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ABSTRACT
Semantic segmentation requires a large amount of densely anno-
tated data for training and may generalize poorly to novel cat-
egories. In real-world applications, we have an urgent need for
few-shot semantic segmentation which aims to empower a model
to handle unseen object categories with limited data. This task is
non-trivial due to several challenges. First, it is difficult to extract
the class-relevant information to handle the novel class as only
a few samples are available. Second, since the image content can
be very complex, the novel class information may be suppressed
by the base categories due to limited data. Third, one may easily
learn promising base classifiers based on a large amount of training
data, but it is non-trivial to exploit the knowledge to train the novel
classifiers. More critically, once a novel classifier is built, the output
probability space will change. How to maintain the base classifiers
and dynamically include the novel classifiers remains an open ques-
tion. To address the above issues, we propose a Dynamic Extension
Network (DENet) in which we dynamically construct and maintain
a classifier for the novel class by leveraging the knowledge from
the base classes and the information from novel data. More impor-
tantly, to overcome the information suppression issue, we design a
Guided Attention Module (GAM), which can be plugged into any
framework to help learn class-relevant features. Last, rather than
directly train the model with limited data, we propose a dynamic
extension training algorithm to predict the weights of novel clas-
sifiers, which is able to exploit the knowledge of base classifiers
by dynamically extending classes during training. The extensive
experiments show that our proposed method achieves state-of-the-
art performance on the PASCAL-5𝑖 and COCO-20𝑖 datasets. The
source code is available at https://github.com/lizhaoliu-Lec/DENet.
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1 INTRODUCTION
Semantic segmentation aims to assign a unique label to each pixel
of an image, which plays an essential role in many vision-based
applications, such as autonomous driving [38, 45], video surveil-
lance [8, 41] and bio-medical image diagnosis [27]. However, it
requires a considerable amount of densely annotated training data
for each class (called base class) [25] to obtain a promising model.
More critically, the model may generalize poorly to novel categories,
for which the amount of pixel-level annotated data may be limited
or very expensive to obtain [1, 47].

To address the novel class issue in real-world applications, the
few-shot semantic segmentation, which seeks to handle unseen
object categories with limited data, has gained great attention
in the computer vision community [11–14, 28, 32, 33]. Thanks
to the representation power of deep neural networks, the last
decade has witnessed large progress in few-shot semantic segmen-
tation [24, 26, 32, 33, 37, 40, 42–44]. In general, these methods
can be divided into two categories: binary segmentation methods
and multi-class segmentation methods. The binary segmentation
methods [24, 26, 32, 42–44] focus on finding a novel class in the
query image given the support set of the corresponding class. These
methods cannot directly handle multiple novel classes. Multi-class
segmentation methods [37, 40] thus have been proposed and they
seek to estimate a classifier for each novel class for the pixel-level
classification. Once a novel classifier is built, the output probability
space will change. How to maintain the base classifiers and dy-
namically include the novel classifiers remains an open question.
Moreover, existing methods may still suffer from two limitations.
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First, it is non-trivial to extract class-relevant features from the
few labeled samples of the novel classes. In fact, images may contain
the pixels of both the base and novel classes, and thus the image
content can be very complex. Due to the limited data, the novel
class information may also be suppressed or interfered by base
classes, which hampers the recognition of novel classes. Therefore,
how to effectively extract features from the few samples of novel
classes and alleviate the interference incurred by base classes is an
important problem.

Second, how to exploit the learned knowledge from the base
classifier to build a promising classifier for a novel class is very
challenging. In fact, one can easily learn promising base classifiers
based on a large amount of training data, but it is hard to exploit the
learned knowledge to train the novel classifiers. Moreover, when
we build a new classifier, the output probability space would change
and model performance may deteriorate. To address this issue, a
lot of efforts have been made to learn a weight generator to predict
the weights of classifiers [13, 34]. In this way, by combining both
the learned base classifiers and the predicted novel classifiers, these
methods are able to recognize both the base and novel classes
simultaneously. However, the base classifiers have to be trained
before the training of weight generator. As a result, the model
cannot be trained in an end-to-end manner, which may hamper the
performance. Thus, how to design an end-to-end learning method
to effectively exploit the knowledge learned by base classifiers and
guide the learning of novel classifiers remains a question.

In this paper, we propose a novel Dynamic Extension Network
(DENet) for few-shot semantic segmentation. To address the first
limitation, we propose a Guided Attention Module (GAM), which
uses the attention mechanism to guide the model to focus on the
class-relevant content of the images. In this way, the model is able
to capture more discriminative features from the given images
and then has better generalization ability for the novel classes. To
address the second limitation, we propose a dynamic extension
training method that dynamically estimates and incorporates novel
classifiers. In this way, we are able to train the model to recognize
both the base and novel classes in an end-to-end manner. Experi-
ments on the PASCAL-5𝑖 and COCO-20𝑖 datasets demonstrate the
superiority of the proposed method over existing methods.

