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ABSTRACT

Orthogonal Non-negative Matrix Factorization (ONMF) ap-
proximates a data matrix X by the product of two lower-
dimensional factor matrices: X ≈ UVT, with one of them
orthogonal. ONMF has been widely applied for clustering,
but it often suffers from high computational cost due to
the orthogonality constraint. In this paper, we propose a
method, called Nonlinear Riemannian Conjugate Gradient
ONMF (NRCG-ONMF), which updates U and V alterna-
tively and preserves the orthogonality of U while achiev-
ing fast convergence speed. Specifically, in order to update
U, we develop a Nonlinear Riemannian Conjugate Gradi-
ent (NRCG) method on the Stiefel manifold using Barzilai-
Borwein (BB) step size. For updating V, we use a closed-
form solution under non-negativity constraint. Extensive
experiments on both synthetic and real-world data sets show
consistent superiority of our method over other approaches
in terms of orthogonality preservation, convergence speed
and clustering performance.
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1. INTRODUCTION
Given a matrix, Non-negative Matrix Factorization (NMF)

aims to find two non-negative factor matrices whose product
approximates that matrix. This enhances the interpretabil-
ity initiated by Paatero and Tapper [25] as Positive Matrix
Factorization and popularized by Lee and Seung [20]. NMF
has enjoyed much success in text mining [26], image process-
ing [11], recommendation systems [19] and many other areas,
and has attracted much theoretical and practical attention.
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Orthogonal NMF (ONMF), first introduced by Ding et
al. [9], is a variant of NMF with an additional orthogonal
constraint on one of the factor matrices. Without loss of
generality, the problem can be written as follows:

min
U,V

||X−UVT||2F , s.t. UTU = Ir,U ≥ 0,V ≥ 0, (1)

where X is an m × n matrix, U ∈ R
m×r and V ∈ R

n×r

are two factor matrices, and || · ||F is the Frobenius norm.
In Problem (1), Ir is an identity matrix of size r × r. The
factor matrix U is imposed on the orthogonal constraint.
ONMF has been shown to be identical to k -means when
the Frobenius norm is used as divergence/distance [9]. Thus
one factor matrix is corresponding to the cluster centers and
the other matrix is corresponding to the cluster membership
indicators [7]. The orthogonality on the columns of U is
identical to clustering rows of the input data matrix X [32]
and makes the clusters more distinct than without orthogo-
nal constraint [21]. Moreover, the orthogonal constraint re-
duces computation complexity of NMF approaches [34]. Due
to these properties, ONMF becomes increasingly popular in
clustering tasks [32]. Most existing ONMF methods either
enforce the orthogonality directly on the factor matrix [9, 6]
as constraints or in the objective function [21]. Besides that,
the authors in [26] propose a projection gradient method
leveraging the manifold constraint. Very recently, people try
to approximate ONMF problem by the Non-negative Princi-
ple Component Analysis (NNPCA) problem [2] gaining good
results. However these methods do not preserve orthogonal-
ity well (except for the work in [26]) and/or suffer from slow
convergence (Section 5.4.2).

Another branch of approaches to improve clustering inter-
pretation on NMF is to relax the non-negativity constraint
on one of the factor matrices. Ding et al. [8] refer to this
constrained NMF as Semi-NMF and prove its applicability
in the clustering perspective where one factor matrix rep-
resents the cluster centroids and the other represents soft
membership indicators for every data point.

However, limited works consider both orthogonality and
relaxed non-negativity to improve the clustering performance
of NMF. In this work, we formalize the problem as follows:

min
U,V

||X−UVT||2F +
λ

2
||UVT||2F , s.t. UTU = Ir,V ≥ 0, (2)

where U is with orthogonality constraint only and λ is the
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regularization parameter. The regularizer 1

2
||UVT||2F is in-

troduced to avoid over-fitting issue.
To solve Problem (2), we propose a Nonlinear Rieman-

nian Conjugate Gradient ONMF (NRCG-ONMF), which
updates U and V alternatively and iteratively: when updat-
ing U (resp., V), V (resp., U) is fixed. Specifically, when
updating U, a Nonlinear Riemannian Conjugate Gradient
method (NRCG) is proposed. This method preserves the
orthogonality of U in the setting of Stiefel manifold which
is an embedded sub-manifold of the Riemannian manifold
[1]. The NRCG method performs nonlinear search on Stiefel
manifold by three steps: i) identifying the search direction
on the tangent space of Stiefel manifold regarding U with
Conjugate Gradient (CG) rules, ii) moving the point along
the search direction with carefully determined step size, and
iii) projecting the new point back to the Stiefel manifold
to preserve the orthogonality with a Retraction operation.
When updating V, due to the nonnegative constraint, we
update each entry of V separately in a coordinate descent
manner by closed-form solutions.

