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Abstract—Matrix factorization has been widely applied to various applications. With the fast development of storage and internet

technologies, we have been witnessing a rapid increase of data. In this paper, we propose new algorithms for matrix factorization with

the emphasis on efficiency. In addition, most existing methods of matrix factorization only consider a general smooth least square loss.

Differently, many real-world applications have distinctive characteristics. As a result, different losses should be used accordingly.

Therefore, it is beneficial to design new matrix factorization algorithms that are able to deal with both smooth and non-smooth losses.

To this end, one needs to analyze the characteristics of target data and use the most appropriate loss based on the analysis. We

particularly study two representative cases of low-rank matrix recovery, i.e., collaborative filtering for recommendation and high

dynamic range imaging. To solve these two problems, we respectively propose a stage-wise matrix factorization algorithm by exploiting

manifold optimization techniques. From our theoretical analysis, they are both are provably guaranteed to converge to a stationary

point. Extensive experiments on recommender systems and high dynamic range imaging demonstrate the satisfactory performance

and efficiency of our proposed method on large-scale real data.

Index Terms—Matrix factorization, matrix recovery, efficient optimization, convergence guarantees, recommender systems, HDR imaging,

batch image alignment

Ç

1 INTRODUCTION

WITH many advances of Internet technology and the
prevalence of electronic devices such as smart phones,

it is increasingly easy for users to produce large-scale data.
For example, Nokia 808 PureView can capture images with
more than 40mega-pixels. When being processed, an individ-
ual image requires around 320 MB memory space to store
each RGB channel. This large data size imposes two efficiency
challenges for real-world computer vision tasks, i.e., storage
and time cost. Let us take batch image alignment, which
requires the alignment of a number (e.g., 16) of images of
target objects, as an example. Stacking all of these high-resolu-
tion images will generate a matrix withmore than 640 million
elements in each channel, which costs 5.12 GB memory.
Some commonly used algorithms require many computation
and storage resources. Singular value decompositions
(SVDs), for instance, require cubic computation complexity
and quadratic storage complexity, which may be unafford-
able on large matrices. Consequently, there is a great demand
for designing efficient and scalable algorithms for these real-
world applications [1], [2], [3], [4], [5].

Low-rank matrix recovery (MR) has been exploited to
deal with a variety of real-world applications. The main
aim of low-rank MR is to recover the underlying low-
rank structure of data from the the noisy observations
or missing elements. Some real-world problems can be
formulated as low-rank MR problems, e.g., collaborative
filtering for recommender systems [6], [7], [8], high
dynamic range (HDR) imaging [9], [10], [11], batch image
alignment [12], etc. Besides these computer vision appli-
cations, low-rank MR is also gaining increasing popular-
ity in many other tasks, e.g., recommender systems,
where users’ preferences on products are modeled as
low-rank structures. As aforementioned, the increasing
scale of real-world data requires better efficiency of low-
rank MR algorithms.

A general low-rank MR problem can be cast as the
following optimization problem:

min
X

fðXÞ; s.t. rankðXÞ � r; (1)

where X 2 Rm�n is the recovered low-rank matrix, fðXÞ is a
loss function that measures the fidelity between X and an
observation matrix Y 2 Rm�n, and rankðXÞ retrieves the rank
of X. Here r denotes the maximum rank of X, which is often
a small number, leading to a low-rank constraint on X.
Note that fðXÞ is determined by the specific requirements of
a certain application, e.g., HDR imaging, multi-label image
classification.

Problem (1) is NP-hard due to the rank constraint,
i.e., rankðXÞ � r. Researchers thus have proposed many
approaches to solve it. Existing methods can be grouped into
two main categories, i.e., nuclear norm based approaches and
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matrix factorization approaches. Nuclear norm-basedmethods
leverage the nuclear norm as a convex surrogate of the low-
rank constraint [13], [14], [15]. However, nuclear norm mini-
mization usually introduces expensive SVDs, e.g., singular
value thresholding [16] and proximal gradient methods [17].
This becomes computationally unaffordable when the size of
X is large, particularly on real-world data.