The contributions of this paper are summarized as follows.

• We propose an attention-based few-shot semantic segmenta-
tion method that exploits a Guided Attention Module (GAM)
to estimate the weights of novel classifiers. To extract class-
relevant features, GAM uses the support segmentation mask
to attend the support image and thus effectively alleviates
the interference from other classes (e.g., base classes).
• We propose a dynamic extension training method that dy-
namically estimates and incorporates novel classifiers. In this
way, we are able to train both the base and novel classifiers
in an end-to-end manner.
• Extensive experiments on PASCAL-5𝑖 and COCO-20𝑖 demon-
strate the superiority of the proposed method over existing
methods for both 1-shot and 5-shot semantic segmentation.

2 RELATEDWORK
2.1 Semantic Segmentation
Semantic segmentation has achieved considerable progress in re-
cent years [2–4, 19, 25, 36, 46]. Long et al. [25] first employ deep
CNNs to segmentation and propose Fully Convolutional Network
(FCN) to considerably improve the segmentation result. To cope
with complex scenes, Zhao et al. [46] and Hou et al. [19] adopt
pooling strategies to leverage the global context. DeepLabs [2–4]
combine the atrous convolution with spatial pyramid pooling [46]
and propose an Atrous Spatial Pyramid Pooling (ASPP) module. To
further improve the performance, many methods seek to use neural
architecture search techniques [15, 16, 48] to automatically find
good semantic segmentation models [23]. Compared with these
methods that require abundant labeled data, our approach is able
to recognize novel classes with only a few labeled samples without
any retraining or fine-tuning processes.

2.2 Few-shot Learning
Few-shot learning [9] requires only a few samples to learn a new
concept. The methods that are most related to our work fall into
two groups: meta-learning methods [10, 31] and metric learning
methods [13, 20, 28, 35, 39]. Meta-learning methods exploit differ-
ent tasks [10, 31] sampled from a large amount of base class data
to simulate the inference scenarios. In this way, they can yield
promising generalization performance for novel samples. Metric
learning approaches [20, 35, 39] attempt to learn the feature rep-
resentations where the features of the same object are closer than
different ones. Qi et al. [28] explore the connections between metric
learning and softmax layer, and propose weight imprinting to ex-
tend the classifier. Gidaris and Komodakis [13] propose a two-stage
training algorithm to acquire a base classifier and a weight genera-
tor to dynamically extend the model. Different from this method,
our dynamic extension training algorithm optimizes both the base
classifiers and the weight estimator in an end-to-end manner.

2.3 Few-shot Semantic Segmentation
Most efforts have been made to improve the performance of few-
shot semantic segmentation, including binary segmentation meth-
ods [24, 26, 42–44] and multi-class segmentation methods [37, 40].
Zhang et al. [42] propose a graph attention unit that captures the
correspondence between the support and the query to aid the query
image segmentation. Liu et al. [24] propose a cross-reference net-
work which uses a cross-reference mechanism to generate the
reinforced feature representations by comparing the co-occurrent
features in the support and the query. Wang et al. [40] obtain the
prototypes for different classes from the support set and use them
to recognize the corresponding classes in the query image. Tian
et al. [37] propose to acquire the weights of novel classes with a
closed-form solution for better generalization. Moreover, Rakelly
et al. [30] consider few-shot segmentation under few pixel supervi-
sion setting. However, these methods still suffer from extracting
class-related features from scarce labeled data, and it is difficult for
them to use the base class knowledge to help learn the classifiers
of novel classes.
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Figure 1: Overview of Dynamic Extension Network. Given 𝐵 base classes, we term the novel class as the (𝐵+1)-th class. Given
the support set of the (𝐵+1)-th class, we first extract the feature maps using Backbone CNNs and then feed them into a Guided
AttentionModule (GAM) to estimate the weight ŵ𝐵+1 of the (𝐵+1)-th class with the attentionmechanism. In this sense, GAM is
able to extract class-relevant information. The weights of 𝐵 base classes are preserved by Dynamic Classifier (DC) after trained
on base classes. Last, we add the estimated weight ŵ𝐵+1 into DC to distinguish both the base and novel classes.