The main contributions of our work are summarized as
follows.

• We exploit the orthogonality and semi-nonnegativity
constraints in NMF aiming at improving the cluster-
ing performance. We develop an efficient nonlinear
Riemannian conjugate gradient method with Barzilai-
Borwein (BB) step size to update U in order to pre-
serve the orthogonality of U with fast convergence
speed.

• Based on the NRCG method, we propose a NRCG-
ONMF method to address Problem (2), where we up-
dateU andV alternatively. The convergence of NRCG-
ONMF is also analyzed.

• Extensive experiments on both synthetic and real-world
data sets show that our method outperforms the re-
lated works in terms of orthogonality, convergence speed
and clustering performance.

The rest of this paper is organized as follows. We first pro-
vide the notations and preliminaries in Section 2. Then we
introduce our proposed algorithm in Section 3. The exper-
iments are presented in Section 5 followed by related works
in Section 4 and conclusion in Section 6.

2. NOTATIONS AND PRELIMINARIES

2.1 Notations
Throughout the paper, we use bold uppercase and lower-

case letters to represent the matrices and vectors respec-
tively. We denote by the superscript T the transpose of
a vector/matrix. The Frobenius norm of X is defined as
||X||F . The list of main notations can be found in Table 1.

2.2 Optimization on Stiefel Manifold
To begin with, we introduce some geometries regarding

Stiefel manifold. The Stiefel manifold, denoted by Stmr , is
defined as

Stmr = {U ∈ R
m×r|UTU = Ir},

which is a set ofm by r orthonormal matrices [1]. The Stiefel
manifold is compact, and its dimension is (mr− 1

2
r(r+1)).

Table 1: Notation conventions
Notations Descriptions

U,V,G,X,Z, I,E Matrices
ηk,xi,bj ,vi Vectors
Mr, Stmr Manifolds
TUMr Tangent spaces

λ, αk , βk, δ, ǫ, wi, sjl Parameters
m,n, r Integers

F (U,V), f(U), g(V) Functions

For convenience of presentation, hereafter, we denote Stmr
by Mr which is a nonlinear manifold. The tangent space
to Mr at U, denoted by TUMr, is the set of all tangent
vectors to Mr at U. To be more specific, the tangent space
of Stiefel manifold Mr at U is given as [1]:

TUMr :=
{
Z ∈ R

m×r : ZTU+UTZ = 0
}

=
{
UK+ (Im −UUT)J : K = −KT ∈ R

r×r,J ∈ R
m×r

}
.

(3)

On the tangent space TUMr for any U ∈ Mr, we introduce
the standard inner product as a metric:

〈Y,Z〉U := tr(YTZ), ∀Y,Z ∈ TUMr. (4)

Then, we can view Stmr (i.e. Mr) as a sub-manifold of Rie-
mannian manifold R

m×r. Given a smooth function f(U)
on Mr, its Riemannian gradient is given as the orthogonal
projection onto the tangent space of the gradient of f(U).
Specifically, the orthogonal projection of any Z ∈ R

m×r onto
the tangent space at U is defined as [1]:

PTUMr (Z) : = U

(
UTZ− ZTU

2

)
+ (Im −UUT)Z

= Z−USym(UTZ),

(5)

where Sym(A) := 1

2
(A + AT). Let GU = ∇f(U) be the

gradient of f(U), the Riemannian gradient of f(U) on Mr,
denoted by gradf(U), can be calculated using:

gradf(U) = PTUMr (GU)

= GU −USym(UTGU).
(6)

Regarding our problem in (2), the gradient GU can be com-
puted by

GU = (UVT −X)V + λUVTV. (7)

By applying Equation (6) and Equation (7), gradf(U) can
be computed by

gradf(U) =
1

2
UVTXTU−

1

2
XV. (8)

3. ONMF ON STIEFEL MANIFOLD
For convenience, we define the objective function as

F (U,V) =
1

2
||X −UVT||2F +

λ

2
||UVT||2F . (9)

So Problem (2) can be written as

min
U,V

F (U,V), s.t.,UTU = Ik,V ≥ 0.

To address this problem, we propose the NRCG-ONMF
method as in Algorithm 1, which NRCG-ONMF updates
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U and V alternatively until reaching the stopping criteria.
The details of updating U and V are discussed in following
sections. In Section 3.1, we introduce the NRCG, a Rie-
mannian optimization scheme, for updating the orthogonal
factor matrix U. We discuss the closed-form update of the
non-negative factor matrix V in Section 3.2. The conver-
gence analysis of NRCG-ONMF is given in Section 3.3.