Matrix factorization is another critical approach for low-
rank MR. It explicitly factorizes X into smaller factor matri-
ces, e.g., X ¼ UV> where U 2 Rm�r and V 2 Rn�r [6], [18],
[19]. This results in the problem: minU;VfðUV>Þ þFðU;VÞ;
where FðU;VÞ is a regularization term of U and V. Matrix
factorization methods are often more efficient for large scale
problems than nuclear norm based methods, but they still
suffer from some limitations. First, it is unclear how to esti-
mate the rank of X, i.e., r for some real-world applications.
Model selection can be applied, but it is often computation-
ally unaffordable for large scale problems. Second, most
existing matrix factorization works only focus on a general
scenario in which the loss function fðXÞ is differentiable,
e.g., least square loss [20], [21], [22], [23], [24], [25], where
fðXÞ ¼ jjY� Xjj2F . This general scenario simplifies the opti-
mization process but ignores the particular requirements of
certain real-world applications. Moreover, some algorithms
may be stuck in an unsatisfactory local minimum [18].

In this paper we consider two typical applications of low-
rank MR, namely recommender systems for ordinal rating
data and HDR imaging, which introduce specific require-
ments to the problem formulation respectively. In real-world
recommender systems, rating data are provided by users on a
variety of products, e.g., movies or music tracks. These rating
data are often in discrete binary (e.g., like/dislike), or ordinal
values (e.g., 1; 2; . . . ; 5). Existing works have demonstrated
the efficacy of maximum margin matrix factorization (M3F)
on these data [6], [7], [18], [26], which introduces a large mar-
gin for each pair of two consecutive ordinal values (we pres-
ent the definition in Section 4.1). However, their optimization
algorithms may suffer from poor efficiency on large scale
data. For example, semi-definite programming (SDP) is
applied [6], but SDP usually scales poorly.

In HDR imaging, outlier detection is required to elimi-
nate ghosting artifacts, which are introduced when multiple
low dynamic range (LDR) images are combined. Recent
contributions to the literature show that sparse large
outliers can be detected by robust ‘1 loss [9], [10], [11]. This
thus leads to the robust matrix factorization problem, in
which fðXÞ ¼ jjY� Xjj1; where rankðXÞ � r. Nevertheless,
robust ‘1 loss cannot be directly optimized by most existing
matrix factorization algorithms due to its non-smoothness.

To cope with the specific requirements of real applications
of low-rank MR, we propose an algorithm by exploiting the
Riemannian manifold geometry for each of the mentioned
problems. Particularly, to deal with the discrete data in rec-
ommender systems, we propose an active Riemannian sub-
space search for M3F (ARSS-M3F). This algorithm leverages
an efficient block-wise nonlinear Riemannian conjugate gradi-
ent (BNRCG) algorithm to optimize the M3F problem, and
exploits a simple and effective method to estimate the rank of
the underlying rating matrix. In addition, we propose an effi-
cient augmented Lagrangian multiplier (ALM) framework to
handle robust matrix factorization where non-smooth ‘1 loss

is employed. The proposed framework divides the original
problem to simpler subproblems.

The main contributions of this paper are summarized as
follows:

� We propose ARSS-M3F algorithm to deal with the
discrete ordinal data for recommender systems.

� We propose a robust matrix factorization framework
to enable matrix factorization algorithms to handle
non-smooth ‘1 loss based on ALM.

� We give the theoretical convergence analysis for both
of the above two algorithms.

� Extensive experiments on collaborative filtering,
HDR imaging and batch image alignment demon-
strate the superior performance and efficiency of our
proposed method.

The remainder of the paper is organized as follows. We
first review related work in Section 2. We then present pre-
liminary knowledge of the Riemannian geometry of fixed-
rank matrices in Section 3. In Section 4, we present the M3F
for discrete ordinal rating data. We present the framework
of matrix factorization on robust ‘1 loss in Section 5. In
Section 6, we detail our experiments on discrete ordinal rat-
ing data and their application to HDR imaging and batch
image alignment. Lastly we conclude this paper in Section 7.