3 PROBLEM DEFINITION
Notation. Throughout the paper, we use the following notations.
We use C𝑏 and C𝑛 to denote the set of base classes and the set of
novel classes, respectively. Note that there is no overlap between
these two sets, i.e., C𝑏 ∩ C𝑛 = ∅.

Few-shot semantic segmentation aims to predict the segmenta-
tion mask for the novel (i.e., previously unseen) classes with very
few labeled data. Formally, a few-shot learning problem can be
formulated as an 𝑁 -way 𝐾-shot recognition problem. Specifically,
given 𝑁 novel classes, there are only 𝐾 samples for each class and
we take them as the support set S to predict the segmentation mask
of a query image I𝑞 in the query set Q. The support set is a set of
image-annotation pairs, i.e., S = {(I𝑐,𝑘 ,M𝑐,𝑘 )}, where I𝑐,𝑘 andM𝑐,𝑘

denote the image and the segmentation mask of the 𝑘-th sample in
the 𝑐-th class, with 𝑘 = 1, 2, · · · , 𝐾 and 𝑐 = 1, 2, · · · , 𝑁 . The query
set Q includes the segmentation mask during training and excludes
it during testing. We train the model with the samples from C𝑏 and
evaluate it on the samples from C𝑛 . Formally, a few-shot semantic
segmentation model can be formulated by

M̂𝑞 = 𝑓
(
S, I𝑞

)
, (1)

where M̂𝑞 is the predicted segmentation probability map of I𝑞 and
𝑓 denotes the few-shot segmentation model.

This problem, however, is very challenging to solve. First, it is
non-trivial to effectively extract class-relevant features from only
a few novel samples. Meanwhile, since the image content can be
very complex, the novel class information may be suppressed by
the base categories. Second, when learning the novel classifiers,
it is difficult to exploit the knowledge of base classifiers that are
trained on a large amount of data.

4 DYNAMIC EXTENSION NETWORK
In this paper, we propose a Dynamic Extension Network (DENet)
that accurately estimates the weights of novel classifiers and dy-
namically extends the few-shot semantic segmentation model. We
show the overall scheme of the proposed method in Figure 1.

To effectively extract the information from the few labeled data,
we propose a Guided Attention Module (GAM) that uses the sup-
port segmentation mask to attend the support image. Based on the
attended features, we are able to accurately estimate the weights
for a specific novel class. To exploit the learned knowledge from
base classifiers, we propose a dynamic extension training method
that jointly trains both the base classifiers and the estimated novel
classifiers. In this sense, we are able to train DENet in an end-to-
end manner. More critically, based on the base and novel classifiers,
we are able to recognize both the base and novel classes during
inference. The training algorithm is shown in Algorithm 1.

4.1 Weight Estimation with Guided Attention
Due to the limited data of novel classes, the novel class information
may be suppressed/interfered by the base classes and thus the novel
classifiers become hard to learn. To address this issue, an intuitive
way is to extract the class-relevant information to alleviate the
interference incurred by the base classes. To this end, we propose a
Guided Attention Module (GAM) as the attention-based weight es-
timator 𝐺 (·, ·) that takes both the support image and segmentation
mask as inputs to estimate the weights of novel classifiers.

We first detail the weight estimation process. Given the sup-
port image I𝑠𝑐 of the 𝑐-th novel class, we first use a CNN model
to extract features F𝑠𝑐 . Then, we take both the features F𝑠𝑐 and the
corresponding segmentation mask M𝑠

𝑐 to estimate the weights ŵ𝑐
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Algorithm 1: Dynamic extension training algorithm.
Input: Support set S, query set Q, learning rate 𝜂.

1 Initialize the model parameters 𝜃 for DENet.
2 for each iteration do
3 Obtain

(
I𝑠𝑐 ,M𝑠

𝑐

)
from S and extract features F𝑠𝑐 .

4 Estimate the weights ŵ𝑐 by Eqn. (2).
5 Record the 𝑐-th classifier w′𝑐 ← w𝑐 .
6 Replace the 𝑐-th classifier w𝑐 ← ŵ𝑐 .
7 Obtain

(
I𝑞,M𝑞

)
from Q and extract features F𝑞 .