Algorithm 1 NRCG-ONMF

Given X, initialize U0,V0. Set k = 1.
1: Update U by NRCG method in Section 3.1.
2: Update V according to Algorithm 3 in Section 3.2.
3: Quit if stopping conditions achieve.
4: Let k = k + 1 and go to step 1.

3.1 Update U via NRCG
When updating U, the variable V is fixed, and we equiv-

alently address the following optimization problem:

min
U

f(U), s.t.,UTU = Ik, (10)

where f(U) = 1

2
||X − UVT||2F + λ

2
||UVT||2F with V being

fixed and U being restricted on the Stiefel manifold. Prob-
lem (10) is a non-convex and nonlinear optimization prob-
lem. To address it, we develop a NRCG method using BB
step size for minimizing f(U).

On Euclidean space, the classical CG method does the
search with two major steps, i.e., finding a conjugate search
direction and determining the step size. However, unlike
classical CG method, when doing the optimization on the
Riemannian manifold, two additional geometric operations,
namely Vector Transport and Retraction, are required.

3.1.1 Conjugate Gradient Descent on Mr

Similar to gradient based optimization methods on the
Euclidean space, at any point U, the optimization on Stiefel
manifold requires identifying a search direction, which is a
tangent vector to Mr at U. A direct choice would be the
steepest descent direction, i.e., the negative of the gradient
of the objective function. However, the steepest descent
method may incur slow convergence speed. To avoid this,
we seek to apply the conjugate search direction.

On the Euclidean space Rn, the conjugate search direction
ηk in nonlinear CG is calculated by

ηk = −gradf(Uk) + βkηk−1, (11)

where the initial direction η0 is set to the steepest descent
direction, and βk is calculated by, for example, the Hestenes-
Stiefel’s rule (HS) [15, 14] as follows:

βk =

〈gradf(Uk), gradf(Uk)〉 − 〈gradf(Uk), gradf(Uk−1)〉

〈ηk−1, gradf(Uk)〉 − 〈ηk−1, gradf(Uk−1)〉
.

(12)

Different from methods on the Euclidean space, the search
direction on a manifold is adapted to follow a path on the
manifold [1]. Since gradf(Uk) ∈ TUk

Mr, gradf(Uk−1) ∈
TUk−1

Mr, and ηk−1 are in different tangent spaces of the
manifold, Equations (11) is not applicable on Riemannian
manifolds. To address this, we need to introduce the Vector
Transport.

Vector Transport. The Vector Transport T on a manifold
Mr is a smooth mapping that transports tangent vectors
from one tangent space to another [31]. Specifically, let
TU→Y(ζ

U
) denote the transport from one tangent space

TUMr to another tangent space TYMr, where ζ
U

denotes
the tangent vector on TUMr, the conjugate direction can
be calculated by

ηk = −gradf(Uk) + βkTUk−1→Uk
(ηk−1), (13)

where βk can be computed according to the HS rule (Equa-
tion (12)). Here, gradf(Uk) is the Riemannian gradient of
f(Uk) on the Riemannian manifold Mr, which can be com-
puted by Equation (8). For the calculation of TU→Y(ζ

U
),

we adopt the method in [31] and readers are referred to this
paper for details.

Given a search direction ηk at the k-th iteration, one may
move the point Uk along the search direction to a new point
(Uk+αηk), where α is the step size. However, this new point
will no longer stay on the manifold when α > 0. To address
this, we need to introduce the Retraction operation.

Retraction. Retraction is a projection mapping from the
tangent bundle onto the manifold to keep the new point
on the manifold [1]. In other words, with the retraction
mapping, one can move points in the direction of a tangent
vector and stay on the manifold. Given any ξ ∈ TUMr, the
retraction on Stiefel manifold Mr, denoted by RU(ξ), can
be computed as

RU(ξ) := qf(U + ξ), s.t. ξ ∈ TUMr, (14)

where qf(A) denotes the Q factor of the decomposition of A
as A = QR [1]. Apparently, we have RU(ξ) ∈ Mr, which
is set as the new point. Given a search direction ηk at Uk,
set ξ = αηk, then the retraction can be performed by

Uk+1 = RUk
(αηk) := qf(Uk + αηk), (15)

where α is the step size to be determined.

3.1.2 Determination of the Step Size

A good step size would guarantee the convergence of a
search algorithm and accelerate its speed without increasing
much cost. Many search rules (e.g., Armijo-Wolfe rule [24])
have been proposed to find a suitable step size along a given
search direction. In this paper, we choose the BB step size
[3] as it can significantly reduce the total number of iter-
ations through empirical studies on optimization problems
that subject to spherical constraints [12].

