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Abstract—We study multi-sensor fusion for 3D semantic seg-
mentation that is important to scene understanding for many
applications, such as autonomous driving and robotics. Existing
fusion-based methods, however, may not achieve promising per-
formance due to the vast difference between the two modalities.
In this work, we investigate a collaborative fusion scheme called
perception-aware multi-sensor fusion (PMF) to effectively exploit
perceptual information from two modalities, namely, appearance
information from RGB images and spatio-depth information from
point clouds. To this end, we project point clouds to the camera
coordinate using perspective projection, and process both inputs
from LiDAR and cameras in 2D space while preventing the in-
formation loss of RGB images. Then, we propose a two-stream
network to extract features from the two modalities, separately. The
extracted features are fused by effective residual-based fusion mod-
ules. Moreover, we introduce additional perception-aware losses
to measure the perceptual difference between the two modalities.
Last, we propose an improved version of PMF, i.e., EPMF, which is
more efficient and effective by optimizing data pre-processing and
network architecture under perspective projection. Specifically, we
propose cross-modal alignment and cropping to obtain tight inputs
and reduce unnecessary computational costs. We then explore
more efficient contextual modules under perspective projection
and fuse the LiDAR features into the camera stream to boost the
performance of the two-stream network. Extensive experiments
on benchmark data sets show the superiority of our method. For
example, on nuScenes test set, our EPMF outperforms the state-of-
the-art method, i.e., RangeFormer, by 0.9% in mIoU.
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I. INTRODUCTION

S EMANTIC scene understanding is a fundamental task
for many applications, such as autonomous driving and

robotics [18], [44], [58], [59]. Specifically, in the scenes of
autonomous driving, it provides fine-grained environmental in-
formation for high-level motion planning and improves the
safety of autonomous cars [3], [20]. One of the important tasks in
semantic scene understanding is semantic segmentation, which
assigns a class label to each data point in the input data, and
helps autonomous cars to better understand the environment.

According to the sensors used by semantic segmentation
methods, recent studies can be divided into three categories:
camera-only methods [2], [9], [10], [45], [73], LiDAR-only
methods [1], [15], [31], [66], [77] and multi-sensor fusion
methods [37], [47], [49], [64], [74]. Camera-only methods have
achieved great progress with the help of a massive amount of
open-access data sets [6], [14], [16]. Since images obtained by
a camera are rich in appearance information (e.g., texture and
color), camera-only methods can provide fine-grained and accu-
rate semantic segmentation results. However, as passive sensors,
cameras are susceptible to changes in lighting conditions and
are thus unreliable [61].1 To address this problem, researchers
conduct semantic segmentation on point clouds from LiDAR.
Compared with camera-only approaches, LiDAR-only methods
are more robust in different light conditions, as LiDAR provides
reliable and accurate spatio-depth information on the physical
world. Unfortunately, LiDAR-only semantic segmentation is
challenging due to the sparse and irregular distribution of point
clouds. In addition, point clouds lack texture and color infor-
mation, resulting in high classification error in the fine-grained
segmentation task of LiDAR-only methods. A straightforward
solution for addressing both drawbacks of camera-only and
LiDAR-only methods is to fuse the multimodal data from both
sensors, i.e., multi-sensor fusion methods. Nevertheless, due
to the large domain gap between RGB cameras and LiDAR,
multi-sensor fusion is still a nontrivial task.

In multi-sensor fusion methods, fusing multimodal data from
different sensors is an important problem. Existing fusion-based
methods [47], [64] mainly lift the dense 2D image features to

1See Section IV-G for more details.
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Fig. 1. Comparisons of spherical projection [50], [66] and perspective projec-
tion. With spherical projection, most of the appearance information from RGB
images is lost. Instead, we preserve the information of images with perspective
projection. To distinguish different classes, we colorize the point clouds using
semantic labels from SemanticKITTI.

the 3D LiDAR coordinates using spherical projection [50] and
conduct feature fusion in the sparse LiDAR domain. However,
these methods suffer from a critical limitation: as the point
clouds are very sparse, most of the appearance information from
the RGB images is missing after un-projecting it to the LiDAR
coordinates. For example, as shown in Fig. 1(c), the car and
motorcycle in the image become distorted with spherical projec-
tion. As a result, existing fusion-based methods have difficulty
capturing the appearance information from the projected RGB
images.

In this paper, we aim to exploit an effective multi-sensor fusion
method. Unlike existing methods [47], [64], we assume and
highlight that the perceptual information from both RGB images
and point clouds, i.e., appearance information from images and
spatio-depth information from point clouds, is important in
fusion-based semantic segmentation. Based on this intuition, we
propose a perception-aware multi-sensor fusion (PMF) scheme
that conducts a collaborative fusion of perceptual information
from two modalities of data in three aspects. First, we propose
perspective projection to project the point clouds to the camera
coordinate system to obtain additional spatio-depth information
for RGB images. Second, we propose a two-stream network
(TSNet) that contains a camera stream and a LiDAR stream to
extract perceptual features from multi-modal sensors separately.
Considering that the information from images is unreliable in an
outdoor environment, we fuse the image features to the LiDAR
stream by effective residual-based fusion (RF) modules, which
are designed to learn the complementary features of the original
LiDAR modules. Third, we propose perception-aware losses
to measure the vast perceptual difference between the two data
modalities and boost the fusion of different perceptual infor-
mation. Specifically, as shown in Fig. 2, the perceptual features
captured by the camera stream and LiDAR stream are different.
Therefore, we use the predictions with higher confidence to
supervise those with lower confidence. Since model efficiency

Fig. 2. Comparisons of the predictions from images and point clouds. Deep
neural networks capture different perceptual information from RGB images and
point clouds. Red indicates predictions with higher scores.

Fig. 3. Comparisons of efficiency and performance of different methods on
SemanticKITTI-FV.

is also an essential factor for real-world applications, we fur-
ther exploit the efficiency of PMF and propose an improved
version, i.e., EPMF.