2 RELATED WORK

In this section, we review the recent literature on matrix fac-
torization. Most existing works on matrix factorization focus
on the general cases in which convex and smooth least square
loss is required [20], [21], [22], [23], [24], [25]. Based on the spe-
cific application requirements, some works also consider
exploiting the maximum margin loss to cope with discrete
ordinal rating data for recommender systems, while other
works focus on the outlier detection task required by some
real-world problems. Given that the outlier detection task is
very crucial in many computer vision applications, we also
give a brief review of robust principal analysis (RPCA), which
has beenwidely used in computer vision.

2.1 Matrix Factorization

Most matrix factorization algorithms are designed to deal
with general cases such as convex and smooth least square
loss. Many proposed works based on manifold optimization
have recently been proposed. According to these approa-
ches [22], [27], the fixed-rank matrices belong to a smooth
matrix manifold. A low rank geometric conjugate gradient
(LRGeomCG) method is proposed in [22]. First- and second-
order Riemannian trust-region methods are applied to solve
low rank matrix completion by exploiting the low rank con-
straint in [28]. In [29], the authors propose a linear regression
algorithm whose parameter is a fixed-rank matrix based on
Riemannian manifold geometry. In [30], a quotient geometric
matrix completionmethod is proposed.

An online algorithm for tracking subspaces, Grassmannian
rank-one update subspace estimation (GROUSE) is proposed
in [31]. In [32], the authors propose to solve matrix factor-
ization problems by alternating minimization, and give the
global optimality. To obtain the desired accuracy, this
algorithm requires a fresh set of measurements in each
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iteration [32], [33]. The authors in [24] propose gradient meth-
ods based on scaled metric on the Grassmann manifold. A
low-rank matrix fitting algorithm (LMAFIT) is proposed to
solve large scale matrix completion problems by exploiting
nonlinear successive over-relaxation [23]. However, all these
matrix factorization methods consider only the general least
square loss, rather than a specific loss in real applications.

The importance of automatic latent factor detection (i.e.,
the model selection problem) has been recognized by many
researchers [7], [19], [26]. For example, a probabilistic M3F
model is proposed in [7], [26], in which the number of latent
factors can be inferred from data. However, these methods
are usually very expensive because the probabilistic model
requires a large amount of computation, which is avoided
in our method.

Maximum margin matrix factorization (M3F) is proposed
to deal with discrete ordinal rating data in collaborative filter-
ing [6]. It can be formulated as an SDP problem, thus it can be
solved using standard SDP solvers [6]. However, the SDP
solver scales very poorly. To improve efficiency, a fast M3F
method is proposed to solve the matrix factorization problem
by investigating the gradient-based optimizationmethod [18].
Nevertheless, these methods are still not capable of tackling
large scaleM3F problems, and in the mean time, their optimi-
zation could be stuck in an unsatisfactory localminimum.

A number ofM3F extensions have been introduced in the
last decade [34], [35], [36]. The authors in [35] presented a
method using M3F to optimize ranking rather than ratings.
Other researcher further improved the performance of M3F
by casting it within ensemble approaches [37], [38].

There are a few works on matrix factorization in the
robust loss setting [39], [40]. These works apply a similar
approach, i.e., augmented Lagrangian multipliers, to
decompose the ‘1 regularized matrix factorization problem,
which often results in an augmented Lagrangian function
with independent variables. An alternating direction
method is applied to update these variables.

Recent papers studied the optimality of low-rank prob-
lems [41], [42]. Specifically, the algorithm proposed in [41]
deals with the convex nuclear norm minimization problem,
which decomposes the original problem into two alternating
sub-problems, i.e., a fixed-rank non-convex optimization on
the quotient manifold and rank-one increment update. For
the fixed-rank optimization, [1] presents a second-order trust
region algorithm which has been previously proved to yield
quadratic rate of convergence to the localminimum. The algo-
rithm escapes the local minimum by the rank-one increment
update until it reaches the global minimum, which is imple-
mented by monitoring the convergence behavior via the con-
vergence criterion and duality gap.

However, wewould like to emphasize that the global opti-
mality analyzed in this paper is the one with respect to the
convex nuclear norm minimization problem (i.e., Problem (1)
in [41]), rather than the fixed-rank optimization problem. As
claimed in Proposition 2.2 in [41], the local minimum of the
fixed-rank problem is also the global optimum of the nuclear
norm minimization problem under a certain condition. Then
the authors make use of this result to design the algorithm
with the convergence guarantee to the global solution to the
original nuclear norm minimization problem (Problem (1)
in [41]). In contrast, our theoretical analysis reveals the

convergence to the stationary point where the Riemannian
gradient of the objective function vanishes.