BB adjusts the step size α by considering second order
information (similar to Newton method) but without com-
puting the second derivative of objective function. We adopt
a non-monotone line search method from [35], where αk sat-
isfies non-monotone Wolfe conditions:

f(RUk
(αkηk)) ≤ Ck + δαk〈gradf(Uk),ηk〉, (16)

and

Ck+1 = (σQkCk + f(Uk+1))/Qk+1, (17)

Qk+1 = σQk + 1,

where C0 = f(U0) and Q0 = 1. Once the condition in (16)
is fulfilled, set αk+1 = ταk. The parameters δ, σ, τ ∈ (0, 1).
Recall ηk ∈ TUk

Mr is the search direction. The existence
of αk is guaranteed according to the following lemma.
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Lemma 1. Let Uk ∈ Mr, and ζk ∈ TUk
Mr be a descent

direction. Then there exists an αk that satisfies the condition
in (16).

Proof. Recall that Mr is a compact manifold. Since ζk

is a descent direction, it follows that 0 6= gradf(Uk), which
implies that 〈gradf(Uk), ζk〉 < 0. Since Ck ≥ f(Uk) (see
[35]) and RUk

(αηk)) is continuous in α, there must exist an
α̂ such that the inequality in (16) holds ∀α ∈ (0, α̂].

The update of U is summarized in Algorithm 2.

Algorithm 2 Nonlinear Riemannian Conjugate Gradient
(NRCG) Update for U

1: Given Uk, X, Vk, α > 0, δ, σ, τ ∈ (0, 1), k ≥ 1.
2: Compute the gradient gradf(Uk) by (8).
3: Compute a conjugate direction ηk according to (13).
4: Choose a BB step size αk to satisfy conditions (16) and

(17), and set Uk+1 = RUk
(αkηk).

5: Output Uk+1 in order to update V.

3.2 Update V
When updating V, we fix U as a constant. Due to the

non-negative constraint ofV, updating all the elements in V
is difficult. Therefore, we adopt a coordinate-decent update
for V, namely we update each entry of V in a random order.
For example, to update Vjl, we have

(U,V) → (U,V + sjlEjl), (18)

where E is a n× r matrix with all elements zero except that
Ej,l = 1, and sjl is regarded as the step size when updating
Vjl. The problem of finding sjl in (18) can be cast as the
following optimization problem:

min
sjl:Vjl+sjl≥0

gjl(sjl) = g(V+ sjlEjl), (19)

where g(V) = 1

2
||X − UVT||2F + λ

2
||UVT||2F with U being

fixed. Similar to [16], we can rewrite gjl(sjl) as

gjl(sjl) =
1

2
g
′′

jl(0)s
2
jl + g

′

jl(0)sjl + gjl(0), (20)

where the g
′

jl(0) and g
′′

jl(0) denote the first derivative and
second derivative of gjl(sjl) at sjl = 0, respectively. It fol-
lows that

g
′

jl(0) = (
∂g

∂V
)jl

= ((UVT −X)TU+ λ(UVT)TU)jl

= (1 + λ)Vjl − (XTU)jl,

(21)

and

g
′′

jl(0) = (
∂2g

∂V2
)jl = (1 + λ). (22)

By ignoring the non-negative constraint, one can get a
closed form minimizer of gjl(sjl) as follows

sjl = −
g
′

jl(0)

g
′′

jl(0)
. (23)

Accordingly, considering the non-negative constraint on V,
the computation of sjl is modified as

s∗jl = max(0, Vjl −
g
′

jl(0)

g
′′

jl(0)
)− Vjl. (24)

Algorithm 3 Closed-form Update for V

1: Given Uk+1,Vk, X, k ≥ 1.
2: for each i ∈ (1, n), j ∈ (1, r)

Compute s∗i,j by (25).

Set V i,j
k+1

= s∗i,j + V i,j
k .

end
3: Output Vk+1 in order to update U in next iteration.

From Equations (21), (22) and (24), we get

s∗jl = max(0, Vjl −
(1 + λ)Vjl − (XTU)jl

1 + λ
)− Vjl,

= max(0,
(XTU)jl
1 + λ

)− Vjl.

(25)

The detailed update of V is given in Algorithm 3.

3.3 Convergence Analysis

Proposition 1. Let {Uk,Vk} be an infinite sequence of
iterates generated by Algorithm 1. Then every accumulation
point of {Uk,Vk} is a critical point of f over the space Mr×
R+

n×r, namely limk→∞ gradF (Uk,Vk) = 0 and limk→∞ ∂Vk

F (Uk,Vk) = 0, where gradF (Uk,Vk) = gradf(Uk).

