parameters to discretized ones:

where qacc is high precision (e.g., 32-bit). Following [7], the
qacc is downscaled from high precision intermediate results to
low precision activations qo by

D(x) == 8 x . clip (Q(x, 8 x), Qlow, Qup) ,

D(w) == 8 w . clip (Q(w, 8 w), Qlow, Qup) , (2)
D(b) == 8 x 8 w . clip (Q(b, 8 x 8 w), Blow, B up) ,

(7)

(8)

(5)

(6)

(9)

(10)

D(o) == D(x) * D(w) + D(b),

where Mo E jRc are integer multipliers (e.g., 32-bit) and
multiplication by 2-n is implemented with a bitshift operation.

where qo is the quantized integer input of the next layer, and
8 0 is the step size of the next layer's activation. In a layer
with C output channels, the multiplication by floating-point
value M E jRc is implemented as a fixed-point multiplication
as follows:

B. Downscaling-aware Training

To make the models perform well with low bit-width
multiplies, we propose a downscaling-aware training method
to simulate the downscaling procedure of the convolution
layer during training. When the bit-width of the multiplier
is high enough (e.g., 32-bit), the numerical error between qo
and 2-nMoqacc in the downscaling procedure (Eqn. 7) is so
small that it can be ignored. Specifically, previous training
methods ignore the downscaling procedure and convolute the
discretized activations and parameters as follow:

where D(0) is the floating-point convolution output of this
layer and * is the convolution operation.

However, when the bit-width of the multiplier is low (e.g.,
12-bit), the numerical error between qo and 2-nMoqacc in
Eqn. 7 will be relatively large, leading to significant perfor­
mance degradation. Therefore, as shown in Fig. 1 we add a
downscaling-aware procedure in the simulated quantization of
the convolution layer. For a convolution layer, the multiplier
Mo and the n in Eqn. 7 is calculated as follows:

(4)

(3)
qx == Q(D(x), 8 x),
qw == Q(D(W),8w),
qb == Q(D(b), 8 x 8 w),

where qx and qw are low precision activations and weights
parameters(e.g., 8-bit). Then, the intermediate results of ma­
trix multiplication or convolution qacc is accumulated in an
accumulator as

where function clip (v, Vlow , vup) clips any number v into
the range [Vlow , vup]. Here, Qup and Qlow are the min­
imum and the maximum quantized values for activations
and weight parameters, respectively, which are obtained by
Qup == -Qlow == 2k - 1 - 1. B up and Blow are the minimum
and the maximum quantizad values for biased, respectively,
which are obtained by B up == -Blow == 2 Ba - 1 - 1, and
B a is the bit-width for accumulator. We set the step size of
weights 8 w to max (abs (w)) / Qup and learn the step size of
activations 8 x following [13]. Note that we quantize the x and
w in a layer-wise and a channel-wise manner, respectively.

Quantized-aware Training. To improve the performance
of the quantized model, we train the model with simulated
quantization following [7]. The training approach can simulate
the quantization effects during training. In this way, all weight
parameters are stored in floating-point and can be updated
in an end-to-end manner. For batch normalization layers, we
folded the batch normalization parameters into the weights
during the downscaling and overflow-aware training so that we
could remove the batch normalization layers during inference.

Integer-arithmetic-only Inference. Following [7], all arith­
metics in a convolution layer use integer arithmetic operations
on the quantized values. We can get the corresponding quan­
tized integer values of x, w, and b by

147

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

DMA

Partial Sum
Buffer

Input Dataflow

Filter Dataflow

Partial Sum Dataflow

Output Dataflow

MAC MAC PE

DS Downscaling PE

Memory Bank

Input Buffer

MAC1,1

MAC2,1

Filter
Buffer

Downscaling
Unit

DS2

DS1

MAC1,2

MAC2,2

4-bit 4-bit

4-bit 4-bit

Fuse

8-bit

8-bit 8-bit

8-bit 8-bit

Fuse

16-bit

RegW

MAC Kernel

RegW

RegX

RegAcc

In_x

Out_x

In_acc

In_w

Out_acc

Out_w

(a) The MAC PE architecture (b) The Bit-Fusion MAC kernel

148

Then, the floating-point convolution output D(o) of this layer
is given by:

8-bit 16-bit

Out_x Out_ace

(a) The MAC PE architecture (b) The Bit-Fusion MAC kernel

Fig. 2. The architecture of hardware accelerator. The accelerator is connected
with Rocket chip SoC [19] with ROCC instruction interface and Tilelink data
interface. The accelerator is composed of the MAC array for convolution
operation, the downscaling units, and on-chip memory banks. The MAC array
is implemented with a weight-stationary systolic array.