In [42], the authors propose a framework that includes sev-
eral low-rank matrix problems, i.e., matrix sensing, matrix
completion and robust PCA, as special cases. In the unified
framework, the theoretical analysis shows that all local min-
ima are also global optima and there is no high-order saddle
point. Specifically, their analysis replies on the objective func-
tion of the framework, which is quadratic over the observed
matrix (denoted byM in [42]). This property provides the hes-
sian of the objective function, playing a crucial role in the theo-
retical analysis. However, our paper considers the squared
hinge loss, which does not have second-order continuous
derivatives. Their resultsmay not be applied in our situation.

2.2 Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis is proposed to
recover the low-rank matrix contaminated by sparse large
outliers by exploiting the robust ‘1 loss, which is known to
introduce sparsity [2], [4], [43], [44]. RPCA has recently been
intensively studied and successfully applied in a number of
computer vision tasks, including background modeling
from video [45], [46], shadow and specularity removal from
face images [45], robust video denoising [47], small target
detection [48], batch image alignment [12], robust photomet-
ric stereo [49] and HDR [11]. The low-rank structure in
RPCA is achieved by minimizing the nuclear norm as a con-
vex relaxation of the low rank constraint [15], [50], which can
be computed by summing all the singular values. In [51], the
authors propose to solve the RPCA problem using the alter-
nating direction method of multipliers (ADMM) by leverag-
ing the techniques of augmented Lagrangian multipliers.
Two variations of the ADMM algorithm are proposed in
[51], namely exact ALM (EALM) and inexact ALM (IALM).
EALM has been proved to have a Q-linear convergence
speed. While IALM has the same convergence speed, it
requires fewer SVDs in the update [51].

A number of variations of nuclear norm-based methods
exploit the underlying low-rank structure to deal with RPCA
problems. The authors in [10] propose to minimize the partial
sum of singular values (PSSV), which minimizes the smallest
l� p singular values of X, where l ¼ minðm;nÞ and p is the
prior knowledge of the rank. The aim of PSSV is to preserve
the information of the largest p singular values and make the
remaining values as small as possible.

3 PRELIMINARIES: RIEMANNIAN GEOMETRY OF

FIXED-RANK MATRICES

This section provides preliminary knowledge about Rie-
mannian geometry and Riemannian optimization.

Providing that r is a known scalar, the manifold of fixed-
rank-rmatrices can be denoted as follows [22]:

Mr ¼ fX 2 Rm�n : rankðXÞ ¼ rg: (2)

Let Stmr ¼ fU 2 Rm�r : UTU ¼ Ig denote the Stiefel manifold
ofm� r real and orthonormal matrices. ThemanifoldMr can
then be rewritten as the following SVD-style representation:

Mr ¼ fUdiagðssÞVT : U 2 Stmr ;V 2 Stnr ; jjssjj0 ¼ rg; (3)
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where ss 2 Rminðm;nÞ denote the singular values, and diagðssÞ
denotes the diagonal matrix with ss on the diagonal.

The tangent space TXMr ofMr atX ¼ UdiagðssÞVT 2 Rm�n

is represented as follows:

TXMr ¼ fUMVT þUpV
T þUVT

p : M 2 Rr�r;

Up 2 Rm�r;UT
pU ¼ 0;Vp 2 Rn�r;VT

pV ¼ 0g:
(4)

We denote the tangent bundle by the disjoint union of all
tangent spaces

TMr ¼
[

X2Mr

fXg � TXMr

¼ fðX;HÞ 2 Rm�n � Rm�n : X 2 Mr;H 2 TXMrg:
(5)

If the Euclidean inner product on Rm�n is restricted to the
tangent bundle, in which the inner product is given by
hA;Bi ¼ trðATBÞ with A;B 2 Rm�n, Mr is turned to a Rie-
mannian manifold with Riemannian metric gXðz; �Þ ¼ hz; �i
onMr where z; � 2 TXMr.