Our contributions are summarized as follows. First, we pro-
pose a perception-aware multi-sensor fusion (PMF) scheme to
effectively fuse the perceptual information from RGB images
and point clouds. Second, by fusing the spatio-depth informa-
tion from point clouds and appearance information from RGB
images, PMF is able to address segmentation with undesired
light conditions and sparse point clouds. More critically, PMF is
robust in adversarial samples of RGB images by integrating the
information from point clouds. Third, we introduce perception-
aware losses into the network and force the network to capture
the perceptual information from two different-modality sen-
sors. As demonstrated in Fig. 3, on top of PMF, we further
propose EPMF, which reduces the model complexity of PMF
while improving the model performance by a large margin. The
extensive experiments on three benchmark data sets including
SemanticKITTI-FV [3], nuScenes [7], and A2D2 [23], demon-
strate the superior performance of our method. For example,
on nuScenes test set, our EPMF outperforms the state-of-the-
art methods, i.e., SphereFormer [38] and RangeFormer [36]
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by 1.1% and 0.9% in mIoU, respectively, without additional
fine-tuning or test-time augmentation.

This paper extends our prior version [82] from following
aspects. 1) We propose cross-modal alignment and cropping
(CAC) to address the miss-alignment issue of point clouds and
RGB images. 2) We explore the impact of the different resolu-
tions of point clouds and improve the efficiency of our method
without performance degradation. 3) We adopt the proposed
EPMF on more benchmark data sets and show the superior
performance of our method on extremely sparse point clouds. 4)
We provide more ablation studies to investigate the effectiveness
of our method.

II. RELATED WORK

In this section, we revisit the existing literature on 2D and 3D
semantic segmentation, i.e., camera-only methods, LiDAR-only
methods and multi-sensor fusion methods.

Camera-only methods Camera-only semantic segmentation
aims to predict the pixel-wise labels of 2D images. FCN [45] is
a fundamental work in semantic segmentation, which proposes
an end-to-end fully convolutional architecture based on image
classification networks. In addition to FCN, recent works have
achieved significant improvements via exploring multi-scale in-
formation [9], [40], [78], dilated convolution [10], [48], [65], and
attention mechanisms [32], [73]. More recently, transformer-
based methods have been proposed for robust and accurate
segmentation [11], [68]. Specifically, SegFormer [68] designs
a positional-encoding-free and hierarchical transformer en-
coder that generates both high-resolution fine features and low-
resolution coarse features. Moreover, it proposes a lightweight
All-MLP decoder to aggregate the multiscale features for robust
semantic segmentation. Mask2Former [11] proposes a universal
architecture to address any image segmentation tasks, including
panoptic, instance, or semantic segmentation. Although these
methods show strong robustness to the corruptions and pertur-
bations in autonomous driving scenes, their performance under
poor lighting conditions (i.e., at night-time) is unsatisfactory
compared to LiDAR-based methods.

LiDAR-only methods To address the drawbacks of cameras,
LiDAR is an important sensor on an autonomous car, as it is
robust in more complex scenes. According to the preprocessing
pipeline, existing methods for point clouds mainly contain two
categories, including direct methods [31], [55], [56], [81] and
projection-based methods [15], [66], [67], [69].

Direct methods perform semantic segmentation by processing
the raw 3D point clouds directly. PointNet [55] is a pioneering
work in this category that extracts point cloud features by multi-
layer perception. A subsequent extension, i.e., PointNet++ [56],
further aggregates a multi-scale sampling mechanism to aggre-
gate global and local features. However, these methods do not
consider the varying sparsity of point clouds in outdoor scenes.
Cylinder3D [81] addresses this issue by using 3D cylindrical
partitions and asymmetrical 3D convolutional networks. Sphere-
Former [38] directly aggregates information from dense close
points to sparse distant ones through radial window partitions
and proposes dynamic feature selection to select local neighbor

features or radial contextual features. However, direct methods
have a high computational complexity, which limits their appli-
cability in autonomous driving. PVKD [30] transfers both point-
level and voxel-level hidden knowledge from a large LiDAR
semantic segmentation model to a slim network to achieve model
compression. WaffleIron [54] uses standard MLPs and dense 2D
convolutions to build a 3D backbone for point cloud semantic
segmentation, which does not rely on sparse 3D convolution.
In addition, one can easily improve the efficiency of networks
by existing neural architecture search [8], [26], [52] and model
compression techniques [27], [43], [71].

Projection-based methods are more efficient because they
convert 3D point clouds to a 2D grid. In projection-based
methods, researchers focus on exploiting effective projection
methods, such as spherical projection [50], [66] and bird’s-eye
projection [77]. Such 2D representations allow researchers to
investigate efficient network architectures based on existing 2D
convolutional networks [1], [15], [25]. AMVNet [42] utilizes
the late fusion to combine the advantages of both the range view
and bird’s-eye view networks. RPVNet [70] proposes a range-
point-voxel fusion network to synergize all the three view’s rep-
resentations to alleviate the above problem. RangeFormer [36]
formulates the segmentation of range view grids as a seq2seq
problem and adopts several standard Transformer blocks to
capture the rich contextual information, then uses the MLP heads
to decode the multi-scale features. Unlike uni-modal methods,
we focus on fusing information from both the camera and LiDAR
to achieve accurate and robust 3D semantic segmentation for
autonomous driving.

Multi-sensor fusion methods To leverage the benefits of both
camera and LiDAR, recent work has attempted to fuse informa-
tion from two complementary sensors to improve the accuracy
and robustness of the 3D semantic segmentation algorithm [37],
[47], [49], [64]. RGBAL [47] converts RGB images to a polar-
grid mapping representation and designs early and mid-level
fusion strategies. PointPainting [64] obtains the segmentation
results of images and projects them to the LiDAR space by
using bird’s-eye projection [77] or spherical projection [50]. The
projected segmentation scores are concatenated with the original
point cloud features to improve the performance of LiDAR
networks. 2DPASS [72] enhances the representation learning
of 3D semantic segmentation network by distilling multi-modal
knowledge to single point cloud modality. In this way, 2DPASS
can use LiDAR-only input in test-time. However, the model
performance is unsatisfactory under the scene with sparser point
clouds (e.g., A2D2 with 16-beam LiDARs). In contrast, our
EPMF can achieve promising performance by fusing 2D images
and 3D point clouds during inference. Besides, unlike existing
methods that perform feature fusion in the LiDAR domain,
PMF [82] exploits a collaborative fusion of multimodal data
in camera coordinates. In this work, we further extend PMF to
improve its efficiency and performance.