8 Compute the probability map M̂𝑞 by Eqn. (7).
9 Compute the loss L by Eqn. (8).

10 Update the model by 𝜃 ← 𝜃 − 𝜂∇𝜃L.
11 Restore the 𝑐-th classifier w𝑐 ← w′𝑐 .
12 end

of the considered class by

ŵ𝑐 = 𝐺
(
F𝑠𝑐 ,M

𝑠
𝑐

)
. (2)

As depicted in Figure 1, the operation of GAM can be divided
into three steps. First, given the support feature map F𝑠𝑐 ∈ R𝑑×ℎ×𝑤
and corresponding support maskM𝑠

𝑐 ∈ R1×ℎ×𝑤 , our model fuses F𝑠𝑐
withM𝑠

𝑐 by an element-wise multiplication. In this sense, we obtain
the attention vector g ∈ R𝑑×1×1 using the following formula:

g = 𝜎 (ℎ(Pool(F𝑠𝑐 ⊗M𝑠
𝑐 ))), (3)

where ⊗ denotes the element-wise multiplication, ℎ represents
the convolutional network and 𝜎 denotes the activation function.
Second, to allow our model to focus on class-relevant information
of the features, we suppress the irrelevant features by using the
attention vector g. The function can be defined as

F𝑠𝑐
′
= F𝑠𝑐 ⊙ g, (4)

where ⊙ is the channel-wise multiplication. Finally, we estimate
the weights ŵ𝑐 ∈ R𝑑×1×1 for class 𝑐 by

ŵ𝑐 = Pool(F𝑠𝑐 ′ ⊗M𝑠
𝑐 ), (5)

where ⊗ is the element-wise multiplication.
𝐾-shot Setting. For the 𝐾-shot setting where more than one sam-
ple is available for the new category, we process 𝐾 support samples
of the given category independently to acquire𝐾 estimated weights.
Then, we obtain the final estimated weight for the new class by
taking the average of them. Note that previous methods [42, 43]
may introduce extra parameters or operations for the 𝐾-shot set-
ting. Different from these methods, we only take the average of the
weights estimated from 𝐺 over 𝐾 support images

ŵ𝑐 =
1
𝐾

𝐾∑
𝑘=1

𝐺 (F𝑠
𝑐,𝑘
,M𝑠

𝑐,𝑘
). (6)

4.2 Dynamic Extension Training Algorithm
In this paper, we propose a dynamic extension training method that
jointly trains the base classifiers and the estimated novel classifiers
in an end-to-end manner. In this sense, the proposed method is
able to effectively exploit the knowledge learned from the base
classifiers. We show the training method in Algorithm 1.

Algorithm 2: Support-based Prediction method.
Input: Support set S, query set Q.

1 // Construct the dynamic classifier based on S
2 for 𝑐 = 1, ..., 𝑁 do
3 for 𝑘 = 1, ..., 𝐾 do
4 Obtain (I𝑠

𝑐,𝑘
,M𝑠

𝑐,𝑘
) from S𝑖 and extract features F𝑠

𝑐,𝑘
.

5 end
6 Estimate the weights ŵ𝑐 by Eqn. (6).
7 Extend the dynamic classifier by Eqn. (10).
8 end
9 // Predict the segmentation masks for the data in Q

10 for 𝑖 = 1, · · · , |Q| do
11 Obtain I𝑞

𝑖
from Q and extract features F𝑞

𝑖
.

12 Compute the probability map M̂𝑞

𝑖
by Eqn. (7).

13 end

To learn a good DENet, we build the training method to mimic
the real-world scenario that there is a large amount of training data
of base classes and few data of novel classes. Specifically, at each
iteration, we randomly pick a “fake” novel category from the base
categories. For convenience, we use |C𝑏 | to denote the number of
base classes and |C𝑛 | to denote the number of novel classes. It is
worth noting that the novel classes are the “real” novel ones that do
not come from the set of base classes during inference. In this way,
there are ( |C𝑏 |+|C𝑛 |) classes in total. Assume that the 𝑐-th class
is chosen to be the “fake” novel one, we first estimate the weights
ŵ𝑐 and use it to replace the original weights by w𝑐 ← ŵ𝑐 . Based
on the extracted features F𝑞 of a query image I𝑞 , the probability of
a pixel that is located at the position (𝑖, 𝑗) and belongs to the 𝑐-th
class can be computed by

(M̂𝑞) (𝑖, 𝑗)𝑐 =
exp

(
(F𝑞) (𝑖, 𝑗) ·w𝑐

)∑
𝑙 ∈C𝑏∪C𝑛 exp

(
(F𝑞) (𝑖, 𝑗) ·w𝑙

) , 𝑐 = 1, · · · , |C𝑏 |+|C𝑛 |.