_Input Dataflow _ Partial Sum Dataflow I MAC IMAC PE DMemOry Bank

_Filter DataflowOutput Dataflow 0DownSCaiing PE

(12)

(11)

(13)D(0) == qo80 •

where B m is the bit-width of the multiplier. During training,
we simulate the downscaling procedure in Eqn. 7 as follows:

qacc == round (D(X) * D(w) + D(b)) ,
8 x 8 w

qo == round (2-nMOqacc) .

In this way, during training, the quantized model can simulate
the downscaling procedure. To avoid gradient vanishing issues,
we use the Straight-Through Estimator (STE) [18] during
the back-propagation of the rounding function because the
rounding function is non-differentiable.

C. Overflow-aware Training
To avoid the overflow issue during inference, we use a

floating-point factor a ~ 1 to adjust the affine relation­
ship between the real value range and the quantized value
range following [11]. For example, in 8-bit quantization,
we can quantize a real number r to a integer value range
[-127, 127] by default. With the factor a, r is rescaled to
[l-127/a J, l127/a J]. In this way, the quantized value range is
narrowed down so that the numerical overflows are eliminated.

Specifically, we rescale the quantized value for each con­
volution or fully-connected layer. The step size 8 x , 8 w in
quantization will be replace by 8 x ', 8 w ' as follows:

8 x ' == a8x ,,
8 w == a8w •

(14)
(15)

Fig. 3. The architecture of MAC PE and MAC kernel.

In fact, finding the proper factor a for each layer's activations
and weights is difficult because we need to balance the per­
formance and the numerical overflow. Intuitively, we increase
the a of one layer if numerical overflow happens in this layer.
Given the discretized output D (0) of one layer, the batch size
N b, and the current factor at for this layer, we calculate the
at+l as follows:

No = overflow (round C~/~~/) ,Omin, Omax) , (16)

QtH = Qt + min (TJlog (~: + 1) ,TJmax) , (17)

where overflow(x, a, b) returns the number of element that is
smaller than a or bigger than b, Omax == -Omin == 2Ba - 1 _1
and B a is the bit-width of the accumulator. 'T] is the current
dynamic learning rate of the model, 'T]max is a fixed learning
rate. Omax == -Omin == 2Ba - 1 -1, where B a is the bit-width
of the accumulator. For efficiency, we calculate No and update
the a every M steps (e.g., 50 or 200 iterations).

D. Channel Pruning
To reduce the chip storage and take advantage of parallel

computation, we use structure pruning methods to prune the
channels of models before quantization. Specifically, we make
sure that the preserved channels of each layer can be divisible

by 32 so that the processor can handle a group of channels
in parallel efficiently. Based on this guideline, we modify and
use different channel pruning methods for different models
on various tasks and datasets. We use DCP [16] to prune the
MobileNetV2 and use CURL [17] to prune the ResNet-50 with
their open source code. For Darknet-13 and VGG-16, we use
Network Slimming [15] to pruned it. For ResNetl8-RetinaNet
and U-Net, we use the L2-norm of weight parameters as the
importance metric to pruned it following [14]. Note that when
the pruning rate is high (e.g., 75%), DCP is not suitable to
ResNet-50 because DCP only prunes the middle layer in the
bottleneck structure of residual blocks, leading to an hourglass
structure. In contrast, CURL [17] gets a shape similar to an
opened wallet by pruning every layer in the residual blocks.

IV. AGILELY CUSTOMIZABLE PROCESSORS AND SaCs

Fig. 2 shows the architecture of the hardware accelerator
for our compressed DNN models, while Fig. 3 (a) shows the
architecture of the MAC PEe The weight data is sent to each
MAC PE with systolic dataflow and updated periodically, and
input data flows across the MAC array with vertical systolic
dataflow. The partial sum is first accumulated in the channel
dimension with reduce-and-forward dataflow from left to right,
and then stored to the partial sum buffer before being sent
back to the MAC array to accumulate in the kernel dimensions.