III. PROPOSED METHOD

In this work, we propose an efficient perception-aware multi-
sensor fusion (EPMF) scheme to perform an effective fusion of
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Fig. 4. Illustration of the training and inference schemes of EPMF. EPMF consists of three components: (1) perspective projection with cross-modal alignment
and crop; (2) a two-stream network (TSNet) with feature fusion modules; and (3) perception-aware losses Lper ,̃Lper w.r.t. the camera stream and the LiDAR
stream. We first project the point clouds to the camera coordinate with perspective projection and learn the features from both the RGB images and point clouds
using TSNet. The image features are fused into the LiDAR stream network by fusion modules. In the training procedure, we use perception-aware losses to help the
network focus on the perceptual features of both images and point clouds. In the inference procedure, we apply dense-to-sparse mapping to obtain 3D segmentation
results of point clouds.

the perceptual information from both RGB images and point
clouds. Specifically, as shown in Fig. 4, EPMF contains three
components: (1) perspective projection with cross-modal align-
ment and cropping; (2) a two-stream network (TSNet) with
residual-based fusion modules; (3) perception-aware losses. The
general scheme of EPMF is shown in Algorithm 1. We first
project the point clouds to the camera coordinate system by
using perspective projection. Then, we use a two-stream network
that contains a camera stream and a LiDAR stream to extract
perceptual features from the two modalities, separately. The
features from the camera stream are fused into the LiDAR
stream by residual-based fusion modules. Finally, we introduce
perception-aware losses into the optimization of the network.

A. Pipeline of Data Pre-Processing

Existing methods [47], [64] mainly project images to the
LiDAR coordinate system using spherical projection. However,
due to the sparse nature of point clouds, most of the appearance
information from the images is lost with spherical projection (see
Fig. 1). To address this issue, we propose perspective projection
to project the sparse point clouds to the camera coordinate
system.

Formulation of perspective projection. Let {P,X,y} be one
of the training samples from a given data set, where P ∈ R4×N

indicates a point cloud from LiDAR and N denotes the number
of points. Each point Pi in point cloud P consists of 3D coor-
dinates (x, y, z) and a reflectance value (r). Let X ∈ R3×H×W

be an image from an RGB camera, where H and W represent
the height and width of the image, respectively. y ∈ RN is the
set of semantic labels for point cloud P.

In perspective projection, we aim to project the point cloud
P from LiDAR coordinate to the camera coordinate to obtain
the 2D LiDAR features X̃ ∈ RC×H×W . Here, C indicates the
number of channels w.r.t. the projected point cloud. Follow-
ing [19], we obtain Pi = (x, y, z, 1)� by appending a fourth
column to Pi and compute the projected point P̃i = (x̃, ỹ, z̃)�

in the camera coordinates by

P̃i = TRPi, (1)

where T ∈ R3×4 is the projection matrix from LiDAR coordi-
nates to camera coordinates. R ∈ R4×4 is expanded from the
rectifying rotation matrix R(0) ∈ R3×3 by appending a fourth
zero row and column and setting R(4, 4) = 1. The calibration
parameters T and R(0) can be obtained by the approach in [21].
Subsequently, the corresponding pixel (h,w) in the projected
image X̃ w.r.t. the point Pi is computed by h = x̃/z̃ and
w = ỹ/z̃.

Cross-modal alignment and cropping. As shown in Fig. 4(a),
since we only focus on the segmentation of point clouds, directly
projecting point clouds to the view of cameras leads to unnec-
essary computational costs. To address this issue, we introduce
cross-modal alignment and cropping (CAC). First, we align the
RGB image and the projected point clouds to find the overlap
of the multi-modal inputs. Then, we crop both RGB images
and projected point clouds to obtain compact inputs: For RGB
images, we only keep the area that contains point clouds. For the
projected point clouds, as the area outside the horizontal field
of view (FOV) of the camera is covered by other cameras, we
only keep the points within the horizontal FOV of the camera.
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Algorithm 1: General Scheme of EPMF.

Input:Training data {P,X,y}, TSNet with submodels
M, M̃ , hyperparameters τ, λ, γ.
1: while not convergent do
2: Project the point clouds P by using perspective

projection to obtain X̃.
3: Use {X̃,X} as the inputs of TSNet and compute the

output probabilities {Õ,O} with (2).
4: Compute the perceptual confidence C̃ and C.
5: Construct perception-aware losses to measure the

perceptual difference with (7) and (9).
6: Update M̃ and M by minimizing the objective in (17).
7: end while

In the case that the LiDAR sensor has a larger vertical FOV, we
can keep the point clouds outside the image.2

After applying CAC, we compute the features of the projected
point clouds. Because the point cloud is very sparse, each pixel
in the projected X̃ may not have a corresponding point p.
Therefore, we first initialize all pixels in X̃ to 0. Following [15],
[50], we compute 5-channel LiDAR features, i.e., (d, x, y, z, r),
for each pixel (h,w) in the projected 2D image X̃, where
d =

√
x2 + y2 + z2 represents the range value of each point.

Thus, we set the number of channels C to 5 in this work.

B. Architecture Design of EPMF

As images and point clouds are different-modality data, it
is difficult to handle both types of information from the two
modalities by using a single network [37]. Motivated by [17],
[60], we propose a two-stream network (TSNet) that contains a
camera stream and a LiDAR stream to process the features from
camera and LiDAR, separately, as illustrated in Fig. 4. In this
way, we can use the network architectures designed for images
and point clouds as the backbones of each stream in TSNet.