(7)
Based on the predicted probability of each pixel, we minimize the

weighted cross-entropy loss over all pixels of an image to jointly
train the base classifiers and novel classifiers. Due to the imbal-
ance between the base and novel classes, we introduce a weighting
factor 𝜆𝑐 to reflect the importance of the pixels that belong to the
novel classes. Note that we will discuss the effect of different 𝜆 in
Section 6.2. Thus, the training loss of DENet can be written as

L = −
∑
𝑖, 𝑗

∑
𝑐∈C𝑏∪C𝑛

𝜆𝑐 · 1
[
(M𝑞) (𝑖, 𝑗) = 𝑐

]
log(M̂𝑞) (𝑖, 𝑗)𝑐 . (8)

Here, 1[𝐴] is an indicator function, where 1[𝐴] = 1 if𝐴 is true and
1[𝐴] = 0 if 𝐴 is false. The weighting factor 𝜆𝑐 can be computed by

𝜆𝑐 =

{
1 𝑐 ∈ C𝑏
𝜆, 𝑐 ∈ C𝑛 . (9)

Note that we record the replaced classifier before replacing its
weights. In each iteration, after updating the parameters, we restore
the 𝑐-th classifier with the recorded one to continue to learn its
weights.
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4.3 Inference Method
We consider two kinds of inference methods of DENet. First, given a
support set and a query image, we typically apply a Support-based
Predictionmethod to extend the classifier with the support set and
predict the segmentation mask of the query image. Second, when
the query image belongs to the previously encountered novel class,
we are able to further derive a Support-free Prediction method
to directly predict the query segmentation mask without the need
for any support set.
Support-based Prediction. The details are shown in Algorithm 2.
Given a support set S, DENet first extracts the corresponding fea-
ture F𝑠

𝑐,𝑘
for each image and then estimates the weight ŵ𝑐 of novel

classifier 𝑐 based on the extracted features. In this way, we obtain
a dynamic classifier that contains the weights of novel classifier 𝑐 .
After that, we incorporate the estimated classifier into the set of
originally existing classifiersW:

W ←W ∪ {ŵ𝑐 }. (10)

In this sense, we are able to dynamically extend the classifiers and
thus recognize both the base and novel classes during inference.
Support-free Prediction. DENet takes the support set (even with
a single sample) as inputs to estimate the weights of a novel classi-
fier. Once obtaining the novel classifier, we no longer need to predict
a new classifier and we just use the previously estimated one in the
following predictions for different query images belonging to this
class. Since the prediction does not rely on the support set after a
very first prediction, we term this method support-free prediction.
The proposed support-free prediction method does not estimate
the classifier. Thus, the inference can be much more efficient than
support-based methods. We will demonstrate this in Section 6.4.

5 EXPERIMENTS
5.1 Datasets and Evaluation Metrics
Datasets. We evaluate the proposed method on two benchmark
datasets, namely PASCAL-5𝑖 [32] andCOCO-20𝑖 [26]. The PASCAL-
5𝑖 dataset is constructed from PASCAL VOC 2012 [7] that is ex-
tended by SBD [17] annotations. There are 20 categories in PASCAL
VOC in total. These categories are evenly split into 4 folds and each
fold contains 5 classes. We train the model on 3 folds and test the
model on 1 fold in a cross-validation manner. During testing, we
randomly sampled 1000 support-query pairs for evaluation.

The COCO-20𝑖 dataset is constructed from the MS COCO 2014
dataset [22]. There are 80 classes in total, which are split into 4
folds, with each containing 20 classes as in [26]. We train and test
the model with the same protocol as on the PASCAL-5𝑖 dataset.
Evaluation Metrics. For a fair comparison, we follow previous
methods [26, 32] to compute the mean Intersection over Union
(mIoU) as the evaluation metric. For each test fold, mIoU is the
average of the Intersection over Union of different novel classes.
After obtaining themIoU score of the four test folds, we compute the
average of them as the overall performance of the model. We report
the mIoU of each fold and their average score in the experiments.

5.2 Implementation Details
Following [42, 43], we adopt the dilated ResNet-50 [18] and an
ASPP [2] module as the backbone CNNs. Specifically, the layers

after the block3 of ResNet50 are removed and ASPP is applied
directly upon the features from the block3. The ResNet-50 is pre-
trained on ImageNet [5]. All the convolutional operations after the
block3 of ResNet-50 generate features of 256 channels. We do not
train the parameters of ResNet50. The nonlinear function of GAM
is sigmoid. Eventually, the bilinear interpolation is applied to the
output of DENet to produce the segmentation probability map with
the same spatial size as the ground truth. All the experiments are
conducted on PyTorch.

DENet and the re-implemented models are trained under the
1-way 1-shot setting with a batch size of 8. We train the models for
150k and 200k iterations on PASCAL-5𝑖 and COCO-20𝑖 respectively.
During training, we use an SGD optimizer with the momentum of
0.9. The learning rate is set to 0.0025 with the weight decay set to
0.005. The 𝜆 in Eqn. (9) is set to 1.0 by default. We only use random
horizontal flipping for data augmentation. The images used for both
training and testing are resized to 321 × 321.