148

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

149

TABLE II
THE Top-l ACCURACY OF COMPRESSED MODELS ON IMAGE

CLASSIFICATION.

Model Dataset #FLOPs {. (%) Ace. (%)
FP32 INT16 INT8

CIFAR-100 0 74.5 74.5 73.9VGG-16 [1] 50.6 72.3 71.7 71.8
0 76.0 75.9 75.7

ResNet-50 ImageNet 72.5 72.7 73.1 72.6
[2] 81.0 71.7 72.1 71.8

90.1 65.1 65.7 65.2
0 71.9 72.7 72.4

MobileNetV2 33.8 71.0 70.8 70.8
ImageNet 45.7 69.2 69.2 68.7[3]

53.4 67.2 65.7 65.5
72.4 59.3 59.2 55.9

TABLE III
THE MAP (IoU=0.50) OF COMPRESSED MODELS ON OBJECTION

DETECTION.

Model Dataset #FLOPs +(%) mAP@0.5 (%)
FP32 INT16 INT8

COCO 0 33.8 34.7 33.5Darknet-13 [4] 27.0 32.3 33.9 32.2
0 53.1 53.4 52.7ResNet18- 38.7 52.4 51.9 52.0RetinaNet PASCAL 40.9 51.9 51.8 51.8[5]

60.4 49.1 51.5 51.1

Finally, when the accumulation finishes, the output data enters
the downscaling unit to reduce the bit-width, and is stored back
to memory with DMA.

Both the MAC unit and the downscaling unit can be config­
ured with flexible bit-width. Fig. 3 (b) shows the MAC kernel
implemented with Bit-Fusion technology [20]. The MAC unit
is controlled by a configure register to select the desired output
with different precision requirements from 4-bit to 16-bit. The
MAC units in the downscaling PE are implemented similarly.

V. EXPERIMENTS

We conducted two sets of experiments, one shows the ef­
fectiveness of our method on common vision tasks (Sec. V-A),
and the other evaluates the effectiveness of different compo­
nents in our method (Sec. V-B). Here, for 8-bit quantization,
we set the bit-widths of accumulator B a and multiplier B m to
16-bit and 12-bit, respectively. For 16-bit quantization, we set
the bit-widths for accumulator B a and multiplier B m to 32­
bit and 12-bit, respectively. "FP32" denotes the full-precision
network, while "INT16", "INT8" represent quantizing the
activations and weight parameters to 16-bit and 8-bit integers,
respectively. "#FLOPs t (%)" denotes the percentage of
floating-point operations that are pruned by channel pruning.

A. Results on Common Vision Tasks

Results on Image Classification. We apply our method to
compress VGG-16 [1], ResNet-50 [2] and MobileNetV2 [3]
and evaluate the performance on CIFAR-100 and ImageNet
dataset. We report the Top-1 accuracy of full-precision models
and quantized models under different pruning rates in Tab. II.
From the results, compared with the full-precision model, 8-bit

TABLE IV
THE MIoU OF COMPRESSED MODELS ON SEMANTIC SEGMENTATION.

Model Dataset #FLOPs +(%) mIoU
FP32 INT16 INT8

U-Net 0 0.591 0.601 0.595

[6] Cityscapes 76.3 0.573 0.582 0.579
88.6 0.550 0.560 0.558

TABLE V
EFFECT OF OVERFLOW-AWARE AND DOWNSCALING-AWARE TRAINING ON

CITYSCAPES. "OWA" DENOTES OVERFLOW-AWARE TRAINING, "DSA"
DENOTES DOWNSCALING-AWARE TRAINING. "No OVERFLOW" INDICATES

NO NUMERICAL OVERFLOW HAPPENS IN THE TEST SET.