Formulation of Two Stream Network. Let M̃ and M be the
LiDAR stream and the camera stream in TSNet, respectively.
Let Õ ∈ RS×H×W and O ∈ RS×H×W be the output proba-
bilities w.r.t. each network, where S indicates the number of
semantic classes. The outputs of TSNet are computed by⎧⎨⎩O = M(X),

Õ = M̃
(
X̃
)
.

(2)

Design of Residual-based Fusion Module. Since the features
of images contain many details of objects, we then introduce
a residual-based fusion module, as illustrated in Fig. 5, to
fuse the image features to the LiDAR stream.3 Let {Fl ∈
RCl×Hl×Wl}Ll=1 be a set of image features from the camera
stream, where l indicates the layer in which we obtain the
features. Cl indicates the number of channels of the l-th layer
in the camera stream. Hl and Wl indicate the height and

2More discussions of CAC can be found in Seciton V-C
3We discuss different designs of fusion modules in Section II of the supple-

mentary material of [82]

Fig. 5. Illustration of the residual-based fusion (RF) module. RF fuses features
from both the camera and LiDAR to generate the complementary information
of the original LiDAR features.

width of the feature maps from the l-th layer, respectively. Let

{F̃l ∈ R
˜Cl×Hl×Wl}Ll=1 be the features from the LiDAR stream,

where C̃l indicates the number of channels of the l-th layer in the
LiDAR stream. To obtain the fused features, we first concatenate
the features from each network and use a convolutional layer to
reduce the number of channels of the fused features. The fused
features Ffuse

l ∈ R
˜Cl×Hl×Wl are computed by

Ffuse
l = fl

([
F̃l;Fl

])
, (3)

where [·; ·] indicates the concatenation operation. fl(·) is the
convolution operation w.r.t. the l-th fusion module.

Considering that the camera is easily affected by different
lighting and weather conditions, the information from RGB im-
ages is not reliable in an outdoor environment. We use the fused
features as the complement of the original LiDAR features and
design the fusion module based on the residual structure [28].
Incorporating with the attention module [5], the output features

Fout
l ∈ R

˜Cl×Hl×Wl of the fusion module are computed by

Fout
l = F̃l + σ

(
gl

(
Ffuse

l

))
� Ffuse

l , (4)

where σ(x) = 1/(1 + e−x) indicates sigmoid function. gl(·)
indicates convolution operation in the attention module w.r.t.
the l-th fusion module. � indicates element-wise multiplication
operation.

C. Construction of Perception-Aware Loss

The construction of perception-aware loss is very important in
our method. As demonstrated in Fig. 2, because the point clouds
are very sparse, the LiDAR stream network learns only the local
features of points while ignoring the shape of objects. In contrast,
the camera stream can easily capture the shape and texture
of objects from dense images. In other words, the perceptual
features captured by the camera stream and LiDAR stream are
different. With this intuition, we introduce a perception-aware
loss to make the fusion network focus on the perceptual features
from the camera and LiDAR.

To measure the perceptual confidence of the predictions w.r.t.
the LiDAR stream, we first compute the entropy map Ẽ ∈
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RH×W by

Ẽh,w = − 1

logS

S∑
s=1

Õs,h,w log
(
Õs,h,w

)
. (5)

Following [57], we use logS to normalize the entropy to (0,1].
Then, the perceptual confidence map C̃ w.r.t. the LiDAR
stream is computed by C̃ = 1− Ẽ. For the camera stream, the
confidence map is computed by C = 1−E.

Note that not all information from the camera stream is useful.
For example, the camera stream is confident inside objects but
may make mistakes at the boundary of the objects. In addition,
the predictions with lower confidence scores are more likely to
be wrong. Incorporating a confidence threshold, we measure the
importance of perceptual information from the camera stream
by

Ω̃h,w =

{
max

(
Ch,w − C̃h,w, 0

)
, if Ch,w > τ,

0, otherwise.
(6)

Here τ indicates the confidence threshold.
Inspired by [29], [33], [76], to learn the perceptual information

from the camera stream, we construct the perception-aware
loss w.r.t. the LiDAR stream by

L̃per =
1

Q

H∑
h=1

W∑
w=1

Ω̃h,wDKL

(
Õ:,h,w||O:,h,w

)
, (7)

where Q = H ·W and DKL(·||·) indicates the Kullback-
Leibler divergence [29].

For the camera stream, the importance of information from
LiDAR stream is computed by

Ωh,w =

{
max

(
C̃h,w −Ch,w, 0

)
, if C̃h,w > τ,

0, otherwise.
(8)

The perception-aware loss w.r.t. the camera stream is

Lper =
1

Q

H∑
h=1

W∑
w=1

Ωh,wDKL

(
O:,h,w||Õ:,h,w

)
. (9)

D. Objective Functions

In addition to the perception-aware loss, we also use multi-
class focal loss [41] and Lovász-softmax loss [4], which are
commonly used in existing segmentation work [15], [81], to
train the two stream network.

Let Y ∈ RH×W be the projected labels in the camera coordi-
nates. H and W indicate the height and width, respectively. For
each pointPi, we project the 3D coordinates (x, y, z) to the pixel
(h,w) in the camera coordinate system by using perspective
projection. Then, we initialize all pixels in Y by 0 and compute
the projected labels in Y by

Yh,w := yi. (10)

The multi-class focal loss w.r.t. the LiDAR stream is defined
as

L̃foc =
1

K

S∑
s=1

H∑
h=1

W∑
w=1

αs1{Yh,w = s}FL
(
Õs,h,w

)
, (11)

where FL(p) = −(1− p)2 log(p) denotes the focal-loss func-
tion. αs denotes the weights w.r.t. the s-th class. K =∑S

s=1

∑H
h=1

∑W
w=1 1{Yh,w = s} indicates the number of

available labels. 1{·} indicates the indicator function. Then, the
multi-class focal loss w.r.t. the camera stream is

Lfoc =
1

K

S∑
s=1

H∑
h=1

W∑
w=1

1{Yh,w = s}FL(Os,h,w), (12)