Based on the specified metric of Riemannian manifold on
the tangent space, the Riemannian gradient, which is used to
update matrices on the manifold, can be computed. Suppose
that fðXÞ is a smooth function of X. To obtain gradfðXÞ, it is
necessary to first compute the gradient of fðXÞ in Euclidean
space. LetG denote the gradient of fðXÞ in Euclidean space at
X ¼ UdiagðssÞVT: The Riemannian gradient of fðXÞ on Mr,
denoted by gradfðXÞ, can be computed as the orthogonal pro-
jection ofG onto TXMr, which is represented as follows:

gradfðXÞ ¼ PTXMrðGÞ; (6)

where

PTXMrðZÞ : Z 7! PUZPV þ P?
U ZPV þ PUZP

?
V ; (7)

is the orthogonal projection of any Z 2 Rm�n onto the tan-
gent space at X ¼ UdiagðssÞVT, where PU ¼ UUT and
P?
U ¼ I�UUT for any U 2 Stmr .
In addition, there are two crucial operations in the opti-

mization on the manifold, namely Retraction and Vector
Transport. The purpose of retraction is to map a tangent vec-
tor in the tangent space back to the manifold after updating
at each iteration, while vector transport maps a tangent vec-
tor from a tangent space to another tangent space. These
two operations are both necessary when updating the
matrix X. According to [22], the retraction can be performed
by the following closed form:

RXðHÞ ¼ PMrðXþHÞ ¼
Xr

i¼1

sipiq
T
i ; (8)

where
Pr

i¼1 sipiq
T
i is the best rank-r approximation of

XþH. The computation of the vector transport can be rep-
resented as follows:

T X!Y : TXMr ! TYMr; hh 7! PTYMrðhhÞ; (9)

where PTYMrðhhÞ is the orthogonal projection of hh onto the
tangent space TYMr at X ¼ UdiagðssÞVT, whose computa-
tion can be found in its definition (7). For more details of
Riemannian geometry, see [22], [27].

4 MAXIMUM MARGIN MATRIX FACTORIZATION FOR

COLLABORATIVE FILTERING

This section investigates matrix factorization as it is applied
in the recommender system setting. Our proposed method
handles the maximum margin loss function efficiently by
avoiding expensive SDP solvers used in M3F [6], and addi-
tionally estimates the rank of the recovered matrix in a
stage-wise manner (as shown in Algorithm 3), which ena-
bles general matrix factorization approaches to cope with
ordinal rating data in recommender systems.

4.1 Problem Formulation

In recommender systems, users usually provide discrete rat-
ings on items such asmusic andmovies. Typically, ratings are
represented as +1/�1 (like and dislike), or 1 to 5 stars, or simi-
lar. Maximummargin matrix factorization (M3F) is proposed
to improve performance in such a scenario [6]. LetV be a sub-
set containing the indices of the observed entries. Given an
observation matrix Y 2 Rm�n, assume that for any ij 2 V, we
have Yij 2 f1; 2; . . . ; Lg, where L is the maximum rating
value. By using Lþ 1 thresholds, i.e., u0 � u2 � � � � � uL, the
real valued Xij can be related to the discrete values in the
following hardmargin approach:

uYij�1 þ 1 � Xij � uYij
� 1:

We set u0 ¼ �1 and uL ¼ þ1 by default, while the remain-
ingL� 1 thresholds can be determined based on the data.We
denote these L� 1 thresholds as uu ¼ ½u1; u2; . . . ; uL�1�T
2 RL�1. In a soft-margin setting, we introduce a slack variable
for each entry ofX in the followingmanner:

��ij ¼
XL�1

z¼1

ðhðTz
ij � ðuz � XijÞÞÞ2; 8ij 2 V; (10)

where Tz
ij ¼

þ1 for z � Yij

�1 for z < Yij

�
and hðzÞ ¼ maxð0; 1� zÞ.

As mentioned in the related works, M3F is optimized by
general SDP solvers [6]. It can be very computationally
unaffordable if the scale of rating data is large. Among gen-
eral MF optimization algorithms, most existing methods
assume the smoothness of the loss functions [20], [21], [22],
[23], [24], [25], which is not capable of dealing with the non-
smooth hinge loss.