Model OWA DSA No Overflow mPA (%) mIoU
x x x 60.61 0.212

U-Net v" x v" 64.41 0.293
[6] x v" x 88.37 0.547

v" v" v" 88.53 0.558

quantized models achieve comparable performance. For exam­
ple, with FLOPs reduction of 90.1 %, our compressed ResNet­
50 with 16-bit and 8-bit quantization even outperforms the
full-precision one. For MobileNetV2 with FLOPs reduction of
33.8%, our obtained 8-bit MobileNetV2 only results in 0.2%
performance drop.

Results on Objection Detection. To evaluate our method
on objection detection, We apply the proposed method to
compress Darknet-13 [4] and ResNet18-RetinaNet [5] on
COC02017 [21] and PASCAL datasets and report the FLOPs
reduction and mAP (IoV=0.50) in Tab. III. From the results,
the 8-bit quantized models achieve comparable performance
with the full-precision one. With FLOPs reduction of 27%, the
16-bit compressed Darknet-13 outperforms the full-precision
one by 1.6%. Besides, the mAP of the 16-bit and 8-bit com­
pressed ResNet18-RetinaNet are higher than the full-precision
one with FLOPs reduction of 60.4%. It further demonstrates
the effectiveness of our method.

Results on Semantic Segmentation. We apply our method
to compress V-Net [6] and report the FLOPs reduction and
mean intersection over union (mIoV) on the Cityscapes dataset
in Tab. IV. From the results, our method achieves a better
performance even for a compact model. For example, with
FLOPs reduction of 88.6%, our method still obtains better
performance than the full-precision model.

B. Ablation Studies

Effect of Overflow-aware and Downscaling-aware. To
investigate the effect of the overflow-aware and downscaling­
aware training, we apply different combinations of training
strategies on compressed 8-bit V-Net and report the mean pixel
accuracy (mPA) and mIoV on Cityscapes in Tab. V. Here, the
baseline that does not use overflow-aware and downscaling­
aware training has a poor performance and suffers from
the overflow issue. Both training strategies can improve the
performance, and we obtain the compressed model with the
best performance when we use two training strategies jointly.

149

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

150

TABLE VI
RESULTS OF U-NET WITH DIFFERENT BIT-WIDTHS FOR THE

ACCUMULATOR ON CITYSCAPES.

TABLE VII
RESULTS OF U-NET WITH DIFFERENT BIT-WIDTHS FOR THE MULTIPLIER

ON CITYSCAPES.

VI. CONCLUSION

In this paper, we have proposed a downscaling and
overflow-aware model compression scheme for efficient vi­
sion processors. Specifically, the proposed downscaling­
aware training simulates the downscaling procedure, and the
overflow-aware training adaptively determines the quantized

C. Characteristics of the Agilely Customizable Processor

In this part, we conduct relevant simulation experiments to
investigate the characteristics of the designed agilely customiz­
able processor in a commercial 55 nm CMOS technology. The
processor infers 8-bit quantized models with 16-bit accumula­
tors and 12-bit multipliers, and infers 16-bit quantized models
with 32-bit accumulators and 12-bit multipliers. According to
the simulation results, the energy consumption measured at the
voltage of IV and 25 degrees Celsius is about 2.57 W. The
energy consumption measured at the voltage of 0.8 V and 25
degrees Celsius is about 1.54 W. The maximum achievable
throughput of the 8-bit fixed-point operation is up to 10.4858
TOPS. At the voltage of 0.8 V and 25 degrees Celsius, the
energy efficiency ratio can reach up to 5.68 TOPS/W.

[1] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," in ICLR, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in CVPR, 2016.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
"Mobilenetv2: Inverted residuals and linear bottlenecks," in CVPR, 2018.

[4] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement,"
arXiv preprint arXiv:1804.02767, 2018.

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for
dense object detection," in ICCV, pp. 2980-2988, 2017.

[6] o. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks
for biomedical image segmentation," in MICCAI, pp. 234-241, Springer,
2015.

[7] B. Jacob, S. Kligys, B. Chen, et ai., "Quantization and training of neural
networks for efficient integer-arithmetic-only inference," in CVPR, 2018.

[8] M. Horowitz, "1.1 computing's energy problem (and what we can do
about it)," in ISSCC, pp. 10-14, IEEE, 2014.

[9] S. Han, X. Liu, H. Mao, J. Pu, et ai., "Eie: Efficient inference
engine on compressed deep neural network," ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 243-254, 2016.