The Lovász-softmax loss w.r.t. the LiDAR stream is

L̃lov =
1

S

S∑
s=1

ΔJs
(m̃(s)) , (13)

where

m̃i(s) =

{
1− Õs,h,w if s = Yh,w,

Õs,h,w otherwise.
(14)

ΔJs
indicates the Lovász extension of the Jaccard index for class

s. Here, (h,w) is obtained from the 3D coordinates (x, y, z) of
Pi by using perspective projection. m̃(s) ∈ [0, 1]N indicates
the vector of errors. The Lovász-softmax loss w.r.t. the camera
stream is defined as

Llov =
1

S

S∑
s=1

ΔJs
(m(s)), (15)

where

mi(s) =

{
1−Os,h,w if s = Yh,w,

Os,h,w otherwise.
(16)

By considering the objective functions of both LiDAR stream
and camera stream, we formulate the objective function of the
proposed two-stream network as

L = L̃foc + Lfoc + λ̃L̃lov + λLlov + γ̃L̃per + γLper, (17)

where λ, λ̃, γ and γ̃ indicate the hyper-parameters that balance
different losses.

E. Pipeline of Post-Processing

With the proposed perception-aware losses, PMF generates
dense segmentation results with information from RGB images
and point clouds. We then obtain the sparse prediction from the
dense results. Let Õ ∈ RS×H×W be the output probabilities of
the LiDAR stream. S indicates the number of classes. H and W
indicate the height and width of the predictions, respectively. Let
Ŷ ∈ RH×W be the dense predictions from the LiDAR stream.
Then, the dense predictions are computed by

Ŷh,w = argmax
s

Õs,h,w. (18)

Let ŷ ∈ RN be the sparse predictions of point cloud P. As
shown in Fig. 6, for each point Pi, we first project the 3D
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Fig. 6. Illustration of the pipeline to obtain the sparse segmentation from the
dense prediction results.̃X indicates the projected point cloud.̂Y and̂y indicate
the dense predictions and sparse predictions, respectively. For each pointPi, we
first compute the corresponding pixel (h,w) in the camera coordinate system

by perspective projection. Second, we get the dense segmentation̂ Y from the
prediction results of PMF. Last, we obtain the corresponding sparse prediction
ŷi w.r.t. the point Pi from the dense segmentation̂ Yh,w .

coordinates (x, y, z) to the camera coordinate system by using
perspective projection and compute the corresponding pixel
(h,w) in the projected image. Then the semantic prediction
ŷi w.r.t. the point Pi is computed by

ŷi := Ŷh,w. (19)

Note that for the point cloud with multi-camera views, e.g.,
nuScenes, there are overlaps between different camera views.
To address this issue, we conduct inference for each camera
view and merge the results by assigning the predictions with
the highest confidence scores to the points in the overlaps of
different views.

F. Techniques to Improve Efficiency and Effectiveness

On top of the two-stream network designed in [82], we further
explore the techniques to improve the efficiency and effective-
ness of the fusion network.4

Dropping decoder of camera stream. By introducing the
perception-aware loss, the knowledge of the camera stream is
distilled into the LiDAR stream. Therefore, we only use the
predictions of LiDAR stream while dropping the results of the
camera stream during inference. In this sense, we can also drop
the decoder of the camera stream to speed up inference.

Improved contextual module. In [15], Cortinhal et al. have
designed the contextual module that improves the ability of
SalsaNet [1] for comprehending global contextual information.
However, the proposed contextual module is explored under
spherical projection and may be ineffective with perspective
projection. In our experiments, we find that the high resolution of
the projected point cloud feature is unnecessary due to the sparse
nature of point clouds. Therefore, we insert extra down-sampling
operation into the contextual module of LiDAR stream to reduce
the resolution of point cloud features and improve the efficiency
of LiDAR stream. Moreover, to reduce the impact of the sparse

4We study the effect of the proposed techniques in Section V-C

TABLE I
COMPARISONS OF THE NUMBER OF POINTS OF SEMANTICKITTI AND

SEMANTICKITTI-FV

issue of projected point clouds, we replace the convolutional
layers in the contextual modules of LiDAR stream with sparse
invariant convolutional layers [63].

Fusing high-level LiDAR features. In the two-stream network,
the camera stream generates predictions with RGB images only,
which, however, results in the unsatisfactory segmentation per-
formance of the camera stream and may limit in performance
of the fusion network. To address this issue, we further fuse
the high-level features from the last stage of the LiDAR stream
backbone into the camera stream by a concatenate operation.
In this way, we improve the performance of the camera stream
without introducing extra computational costs and thus boost
the effectiveness of the perception-aware loss.

IV. EXPERIMENTS

In this section, we first compare EPMF with the state-of-
the-art methods on the benchmark data sets. Then, we provide
distance-based evaluation and qualitative results of our methods.
Last, we conduct experiments to evaluate the efficiency of our
method.

We organize the experiments as follows. 1) We introduce the
benchmark data sets and evaluation metrics in Section IV-A.
2) We provide the implementation details of our method in
Section IV-B. 3) We evaluate the performance of our method on
several benchmark data sets in Section IV-C. 4) We investigate
the performance of our method under different distances in
Section IV-D. 5) We discuss the efficiency of the proposed
method in Section IV-E. 6) We show the qualitative results in
Section IV-F. 7) We study the robustness of the proposed method
on adversarial samples in Section IV-G.

A. Data Sets and Evaluation Metrics

1) Data Sets: We empirically evaluate our method on sev-
eral benchmark data sets, including SemanticKITTI-FV [3],
nuScenes [7], and A2D2 [23].