Proof. Note that Mr is a compact manifold. Moreover,
{Vk} is bounded; otherwise F (U,V) will go to infinity.
Without loss of generality, suppose V ∈ [0, L]n×r , where
L > 0 is a finite number. Now both {Uk} and {Vk} stay in
a closed and bounded subset.

We complete the proof by contradiction. Without loss of
generality, suppose

lim
k→∞

||gradF (Uk,Vk)||F + ||∂Vk
F (Uk,Vk)||F 6= 0,

and then there exists an ǫ > 0, and a subsequence in {(Uk,Vk)}
such that ||gradF (Uk,Vk)||F + ||∂VF (Uk,Vk)||F ≥ 2ǫ > 0
for all k. Since Mr is closed and bounded, and Vk is con-
strained in [0, L]n×r , the subsequence {(Uk,Vk)}k∈Γ should
have a limit point (U∗,V∗) on Mr × [0, L]n×r , i.e.
limk→∞ F (Uk,Vk) = F (U∗,V∗). By the continuity of
gradF (U,V) and ∂VF (U,V), it implies that either

lim
k→∞

||gradF (Uk,Vk)||F ≥ ǫ > 0

or

lim
k→∞

||∂VF (Uk,Vk)||F ≥ ǫ > 0.

Without loss of generality, suppose lim
k→∞

||gradF (Uk,Vk)||F

≥ ǫ > 0. Based on (16), there exist a step size α such
that Ck = f(Uk) and f(Uk+1) = F (Uk+1,Vk) ≤ f(Uk) +
δα〈gradf(Uk),ηk〉. Note that F (Uk,Vk) = f(Uk) >
F (Uk+1,Vk), ηk is a descent direction (such as the steepest
descent direction), and lim

k→∞
||gradF (Uk,Vk)||F ≥ ǫ > 0.

Then ∀k, it follows that |F (Uk,Vk) − F (Uk+1,Vk+1)| ≥
|F (Uk,Vk)−F (Uk+1,Vk)|≥ |δα〈gradf(Uk),ηk〉| = ν > 0,
where ν is some constant. This contradicts that {(Uk,Vk)}
has a limit point. In addition, we have similar result for V.
We therefore conclude that lim

k→∞
gradF (Uk,Vk) = 0 and

lim
k→∞

∂VF (Uk,Vk) = 0.
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4. RELATED WORKS
In this section, we review some of the representative ef-

forts, as well as the most recent solutions of the ONMF
problem. We also briefly overview the works that introduce
manifold into the NMF solutions.

Ding et al. [9] are the first to explicitly propose the con-
cept of ONMF. They impose the orthogonality constraint on
factor matrix by considering Lagrangian multiplier which
can be solved as an unconstrained optimization problem.
Thus they apply the standard multiplicative update rules
on each of the factor matrices. Choi [6] simplifies Ding’s al-
gorithm by turning the orthogonality constraint into Stiefel
manifold. They directly use the gradient in Stiefel manifold
in the multiplicative update of the orthogonal matrix. The
Euclidean distance based ONMF method proposed in [21]
also embeds Lagrangian multiplier in the solution. More-
over, they consider gradient descent in both the orthogonal
subspace and the original space. However, these approaches
produce heavy computation overhead as the Lagrange mul-
tiplier is a symmetrical matrix with many parameters.

Pompili et al. [26] propose two ONMF solutions, one of
which is an EM-like ONMF algorithm based on the equiv-
alence of ONMF and spherical k -means they proved. Very
recently, Asteris et al. [2] propose an ONMF solution that
relies on a novel approximation to the Non-negative Princi-
ple Component Analysis (NNPCA) problem, which jointly
optimizes multiple orthogonal non-negative components and
provably achieves an object value close to be optimal. How-
ever above works can only attain orthogonality to a limited
extent. One exception is the method proposed by Pompili
et al. in [26]. This method updates the orthogonal con-
strained matrix using projection step, which projects the
matrix onto a feasible set of St(k, n) of orthogonal matrices
via a projection gradient method. The step size is chosen
according to a backtracking line search using the Armijo
rule. Our work shares similar idea with this method, but
exploits more efficient nonlinear conjugate search algorithm
with non-monotone step sizes.

Many research efforts introduce the manifold regulariza-
tion into the NMF solutions [27, 5, 13, 17, 29]. Although
they use the manifold concept in the matrix approximation
problem, these approaches differ from our solution in that
they identify the geometrical structure of the original data
space by incorporating the geometrical structure into objec-
tive function (as the regularizer). Our solution consider the
parameter constraint on factor matrix that is equivalent to
the manifold definition.