To handle the discrete ordinal rating data in this paper,
we apply the squared hinge loss

‘ðX; uuÞ ¼ 1

2

X
ij2V

��ij: (11)

In addition, we add a regularization term �ðXÞ ¼ 1
2 ðjjXjj

2
F þ

njjXyjj2F Þ to prevent over-fitting, where Xy is the pseudo-
inverse, n > 0 is a trade-off parameter, and jjXyjj2F is a bar-
rier to avoid the decrease of the rank of X [22]. We set n as a
small value by default (e.g., n ¼ 0:0001) in experiments.
Thus, our objective function can be formulated as below:

min
X;uu

fðX; uuÞ; s:t: rankðXÞ ¼ r; (12)

where fðX; uuÞ ¼ ��ðXÞ þ ‘ðX; uuÞ and 0 < � < 1 denotes the
regularization parameter. Note that the regularizer �ðXÞ is
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important for preventing from the issue of over-fitting in the
context of M3F. An experiment demonstrating the effective-
ness of the regularizer is given in Section 6.1.2.

Algorithm 1. Compute Riemannian Gradient gradfðXÞ
1: Let � ¼ �diagðss � n=ss3Þ, and compute bG via (14).

2: ComputeGu ¼ bGTU, andGv ¼ bGV.

3: ComputecM ¼ UTGv.
4: Compute Up ¼ Gv �UcM, and Vp ¼ Gu �VcMT.

5: UpdateM ¼ cMþ �.
6: Output Up, Vp, andM, and gradfðX; uuÞ ¼ UMVTþ

UpV
T þUVT

p .

After obtaining the final real valued matrix X, the projec-
tion from real values to discrete values is easily achieved by
the following approach:

Y	
ij ¼ maxfzþ 1jXij � uz; z ¼ 0; . . . ; L� 1g: (13)

However, Problem (12) is non-convex due to the rank
constraint rankðXÞ ¼ r, and optimization is thus difficult.
We note that X is restricted on fixed-rank matrices and
accordingly propose to solve Problem (12) based on the Rie-
mannian geometries on fixed-rank matrices.

Following [22], a tangent vector hh 2 T XMr is represented
as hh ¼ UMVT þUpV

T þUVT
p (see Eq. (4) for details). Let bG

and gradfðX; uuÞ denote the gradient of ‘ðX; uuÞ in Euclidean
space and the Riemannian gradient of fðX; uuÞw.r.t. X, respec-
tively. Based on Eqs. (10) and (11), we obtain the following:

bGij ¼
@‘ðX; uuÞ
@Xij

¼
XL�1

l¼1

T l
ij � hðT l

ij � ðul � XijÞÞ: (14)

Let � denote the gradient of�ðXÞw.r.t. X, then it can be com-
puted by � ¼ �diagðss � n=ss3Þ. According to the definition of
the Riemannian gradient, atX ¼ UdiagðssÞVT, we have

gradfðX; uuÞ ¼ PTXMrðbGÞ;

where PTXMrðbGÞ is the projection of bG onto the tangent
space T XMr, defined in (7). The detailed computation of
gradfðX; uuÞ is summarized in Algorithm 1.

Lemma 1 ([52]). Suppose Up, Vp, and M are obtained from
Algorithm 1, then gradfðX; uuÞ ¼ UMVT þUpV

T þUVT
p .

Proof. Proof is in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2018.2882197. tu

For the optimization of the thresholds uu, it is easy to com-
pute the gradient of fðX; uuÞ w.r.t. uu, which we denote as
g 2 RL�1. For each element of g, say gl for 1 � l � L� 1, we
have the following equation:

gl ¼
@fðX; uuÞ

@uz
¼

X
ij2V

�Tz
ij � hðTz

ij � ðuz � XijÞ: (15)

4.2 Block-Wise Nonlinear Riemannian Conjugate
Gradient Descent for M3F

Due to the presence of the fixed-rank constraint, Prob-
lem (12) is NP-hard. Manifold optimization usually

shows advantages in terms both of efficiency and con-
vergence [22]. To enable MF to handle M3F problems,
we therefore design a new algorithm which adopts mani-
fold optimization techniques employed in [22] and mea-
nwhile alternatingly updates the recovered matrix X and
thresholds uu.