SemanticKITTI is a large-scale data set based on the KITTI
Odometry Benchmark [20], providing 43,000 scans with point-
wise semantic annotation, where 21,000 scans (sequence 00-10)
are available for training and validation. The data set has 19
semantic classes for the evaluation of semantic benchmarks.
The point clouds are collected using a Velodyne HDL-64E
sensor, which has 64 beams vertically. Since SemanticKITTI
provides only the images of the front-view camera, we project
the point clouds to a perspective view and keep only the avail-
able points on the images to build a subset of SemanticKITTI,
namely, SemanticKITTI-FV. The comparisons between Se-
manticKITTI and SemanticKITTI-FV are shown in Tables I
and II. SemanticKITTI-FV has only 15.93% data for training
compared with the full SemanticKITTI data set.
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TABLE II
COMPARISONS OF THE NUMBER OF VALID LABELS OF SEMANTICKITTI AND

SEMANTICKITTI-FV

nuScenes contains 1,000 driving scenes with different weather
and light conditions. The scenes are split into 28,130 training
frames and 6,019 validation frames, which are collected with
a Velodyne HDL-32E sensor. Unlike SemanticKITTI, which
provides only the images of the front-view camera, nuScenes
has 6 cameras for different views of LiDAR.

A2D2 provides 38-class semantic segmentation images and
point cloud labels for 41,277 non-sequential frames, which are
collected with six cameras and five Velodyne VLP-16 sensors.
Following [77], we split 22,408 scans for training, 2,274 for vali-
dation, and 13,264 for testing, respectively. Similar to nuScenes,
the sensor suite of A2D2 provides full 360◦ coverage. However,
the camera and LiDAR sensor orientations are optimized manu-
ally to minimize the blind spot around the vehicle and maximize
camera and LiDAR field of view overlap, which makes A2D2
lack horizontal scan lines.

2) Evaluation Metrics: To evaluate the performance of our
method, we use the mean Intersection over Union (mIoU) as the
evaluation metric following the official guidance in [3], [7]. To
class s, the respective intersection over union IoUs is defined by

IoUs =
|Ps ∩ Gs|
|Ps ∪ Gs| , (20)

where Ps is the set of point with a class prediction s, Gs is the
set of label for class s, and | · | represents the cardinality of the
set. Then, the mIoU is formulated as mIoU = 1

S

∑S
s=1 IoUs.

B. Implementation Details

We implement the proposed method in PyTorch [53], and
use ResNet-34 [28] and SalsaNext [15] as the backbones of the
camera stream and LiDAR stream, respectively. Because we pro-
cess the point clouds in the camera coordinates, we incorporate
ASPP [9] into the LiDAR stream network to adjust the receptive
field adaptively. To leverage the benefits of existing image
classification models, we initialize the parameters of ResNet-34
with the pre-trained ImageNet models from [53]. We also adopt
hybrid optimization methods [75] to train the networks w.r.t.
different modalities, i.e., SGD with Nesterov [51] for the camera
stream and Adam [35] for the LiDAR stream. We train the
networks for 50 epochs with a batch size of 8 on SemanticKITTI.
On nuScenes and A2D2, the batch size is 24 with 150 epochs
for training as the point clouds of these data sets are more
sparse. The learning rate starts at 0.001 and decays to 0 with a
cosine policy [46]. We tune the hyper-parameters of the objective
function in (17) using the weighting strategy proposed in [34].
We set the confidence threshold τ to 0.7 following [82].5To
prevent over-fitting, a series of data augmentation strategies

5The ablation study of τ is in the supplementary materials of [82].

are used, including random horizontal flipping, random scaling,
color jitter, 2D random rotation, and random cropping.

C. Comparisons on Benchmark Data Sets

1) Results on SemanticKITTI-FV: To evaluate our method on
SemanticKITTI-FV, we compare EPMF with several state-of-
the-art LiDAR-only methods including SalsaNext [15], Cylin-
der3D [81], 2DPASS [72], etc. Following [15], [33], [81], we
use sequence 08 for validation. The remaining sequences (00-07
and 09-10) are used as the training set. We evaluate the release
models of the state-of-the-art LiDAR-only methods on our data
set. Because SPVNAS [62] did not release its best model, we
report the result of the best-released model (with 65G MACs).
In addition, we re-implement two fusion-based methods, i.e.,
RGBAL [47] and PointPainting [64] on our data set. To further
understand the effectiveness of our proposed fusion strategies,
we construct a uni-modal baseline, which uses the same net-
work architecture of LiDAR stream of the proposed two-stream
network. Note that we do not use test time augmentation (TTA)
during evaluation as this technique is time-consuming and can-
not be adopted to real applications on the car.

From Table III, EPMF outperfoms the uni-modal base-
line by 7.3% in mIoU. Compared with PMF, our EPMF
also achieves 2.0% improvements in mIoU. However, EPMF
performs slightly worse than the pre-trained model of
2DPASS [72] on SemanticKITTI-FV. Note that our EPMF
is trained on SemanticKITTI-FV with only 16.03% points of
SemanticKITTI. For fair comparisons, we also train 2DPASS
using the officially released code and evaluate the model
on SemanticKITTI-FV. In this case, our EPMF outperforms
2DPASS by 4.1% in mIoU.

2) Results on Nuscenes: Following [81], to evaluate our
method on more complex scenes, we compare EPMF with the
state-of-the-art methods on the nuScenes LiDAR-seg validation
set. The experimental results are shown in Table IV. Note
that the point clouds of nuScenes are sparser than those of
SemanticKITTI (35 k points/frame versus 125 k points/frame).
Thus, it is more challenging for 3D segmentation tasks. In this
case, EPMF achieves the best performance on nuScenes valida-
tion set. Specifically, EPMF outperforms the best LiDAR-only
method, i.e., SphereFormer, by 2.2% in mIoU. Compared with
PMF, our EPMF achieves 3.7% improvements in mIoU.