5. EXPERIMENTS
In this section, we use both synthetic and real-world data

sets to show the performance of our proposed method, NRCG-
ONMF. Our method is implemented in Matlab and the
source codes are available per request. The source codes
of all the comparing methods are either publicly available
or obtained from the corresponding authors. We perform
the experiments on a PC with 64-bit Windows 7 operation
system, 8GB RAM and 2.40GHZ Intel i7-3630QM CPU.

5.1 Implementation Details

Initialization. In general, optimization methods on nonlin-
ear manifolds are guaranteed to converge to a local solution.

Therefore, a good initialization of U0 and V0 is important.
In our case, U0 and V0 can be obtained by applying trun-
cated Singular Value Decomposition (SVD) of rank r on X,
namely [Ū, S̄, V̄] = svds(X, r), where Ū, S̄ and V̄ are the
output of SVD. We then set U0 = Ū and V0 = max(S̄V̄, 0).

Gradient Computation. Because U is imposed on orthog-
onality constraint, namely UTU = Ir, the following equa-
tion has the same projection result on the tangent space
TUMr as Equation (7).

GU = (UVT −X)V (26)

So to reduce calculation time, when calculating gradf(U),
we use Equation (26) to replace GU in Equation (6).

Objective Value Computation. Note that the original ob-
jective function is 1

2
||X −UVT||2F + λ

2
||UVT||2F , which has

O(mnr +mn) complexity. However, we can rewrite it into
the following form:

1

2
||X||2F − trace(XTU,V) +

1 + λ

2
||V||2F . (27)

Note that 1

2
||X||2F is a constant, thus it can be pre-computed.

Now, the calculation of Equation (27) takes O(mnr +mr).
As generally r ≪ n, we can reduce the computation cost
using Equation (27) to compute objective value.

5.2 Data sets
We use synthetic data to compare the orthogonality and

convergence of various ONMF algorithms. Real-world data
sets are used for the comparison of clustering performance.

5.2.1 Synthetic Data

We generate a synthetic data set in order to control the
noise level. Specifically, we select five base vectors bj , j ∈
[1, 5] randomly from the unit hypercube in n dimensions
(here n = 100). The selected base vectors are indepen-
dent to each other. Then, we generate data points xi =
wibj + ǫvi, i ∈ [1, m] (here m = 100 is the number of data
points generated for a testing matrix), where ǫ ∈ [10−2, 1]
is a parameter controlling the noise level, wi ∈ (0, 1) is the
random weight on base vectors and satisfies the uniform dis-
tribution. vi is the random vector satisfying the multivari-
ate standard Gaussian distribution. Negative entries of xi

are set to zero. For each ǫ ∈ [10−2, 1], we generate m data
points and vertically concatenate them into a m× n matrix
X, where each row represents a data point.

5.2.2 Real-world Data sets

We collect several publicly-available real-world data sets
for our experimental studies. These data sets are described
as follows:
COIL-20 [23]. It is an image data set of objects, which
contains 1,440 gray scale images of 20 different objects. In
our experiment, each image is resized to 32× 32 pixels.
The Yale Face Database [28]. This data set contains 165
gray scale images of 15 people. Each one has 11 images
with different facial expression or configuration. We resize
each image to 32× 32 pixels.
CLUTO. It is a data set collected for text mining [36]. We
choose one large subset (k1b) and one medium subset (wap)
from CLITO to showcase the performance on text data with
various sizes.
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Table 2: Data sets Description
Data Instance# Dimension# Class# Type

COIL20 1,440 1,024 20 image
Yale 165 1,024 15 image

CLUTO-k1b 2,340 21,839 6 text
CLUTO-wap 1,560 8,460 20 text
UCI-mfeat-fac 2,000 216 10 text
UCI-mfeat-fou 2,000 76 10 text
UCI-mfeat-pix 2,000 240 10 text
UCI-mfeat-zer 2,000 47 10 text

UCI-mfeat [30]. This data set consists of features of hand-
written numerals extracted from a collection of Dutch utility
maps. 200 patterns per class for a total of 2,000 patterns
have been digitized in binary images files.

Table 2 shows the statistics of each of the data sets.

5.3 Metrics

5.3.1 ONMF Metrics

We evaluate the various ONMFs in terms of three met-
rics, namely relative Frobenius approximation error (relative
error for short thereafter), orthogonality, computation time.
They are defined as follows:

• Relative error: we define the relative error as in [2]:

RelFerr =
||X−UVT ||2F

||X||2F
(28)

• Orthogonality: we leverage the orthogonality measure-
ment in [6]: ||UTU− I||.

• Computation time: we record the time a algorithm
takes to converge or reach the maximum iteration.