5.3 Quantitative Comparisons
In this section, we compare DENet with state-of-the-art methods
and compare their quantitative results. We conduct experiments
on 𝑁 -way 𝐾-shot settings as in [32, 40], where 𝑁 = {1, 2} and
𝐾 = {1, 5}. In each 𝑁 -way task, the query image contains at least
1 class from the 𝑁 novel classes for recognition. The quantitative
comparisons on both the PASCAL-5𝑖 and COCO-20𝑖 datasets are
shown Table 1 and Table 2, respectively.
Results on PASCAL-5𝑖 . From Table 1, DENet reaches the highest
mIoU under all {1, 2}-way and {1, 5}-shot settings. In particular,
DENet outperforms CANet [43] by 2.37% under the 1-way 1-shot
setting and 1.86% under the 1-way 5-shot setting respectively. It is
worth noting that DENet under the 1-way 1-shot setting outper-
forms FWB [26] under the 1-way 5-shot setting. These results imply
that DENet has better generalization ability on novel classes than
state-of-the-arts. In the more challenging 2-way settings, although
the number of novel classes presented in one support set increases
(i.e., 𝑁 increases), DENet still achieves state-of-the-art performance.
Results on COCO-20𝑖 . Table 2 reports the comparison results
with state-of-the-arts on COCO-20𝑖 . This is a more challenging
dataset since it has more novel classes than PASCAL-5𝑖 , i.e., 5 v.s.
20. From Table 2, DENet consistently achieves great improvements
under all {1, 2}-way and {1, 5}-shot settings compared with previ-
ous methods, often by a large margin.

5.4 Qualitative Results
We also compare the qualitative results of different methods under
the 1-way setting and the 2-way setting in Figure 2 and Figure 3,
respectively. For fair comparisons, we set 1-shot in all experiments.

From Figure 2 and Figure 3, we draw several conclusions. First,
DENet is able to produce the full mask that contains both the base
classes and novel classes (e.g., the novel class car and the base class
person shown in Figure 2 row 1). This indicates that our model has
effectively preserved the ability to recognize the base classes. In
contrast, the previous methods only separate the novel class from
other classes. Second, the quality of the novel masks produced by
our model is often better than that produced by other methods. In
Figure 2 row 1, our method clearly separates the person and the car.
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Table 1: Performance comparison with state-of-the-art models on the PASCAL-5𝑖 dataset in terms of mIoU (%). The bold num-
ber indicates the best result. “*” denotes our re-implementation. “–” denotes that the results are not reported.

N-Way Model 1-shot 5-shot
fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean

1

OSLSM [32] 33.60 55.30 40.90 33.50 40.80 35.90 58.10 42.70 39.10 43.90
Co-FCN [29] 36.70 50.60 44.90 32.40 41.10 37.50 50.00 44.10 33.90 41.38

PL [6] – – – – 42.70 – – – – 43.70
AMP [33] 41.90 50.20 46.70 34.70 43.40 41.80 55.50 50.30 39.90 46.90
AMP∗ [33] 31.06 44.78 44.51 31.61 37.99 35.60 51.40 50.84 36.84 43.67
SG-One [44] 40.20 58.40 48.40 38.40 46.30 41.90 58.60 48.60 39.40 47.10
PANet [40] 42.30 58.00 51.10 41.20 48.10 51.80 64.60 59.80 46.50 55.70
FWB [26] 51.30 64.49 56.71 52.24 56.19 54.84 67.38 62.16 55.30 59.92
CANet [43] 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10
CANet∗ [43] 56.34 69.12 55.65 49.72 57.71 56.99 70.22 57.40 49.79 58.60
PGNet [42] 56.00 66.90 50.60 50.40 56.00 54.90 67.40 51.80 53.00 56.80
PGNet∗ [42] 52.68 66.45 50.68 49.53 54.84 28.09 65.41 52.08 48.44 48.51
CRNet [24] – – – – 55.70 – – – – 58.80
FSS-1000 [21] – – – – – 50.61 70.29 58.43 55.08 58.60

DENet 55.74 69.69 63.62 51.26 60.08 54.72 70.99 64.51 51.63 60.46

2

PANet [40] – – – – 45.10 – – – – 53.10
CANet* [43] 44.44 49.65 42.06 37.51 43.42 46.74 52.12 44.85 38.42 45.53
PGNet* [42] 39.23 53.11 14.21 36.17 35.68 14.71 43.30 37.88 21.60 29.37
MetaSeg [37] – – – – – – – 43.30 – –

DENet 44.26 61.94 55.74 46.73 52.17 45.53 62.13 58.68 48.14 53.62

Table 2: Performance comparisonwith state-of-the-artmodels on the COCO-20𝑖 dataset in terms ofmIoU (%). The bold number
indicates the best result. “*” denotes our re-implementation. “–” denotes that the results are not reported.