In addition, we further provide the results on nuScenes test
set. Different from the results on the nuScenes validation set,
existing methods always use additional techniques, including
test-time augmentation or fine-tuning with class re-sampling that
improves performance on rare classes, to pursue better results on
the leaderboard. Unlike existing methods, we directly evaluate
our model on the test set without additional techniques. For fair
comparisons, we also evaluate the performance of the released
models of SphereFormer without TTA or fine-tuning. As shown
in Table V, our EPMF outperforms SphereFormer [38] by 1.1%
in mIoU under the same evaluation settings. Compared with
PMF, our EPMF consistently achieves 3.7% improvements in
mIoU on nuScenes test set. These results are consistent with our
expectations. Since EPMF incorporates RGB images, our fusion
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TABLE III
COMPARISONS ON SEMANTICKITTI-FV VALIDATION SET

TABLE IV
COMPARISONS ON THE NUSCENES VALIDATION SET

TABLE V
COMPARISONS ON THE NUSCENES TEST SET
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Fig. 7. Distance-based evaluation on SemanticKITTI-FV, nuScenes and A2D2. As the distance increases, the point cloud becomes sparser.

TABLE VI
COMPARISONS ON A2D2 TEST SET - PART1

TABLE VII
COMPARISONS ON A2D2 TEST SET - PART2

strategy is capable of addressing such challenging segmentation
under extremely sparse point clouds.

3) Results on A2D2: To further evaluate the performance of
our method on more sparse and irregular point clouds, we con-
duct experiments on A2D2 and compare our EPMF to existing
methods. For a fair comparison, we select the model with the
best validation performance and report the evaluation results
on the test set. Note that both Cylinder3D and 2DPASS did not
report the results on A2D2 test set, we also train Cylinder3D and
2DPASS using the officially released code and report the results
on the test set. As shown in Tables VI and VII, both our PMF and
EPMF outperform the LiDAR-only method by a large margin.
Specifically, our EPMF outperforms Cylinder3D by 20.8% in
mIoU. Compared to uni-modal baseline, EPMF achieves 23.2%
improvements in mIoU, which indicates the effectiveness of our

proposed fusion strategies. Moreover, our EPMF outperforms
PMF consistently, with 3.2% improvement in mIoU.

D. Distance-Based Evaluation

In 3D LiDAR perception, the point cloud becomes sparser
with the increase of perception distance. As long-range percep-
tion is important to the safety of autonomous cars, we further
conduct a distance evaluation on the benchmark datasets and
investigate the performance of our method under different dis-
tances. As shown in Fig. 7, both PMF and EPMF outperform the
uni-modal baseline by a large margin under different distances
on nuScenes and A2D2, which indicates that our fusion strategy
can incorporate the information from RGB images effectively.
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Fig. 8. Qualitative results on SemanticKITTI-FV. The red dashed circle indicates the difference between the results of PMF and the baseline.

TABLE VIII
COMPARISONS OF THE NUMBER OF CLASSES AT DIFFERENT DISTANCES

TABLE IX
PERCENTAGE OF POINT CLOUD DISTRIBUTION (%) AT DIFFERENT DISTANCES

We also notice that EPMF cannot consistently outperform
PMF or the uni-modal baseline on SemanticKITTI-FV. We
argue that this phenomenon is mainly caused by the following
reasons. First, we compare the number of classes at different
distances w.r.t. the validation set of SemanticKITTI-FV and
nuScenes, as well as the test set of A2D2. From Table VIII,
the number of classes on SemanticKITTI-FV decreases at long
distances. Since it is difficult for our method to beat the base-
line on all the semantic classes of SemanticKITTI-FV, EPMF
performs worse than the uni-modal baseline when the distance
is larger than 50 m on SemanticKITTI-FV, which covers only
3% of point clouds (See Table IX). Second, to make a trade-off
between efficiency and effectiveness, we insert a down-sampling
operation into the contextual module of LiDAR stream to im-
prove its efficiency. As the point clouds of SemanticKITTI are
dense, reducing the resolution of point cloud features also leads
to higher classification errors at long distances. Nevertheless,
EPMF achieves better performance when the distance is less
than 20 m which covers 76.2% of the points. Overall, our EPMF
outperforms PMF by 2.0% in mIoU with 2.06× acceleration on
SemanticKITTI-FV.

E. Efficiency Analysis

In this section, we evaluate the efficiency of EPMF on
GeForce RTX 3090. Note that we consider the efficiency of
PMF in two aspects. First, since predictions of the camera
stream are fused into the LiDAR stream, we remove the decoder
of the camera stream to speed up the inference. Second, both
our PMF and EPMF are built on 2D convolutions and can be
easily optimized by existing inference toolkits, e.g., TensorRT. In
contrast, Cylinder3D is built on 3D sparse convolutions [24] and
is difficult to be accelerated by TensorRT. We report the inference
time of different models optimized by TensorRT in Table X.

TABLE X
INFERENCE TIME OF DIFFERENT METHODS ON SEMANTICKITTI USING

TENSORRT

Fig. 9. Qualitative results on nuScenes. We use the corresponding images
(night) as the background of both the predictions and labels. We highlight the
difference between the results of PMF and the baseline with the red dashed
circle.

From the results, our PMF achieves the best performance on
nuScenes and is 2.8× faster than Cylinder3D (22.3 ms versus
62.5 ms) with fewer parameters. While compared to PMF, our
EPMF achieves 1.6× acceleration (14.2 ms versus 22.3 ms) with
2.0% improvements in mIoU.

F. Qualitative Evaluation

To better understand the benefits of PMF, we visualize the
predictions of PMF on the benchmark data sets. From Fig. 8,
compared with Cylinder3D, PMF achieves better performance
at the boundary of objects. For example, as shown in Fig. 8(d),
the truck segmented by PMF has a more complete shape. More
critically, PMF is robust in different lighting conditions. Specif-
ically, as illustrated in Fig. 9, PMF outperforms the baselines
on more challenging scenes (e.g., night). In addition, as demon-
strated in Figs. 8(e) and 9(c), PMF generates dense segmentation
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Fig. 10. Qualitative results on three benchmark data sets. We show the error maps of both our method and the uni-modal baseline, in which the red points indicate
mispredictions. Zoom in for more details.

results that combine the benefits of both the camera and LiDAR,
which are significantly different from existing LiDAR-only and
fusion-based methods.

In Fig. 10, we show the error maps of both EPMF and the
uni-modal baseline on three benchmark data sets under different
scenes. From the results, our EPMF can fully utilize both infor-
mation from point clouds and RGB images and thus performs
well in some challenging scenes with extremely sparse point
clouds or poor lighting conditions.