5.3.2 Clustering Metrics

To evaluate the clustering performance, we adopt three
metrics, namely Clustering Accuracy (CA), Normalized Mu-
tual Information (NMI) and Purity metrics from [33, 21, 18,
11]. The definitions of the three metrics are given as the
follows:

• CA is defined as follows:

CA =

n∑
i=1

δ(map(ri), li)

n
(29)

where ri is the computed cluster label and li is the true
cluster label. δ(x, y) = 1 if x = y, otherwise, δ(x, y) =
0. map(ri) is a mapping function that matches the
computed label to the best true label. We adopt the
Kuhn-Munkres [22] algorithm for the mapping. A larger
CA value indicates a better clustering result.

• NMI is defined as follows:

NMI =
I(R,L)

(H(R) +H(L))/2
(30)

where R denotes the set of true cluster labels and L is
a set of computed lables from the evaluated algorithm.
I(R,L) is the mutual information (see [4] for the defi-
nition) between R and L. H(.) is the entropy function.
A larger NMI value indicates a better clustering result.

• Purity measures the extent to which each cluster con-
tained data points from primarily one cluster. The
purity of a clustering algorithm is obtained by the
weighted sum of individual cluster purity values [18],
given as:

Purity =
1

n

k∑

i=1

maxj(n
j
i ) (31)

where nj
i is the number of the i-th input cluster that is

assigned to the j-th cluster, k is the number of clusters
and n is the total number of the data points. A larger
purity value indicates a better clustering solution.

5.4 Results
In the experiments, we use the stopping criteria suggested

in [31]: when |1−
√

2∗currentObj√
2∗preciousObj

| < 1e−5, the iteration stops.

The currentObj is current objective value and preciousObj
is the objective value from last iteration.

5.4.1 Convergence Comparison

We evaluate the convergence of NRCG-ONMF with three
β solutions and ONPMF on synthetic data without noises
(ǫ = 0). The other two β solutions besides HS (Equation
(12)) are as follows:

Polak-Ribiére (PR) rule[14] is:

βk =
〈gradf(Uk), gradf(Uk)〉 − 〈gradf(Uk), gradf(Uk−1)〉

〈gradf(Uk−1), gradf(Uk−1)〉
.

and the Fletcher-Reeves (FR) rule[10] is:

βk =
〈gradf(Uk), gradf(Uk)〉

〈gradf(Uk−1), gradf(Uk−1)〉
.

We choose ONPMF because it also considers Stiefel man-
ifold when preserving orthogonality for U. Three randomly
generated matrices with different dimensions and ranks are
used in our experiments and we set the maximum iteration
number to 50 in order to show the different performance
clearly. Figure 1 depicts the results. NRCG-ONMF al-
gorithms are shown non-monotone because BB step does
not necessarily decrease the objective value at every iter-
ation, but this issue has been solved in our adopted non-
monotone line search method in [35]. For the small and
medium sized matrices (100 × 100 and 5, 000 × 5, 000), all
variants of NRCG-ONMF (i.e., with different β) can con-
verge within 50 iterations (Figure 1(a), 1(b) and 1(c)). The
convergence time on small matrix is less than 0.07 seconds
and the time on medium matrix is less than 30 seconds
(Figure 1(d), 1(e) and 1(f)). For small matrix, NRCG-
ONMF(HS) converges less quickly than NRCG-ONMF(FR)
and NRCG-ONMF(PR), but is more quickly than these two
algorithms when performed on medium matrix. Thus we
only choose NRCG-ONMF(HS) in the following evaluations.
ONPMF cannot converge within 50 iterations (more than
500 iterations when raising the iteration limit). For medium
matrix with rank 50, it has a up trend on objective values.
NRCG-ONMF algorithms outperform ONPMF in all testing
matrices.

5.4.2 Orthogonality Comparison

In this section, we compare several state-of-the-art ONMF
works with our method NRCG-ONMF(HS). We also show
the comparison of their performance when introducing noises.
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(a) 100×100, r = 5 (b) 5000×5000, r = 50 (c) 5000×5000, r = 100

(d) 100×100, r = 5 (e) 5000×5000, r = 50 (f) 5000×5000, r = 100

Figure 1: Convergence of NRCG-ONMFs and ONPMF on synthetic data sets of different sizes/ranks. Three
NRCG-ONMF variants with different β choices are compared. The matrices are generated randomly, and
the maximum iteration number is set to 50.