N-way Model 1-shot 5-shot
fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean

1

AMP∗ [33] 25.27 23.15 19.58 21.18 22.30 30.14 28.17 25.83 26.12 27.57
FWB [26] 16.98 17.98 20.96 28.85 21.19 19.13 21.46 23.93 30.08 23.65

CANet∗ [43] 42.21 42.70 37.58 40.88 40.84 44.65 43.01 37.54 42.67 41.97
PGNet∗ [42] 39.54 39.68 33.90 33.49 36.65 42.37 38.87 32.42 36.47 37.53

DENet 42.90 45.78 42.16 40.22 42.77 45.40 44.86 41.57 40.26 43.02

2

CANet* [43] 25.90 25.58 24.47 24.05 24.93 31.15 23.93 26.22 27.31 27.15
PGNet* [42] 23.15 24.51 20.80 19.75 22.05 30.73 23.46 21.22 24.91 25.08
MetaSeg [37] – – – – 33.20 – – – – 37.90

DENet 38.96 39.76 38.21 37.16 38.52 41.15 42.24 40.94 39.16 40.87

However, the other two models produce disorganized boundaries.
Third, DENet well recognizes the objects in query images despite
the fact that the objects of the same category in the support set
and the query image are different in color, size, and perspective
(e.g., the dog and the skateboard in Figure 3). This demonstrates
the effectiveness of DENet in complicated scenarios.

6 FURTHER EXPERIMENTS
6.1 Ablation Studies
We conduct the ablation studies to investigate how different mod-
ules affect the model performance. Specifically, we evaluate DENet

with or without the base classifiers and the GAM. In all experi-
ments, we report the average results of the four test folds on the
more challenging COCO-20𝑖 dataset as shown in Table 3.

First, DENet drops its performance by 3.85% and cannot out-
perform previous methods without the participation of the base
classifiers. This decline indicates that preserving base classifiers
learned by our end-to-end DENet benefits the learning of novel
classes. Second, without GAM, the overall performance of DENet
is decreased by 1.44%. This manifests that GAM can better extract
the task-relevant features to recognize the novel classes. It is worth
noting that DENet achieves better results with fewer parameters.
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Figure 2: Qualitative results of 1-shot 1-way segmentation on the PASCAL-5𝑖 dataset (the first two rows) and the COCO-20𝑖

dataset (the third and fourth rows). Note that “Novel GT”/“Novel Mask” is the ground-truth/prediction mask that contains
only the novel class while the “Full GT”/“Full Mask” includes both base and novel classes.
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Figure 3: Qualitative results of 1-shot 2-way segmentation
on the PASCAL-5𝑖 dataset (the first row) and the COCO-20𝑖

dataset (the second row).

Table 3: Ablation studies of DENet on the COCO-20𝑖 dataset.
“∗” denotes our re-implementation.

Model #Params (M) 1-shot
Base Classifiers GAM mIoU (%)

PGNet* [42] 33.94 – – 36.65
CANet* [43] 34.00 – – 40.84

DENet 28.89 × √
38.92

DENet 28.75
√ × 41.33

DENet 28.89
√ √

42.77

These experiments convincingly demonstrate the effectiveness of
the preserved base classifiers and GAM.

Image Image Novel Mask

C
ar

Support Query DENet
Novel GT

B
ot

tl
e

Figure 4: Failure cases of DENet on the COCO-20𝑖 dataset
(the first row) and the PASCAL-5𝑖 dataset (the second row).

6.2 Effect of 𝜆 in Eqn. (9)
In this experiment, we investigate the effect of the trade-off parame-
ter 𝜆 in our objective function described in Eqn. (9). The experiments
are conducted on COCO-20𝑖 under the 1-way settings. We evaluate
the performance of DENet with 𝜆 = 0.1, 1.0, 5.0, and 10.0 respec-
tively. From Table 4, DENet yields the best result under the 1-shot
setting when 𝜆 = 1.0, while 𝜆 = 5.0 brings the best performance un-
der the 5-shot setting. When 𝜆 = 0.1, the performance considerably
decreases, which demonstrates that it is important and necessary
to sufficiently optimize the weight estimator during training. When
𝜆 = 1.0 or 𝜆 = 5.0, the performance is relatively insensitive in terms
of different 𝜆. When 𝜆 = 10.0, the overall training objective is dom-
inated by the optimization of the weight estimator instead of the
recognition of base classes. This impairs the learning of base class
knowledge and further deteriorates the novel class recognition.
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Table 4: The effect of 𝜆 on the performance of DENet.