[10] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, "High-performance
fpga-based cnn accelerator with block-floating-point arithmetic," VLSI,
vol. 27, no. 8, pp. 1874-1885, 2019.

[11] H. Xie, Y. Song, L. Cai, and M. Li, "Overflow aware quantization:
Accelerating neural network inference by low-bit multiply-accumulate
operations," in IlCAI, pp. 868-875, 2021.

[12] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, "Towards effective
low-bitwidth convolutional neural networks," in CVPR, 2018.

[13] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, "Learned step size quantization," in ICLR, 2020.

[14] J. FrankIe and M. Carbin, "The lottery ticket hypothesis: Finding sparse,
trainable neural networks," in ICLR, 2018.

[15] Z. Liu, J. Li, Z. Shen, G. Huang, et ai., "Learning efficient convolutional
networks through network slimming," in ICCV, pp. 2736-2744, 2017.

[16] J. Liu, B. Zhuang, Z. Zhuang, Y. Guo, et ai., "Discrimination-aware
network pruning for deep model compression," TPAMI, 2021.

[17] J.-H. Luo and J. Wu, "Neural network pruning with residual-connections
and limited-data," in CVPR, pp. 1458-1467, 2020.

[18] Y. Bengio, N. Leonard, and A. Courville, "Estimating or propagating
gradients through stochastic neurons for conditional computation," arXiv
preprint arXiv:1308.3432, 2013.

[19] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, et ai., "The rocket
chip generator," EECS Department, University of California, Berkeley,
Tech. Rep. UCBIEECS-2016-17, vol. 4, 2016.

[20] H. Sharma, J. Park, N. Suda, L. Lai, et ai., "Bit fusion: Bit-level dynam­
ically composable architecture for accelerating deep neural network," in
ISCA, pp. 764-775, IEEE, 2018.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, et ai., "Microsoft coco:
Common objects in context," in ECCV, pp. 740-755, Springer, 2014.

value range for activations and parameters. In this way, the
models are adjusted to perform with low bit-width multipliers,
and prohibit numerical overflow with low bit-width accumula­
tors as much as possible. We also conducted channel pruning
to restrict the channel number of models for better parallel
computing. Based on this scheme, we have further co-designed
a vision processor and its SoC to demonstrate the proposed
scheme. Experiments on various vision tasks have shown that
our method is able to achieve significant chip area reduction
on vision processors with low bit-width accumulators and
multipliers while preserving performance.

ACKNOWLEDGMENT

This work was partially supported by the Key-Area Re­
search and Development Program of Guangdong Province
(2019BOI0155002, 2018BOI0I07001), National Natural Sci­
ence Foundation of China (NSFC) 62072190.

REFERENCES

32
4343
57.63
0.558

18
2746
39.41
0.559

12
2109
31.20
0.558

8
1519
24.76
0.558

4
865

17.26
0.554

12 14 16 18 20

3
687

16.29
0.530

0.546 0.554 0.558 0.555 0.555

2
543

14.20
0.036

B a 10
mIoU 0.006

Area (j,tID)
Power (j,tW)

mIoU

Effect of Different Bit-widths for the Accumulator. To
evaluate the effect of B a , we report the mIoV of compressed
8-bit V-Net on Cityscapes under different B a in Tab. VI while
using 12-bit multipliers. When the bit-width for the accumu­
lator is bigger than 14, the performance is stable, meaning
that a 14-bit accumulator is sufficient for this compressed
model. However, when the bit-width for the accumulator is
smaller than 12, the performance drops dramatically because
the quantized value range for activations and parameters is too
small, which limits the representation power of the quantized
models.

Effect of Different Bit-widths for the Multiplier. To
investigate the effect of B m , we compare the compressed 8­
bit UNet on Cityscapes under different B m while using 16-bit
accumulators. We report the chip area and the dynamic power
for downscaling procedure, and the mIoV of compressed mod­
els in Tab. VII. When the bit-width for the multiplier becomes
lower, the chip area and the dynamic power for downscaling
process become smaller. However, when the bitwidth of the
multipliers is smaller than 3, the model can not converge.

150

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 22,2023 at 03:09:28 UTC from IEEE Xplore. Restrictions apply.