Table 3: Description of Orthogonal NMF algorithms discussed in this work
Algorithms Object Function Orthogonal part

ONMFEU [9] min||X− FGT||2F F
ONMFA [6] min||X −AS||2F A

NMFOS ED [21] min||V −WH||2F + λ||WTW − I ||2F W
ONPMF [26] min||M−UV||2F V
EMONMF [26] min||M−UV||2F V
SPANONMF [2] min||M −WHT||2F + ǫ||M||2F W

NRCG-ONMF(HS) (this work) min||X−UVT||2F + λ||UVT||2F U

Table 4: Performance comparison of various ONMF methods. RelFerr represents relative Frobenius ap-
proximation error. Orthogonality denotes the value of ||UTU − I ||F . Time is the computation time for 500
iterations or until converged. #Iter is the actual iteration number. A lower value of all metrics indicates
a better performance. Bold font denotes the best performance. The values are the average of 100 tries on
100 × 100, rank = 5 randomly generated matrices.

Algorithms RelFerr Orthogonality Time(sec) #Iter
ONMFEU 231.1850 12906.1000 0.2362 500
ONMFA 0.0989 2.1696 0.1381 333

NMFOS ED 0.2323 0.4600 0.2293 500
ONPMF 0.3451 5.5267e-15 0.7849 500
EMONMF 0.0836 49.0612 0.2868 10

SPANONMF 0.1179 1.7320 0.0893 500
NRCG-ONMF(HS) 0.0236 1.0438e-15 0.0747 55

It is worth noting that the parameters of each comparing
methods are set as the values suggested in the correspond-

ing papers. The descriptions of compared ONMF works are
shown in the Table 3.

Table 4 gives the average value of comparison results based
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Figure 2: Relative error on synthetic data with
noises. The values are the average of 100 tries on
100 × 100, rank = 5 randomly generated matrices.

on 100 tries. The values of bold font denote the best perfor-
mance values. The iteration number equals to 500 indicates
the algorithm cannot converge within 500 iteration. From
this table we can see that NRCG-ONMF(HS) achieves the
lowest values in three metrics except the iteration number.
SPANONMF is the second fastest algorithm. However it
fails to maintain the orthogonality constraint. ONPMF is
the only one that has comparable performance with NRCG-
ONMF(HS) in terms of keeping orthogonality. However it
has one order higher relative error than NRCG-ONMF(HS),
as well as higher computation time and number of iterations.

We further compare NRCG-ONMF(HS), SPANONMF and
ONPMF when the noises are introduced. We run each algo-
rithm for 100 times and record the average value. We choose
ONMF because it maintains the only comparable perfor-
mance on preserving orthogonality with our method NRCG-
ONMF(HS). SPANONMF is chosen as it is the second best
in terms of computation time (Table 4). Figure 2 shows that
the relative error increases when the noise level increases.
NRCG-ONMF(HS) continues to achieve the lowest relative
error. SPANONMF shows smoothly increased relative error
that is consistently higher than NRCG-ONMF(HS), while
the value of ONPMF fluctuates at the beginning and grad-
ually becomes smooth.

5.4.3 Clustering Performance Comparison

We compare various ONMF works on the clustering ap-
plication. As EMONMF and ONMFEU performs the worst
in keeping orthogonality and NMFOS ED does not perform
well in three metrics, we omit them in this evaluation. We
also compare the well-known clustering algorithm k -means
and some of the very recent matrix factorization works that
aim to do clustering, namely CAPNMF [11], CVXNMF [8]
and NMF GCD [16].

We report the performance results in Table 5-7 for CA,
NMI and Purity respectively with deviations after ‘±’. Val-
ues in bold denote the best performance. For most of the
data sets, our algorithm NRCG-ONMF achieves the best in
terms of accuracy, mutual information and purity. ONPMF
and EMONMF also perform well in some data sets. For
example, ONPMF gives the highest accuracy in the mfeat-
fou data set and the highest purity in the COIL20 data set.
EMONMF achieves the best NMI and purity for the Yale
data set. k -means also shows good performance on some

data sets. For example, it achieves the highest accuracy for
UCI-mfeat-pix and UCI-mfeat-zer data sets.

6. CONCLUSIONS
In this paper, we have proposed a NRCG-ONMF method

which alternatively updates the orthogonal factor U by do-
ing nonlinear search on Stiefel manifold, and updates the
nonnegative factor V in a coordinate manner with closed
form solutions. The convergence of NRCG-ONMF has been
analyzed. Our approach sheds lights on an promising way to
efficiently perform ONMF and shows great potential to han-
dle large scale problems. We evaluate the proposed method
on clustering tasks. Extensive experiments on both syn-
thetic and real-world data sets demonstrate that the pro-
posed NRCG-ONMFmethod outperforms other ONMFmeth-
ods in terms of the effectiveness on preservation of orthog-
onality, optimization efficiency and clustering performance.
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