𝜆 0.1 1.0 5.0 10.0

mIoU (%) 1-shot 26.67 42.77 42.35 40.94
5-shot 27.09 43.02 44.07 42.64

Table 5: Comparison of inference time. The bold number in-
dicates the best result. “∗” denotes our re-implementation.

Model Support-free Time (second)
1-shot 5-shot

PGNet* [42] × 0.09 0.21
CANet* [43] × 0.11 0.35
FWB* [26] × 0.18 0.48
DENet × 0.09 0.20

DENet
√

0.04 0.04

6.3 Failure Cases of DENet
The failure cases of DENet are shown in Figure 4. We find that the
predicted masks of DENet are sometimes discontinuous, potentially
because the model lacks the global clues of the query images. These
problems are also challenging in the normal semantic segmentation
tasks [19], and become harder in the few-shot setting. Furthermore,
we empirically find that our method may fail to segment very
small objects, e.g., the bottle. The main reason is that it is hard to
learn accurate attention for small objects. As a result, the estimated
classifier may yield inferior performance on some of the classes.

6.4 Comparisons of Inference Time
In this experiment, we analyze the inference time of DENet in terms
of support-based and support-free prediction. We compare DENet
with several support-based methods [26, 42, 43]. The inference
time (in terms of seconds) is tested on an NVIDIA Titan XP GPU
with an input image of size 321 × 321. We take the average of
the inference time over 100 runs. From Table 5, the support-based
version of DENet has the lowest inference time compared with
other considered methods, and the support-free version is even
more efficient. This is a considerable advantage in some real-life
scenarios with strict time constraints.

6.5 More discussions on DENet
Generalization ability to unseen classes. To further demon-
strate the generalization ability of DENet, we take the classes from
PASCAL as the base classes to train the model and evaluate it using
the novel classes from another dataset, i.e., COCO. Specifically, we
directly use the four models trained on each fold of PASCAL-5𝑖 to
perform 1-way 1-shot segmentation on 61 classes of COCO, where
the overlapping classes are excluded. The results are then averaged
across four models. From Table 6, DENet outperforms previous
state-of-the-art methods.
More discussions on GAM. Although the GAM module seems
simple, it is effective and sufficient to learn the weights of novel

Table 6: Experimental results of training on PASCAL and
testing on COCO in terms of mIoU (%).

Model CANet [43] PGNet [42] DENet

mIoU (%) 1-shot 34.07 33.96 34.11
5-shot 35.75 31.37 35.90

Table 7: The effect of the number of convolutional layers in
GAM on COCO-20𝑖 dataset.

#Layers 2 5 10

mIoU (%) 42.77 42.79 42.87

classifiers with two convolutions. First, GAM extracts the class-
relevant information by exploiting a binary support mask w.r.t. a
single class, which is much easier than learning the segmentation
masks withmultiple classes. Second, once we learn a good backbone
CNNs, it is easy for GAM to extract effective information to perform
weight estimation. To verify this, we compare the models with
different numbers of convolutions in GAM. In practice, we do not
observe significant performance improvement when increasing the
number of convolutions from 2 to 10 (See Table 7).
More discussions on Dynamic Classifier.When adding a novel
classifier into the dynamic classifier, the novel classifier may intro-
duce a bias, which, however, is relatively small. We jointly train
the base and “novel” classifiers by our dynamic extending training
algorithm. In this way, the bias can be significantly reduced. To
verify this, we compare the segmentation performance on base
classes using the models with and without the novel classifier on
the PASCAL-5𝑖 dataset. In practice, the novel classifier slightly re-
duces the mIoU score of base classes from 71.19% to 70.43%, which
verifies our statements.

7 CONCLUSION
In this paper, we propose a few-shot semantic segmentationmethod,
called Dynamic Extension Network (DENet), which dynamically
constructs and maintains the classifiers for the novel classes. Specif-
ically, we design a Guided Attention Module (GAM) that takes both
the support segmentation mask and support image to capture the
class-relevant information. To exploit the knowledge learned by
base classifiers, we propose a dynamic extension training method
that estimates and incorporates novel classifiers dynamically. In
this sense, DENet can dynamically extend classes and recognize
both base and novel classes during inference. Extensive experi-
ments on the PASCAL-5𝑖 and COCO-20𝑖 datasets demonstrate the
superiority of our method over the considered methods.
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