G. Robustness Analysis

To investigate the robustness of EPMF on adversarial samples,
we first insert extra objects (e.g., a traffic sign) into the images
and keep the point clouds unchanged. In addition, we implement
a camera-only method, i.e., FCN [45], on SemanticKITTI as
the baseline. Note that we do not use any adversarial training
technique during training. As demonstrated in Fig. 11, the
camera-only methods are easily affected by changes in the input
images. In contrast, because EPMF integrates reliable point
cloud information, the noise in the images is reduced during
feature fusion and imposes only a slight effect on the model
performance.

To investigate the performances of EPMF under different
lighting conditions, we evaluate the performance of EPMF
on nuScenes validation set at day/night time. We initialize

Fig. 11. Comparisons of EPMF and camera-only methods on adversarial
samples. The camera-only methods use only RGB images as inputs, while PMF
uses both images and point clouds as inputs. We highlight the inserted traffic
sign with a red box.

SegFormer-B5 by the officially released weights on CityScape
and train the model SegFormer-B5 with the camera or LiDAR as
inputs. Note that some of the classes may not appear at night, we
only report the mIoU of the available classes. From Table XI,
as the camera only provides limited information at night,
SegFormer with camera-only inputs performs worse than the
LiDAR-only counterpart. By fusing both information from the
camera and LiDAR, EPMF achieves better performance at night,
with 15.1% improvements in mIoU compared to SegFormer-B5.
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TABLE XI
COMPARISONS TO SEGFORMER ON NUSCENES AT DAY/NIGHT TIME

TABLE XII
ABLATION STUDY FOR THE NETWORK COMPONENTS ON THE

SEMANTICKITTI-FV VALIDATION SET

Fig. 12. Comparisons of the predictions w.r.t. the networks trained with and
without perception-aware loss. PL denotes the perception-aware loss. Red indi-
cates predictions with higher confidence scores. We only show the predictions
of Car for the sake of clarity.

V. ABLATION STUDY

A. Effect of Network Components

We study the effect of the network components of PMF, i.e.,
perspective projection, ASPP, residual-based fusion modules,
and perception-aware loss. The experimental results are shown
in Table XII. Since we use only the front-view point clouds
of SemanticKITTI, we train SalsaNext as the baseline on our
data set using the officially released code. Comparing the first
and second lines in Table XII, perspective projection achieves
only a 0.4% mIoU improvement over spherical projection with
LiDAR-only input. In contrast, comparing the fourth and fifth
lines, perspective projection brings a 5.9% mIoU improvement
over spherical projection with multimodal data inputs. From
the third and fifth lines, our fusion modules bring 2.0% mIoU
improvement to the fusion network. Moreover, comparing the
fifth and sixth lines, the perception-aware losses improve the
performance of the network by 2.2% in mIoU.

B. Effect of Perception-Aware Loss

To investigate the effect of perception-aware loss, we
visualize the predictions of the LiDAR stream networks with
and without perception-aware loss in Fig. 12. From the results,

TABLE XIII
ABLATION STUDY FOR THE PROPOSED IMPROVED TECHNIQUES ON

SEMANTICKITTI-FV VALIDATION SET

TABLE XIV
MODEL PERFORMANCE WITH DIFFERENT IMAGE MASKED RATIOS ON

SEMANTICKITTI-FV

perception-aware loss helps the LiDAR stream capture the
perceptual information from the images. For example, the
model trained with perception-aware loss learns the complete
shape of cars, while the baseline model focuses only on the
local features of points. As the perception-aware loss introduces
the perceptual difference between the RGB images and the
point clouds, it enables an effective fusion of the perceptual
information from the data of both modalities. As a result, our
PMF generates dense predictions that combine the benefits of
both the images and point clouds.

C. Effect of the Improved Techniques

In this section, we explore the effectiveness of the proposed
improved techniques on SemanticKITTI-FV. As shown in
Table XIII, on top of PMF, dropping the decoder of the
camera stream saves 5.0 GFLOPs in computation budgets
without performance degradation. The proposed CAC further
reduces 114.8 GFLOPs in computation costs by removing
the useless area of RGB images. With the proposed improved
contextual module, we achieve 2.04× acceleration compared
to PMF (418.0 GFLOPs versus 854.7 GFLOPs) with 0.9%
improvement in mIoU. By fusing the high-level features of
LiDAR stream into the camera stream, we further achieve 1.1%
improvements in mIoU.

When conducting CAC, if the LiDAR has a larger vertical
FOV than cameras, keeping point clouds outside the image also
results in partial blank image inputs. To investigate the impact
of these areas without image information, we partially mask
the RGB image from bottom to top with ratios from 10% to
50%, and evaluate the model performance on SemanticKITTI-
FV. As shown in Table XIV, masking 10% of RGB image only
results in 0.4% degradation of mIoU. With the increasing of the
masked ratio, the model performance suffers from significant
degradation. Nevertheless, the impact of masked images can
be mitigated by introducing the image mask into training or
fine-tuning.

VI. CONCLUSION

In this work, we have proposed a perception-aware multi-
sensor fusion scheme for 3D LiDAR semantic segmentation.
Unlike existing methods that conduct feature fusion in the
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LiDAR coordinate system, we project the point clouds to the
camera coordinate system to enable a collaborative fusion of
the perceptual features from the two modalities. By fusing
complementary information from both cameras and LiDAR,
PMF is robust in complex outdoor scenes with extremely sparse
point clouds or poor lighting conditions. Moreover, we propose
EPMF which improves the efficiency and effectiveness of PMF.
Specifically, we introduce cross-modal alignment and cropping
to reduce unnecessary computation. Besides, we also adjust the
architecture of the fusion network by fusing high-level features
into the camera stream and exploring the design of contextual
modules under perspective projection. The experimental results
on three benchmarks show the superiority of our method. In the
future, we will extend EPMF to other challenging tasks, e.g.,
object detection and semantic scene completion.
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