There are two variables to be optimized in Prob-
lem (12): the low rank rating matrix X 2 Mr and the
thresholds uu 2 RL�1. We propose a block-wise algorithm
to update these two variables alternately, which we call
Block-wise Nonlinear Riemnnian Conjugate Gradient,
summarized in Algorithm 2. At each iteration of BNRCG,
we first update X with fixed uu by minimizing fðX; uuÞ via
Nonlinear Riemannian Conjugate Gradient (Steps 3, 4, 8
and 9) and then update uu with fixed X by minimizing
fðX; uuÞ (Steps 10 and 11). Steps 3-9 are described below in
details.

Due to the presence of the rank constraint, X is
required to stay on the manifold of the fixed-rank matri-
ces. Update X on manifold is thus quite different from the
conventional gradient methods in Euclidean space. It is
necessary to always update X following a search direction
on the manifold as long as the rank of X does not change.
Suppose that Xt is the variable in the tth iteration in
BNRCG in Euclidean space, and hht denotes the search
direction of the current iteration. Then we have the fol-
lowing equation:

hht ¼ �gradfðXtÞ þ bthht�1; (16)

where bt can be calculated by a Polak-Ribi�ere (PR+) rule [22]

bt ¼
gradfðXtÞTðgradfðXtÞ � gradfðXt�1ÞÞ

hgradfðXt�1Þ; gradfðXt�1Þi
: (17)

Nevertheless, we cannot simply perform the computa-
tion represented in Eqs. (16) and (17), since gradfðXtÞ 2
T XtMr and gradfðXt�1Þ; hht�1 2 T Xt�1

Mr, which are in dif-
ferent tangent spaces. To make (17) valid, we apply a previ-
ously mentioned geometric operation, vector transport,
which is defined in Eq. (9).

Apart from the validity of (17), one has to always make hht
gradient-related, i.e., hhht; gradfðXt�1Þ; hht�1i < 0 (See Defini-
tion 4.2.1 of [27]). This can be ensured by Steps 5 to 7, which
is crucial for the convergence analysis later on.

The step sizes in Steps 8 and 11 in Algorithm 2 are com-
puted by the line search method. In Step 8, if the descent
direction is given by hht 2 TXtMr, the step size at is deter-
mined by the following Armijo rule:

fðRXtðathhtÞ; uutÞ � fðXt; uutÞ þ c1athgradfðXt; uutÞ; hhti; (18)

where 0 < c1 < 1. When updating uutþ1 by the standard
gradient descent method, the step size gt can be similarly
computed by the line search on the following Armijo rule:

fðXtþ1; uutþ1Þ � fðXtþ1; uutÞ þ d1gthgt;�gti; (19)

where d1 is the parameter and 0 < d1 < 1:
By applying the following Armijo line search strategy,

one is able to find a step size that fulfills the Armijo rule
(e.g., (18) and (19))
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For a smooth function fðxÞ : Rn ! R;

find the smallest integer i ¼ 0; 1; 2; . . .

such that fðxþ didÞ � fðxÞ þ c0d
ihrfðxÞ;di;

where d is a descent direction, c0; d 2 ð0; 1Þ:

In [53], finite reduction of the step size to make Armijo rule
hold is generally analyzed. For more details of the finite ter-
mination property of Armijo line search for our specific
problem, please refer to discussion in Appendix A, avail-
able in the online supplemental material.

Algorithm 2. BNRCG for Fixed-RankM3F

1: Given rankðXÞ ¼ r. Initialize X1, hh0, and uu1. Let t ¼ 1.
2: while stopping conditions not achieve do
3: ComputeHt ¼ �gradfðXt; utÞ according to (6).
4: Compute the conjugate direction with PR+ rule:

hht ¼ Ht þ btT Xt�1!Xtðhht�1Þ 2 TMr.
5: if hgradfðXt; utÞ; hhti � 0 then
6: Set hht ¼ Ht .
7: end if
8: Choose a step size at by Armijo line search (18).
9: Set Xtþ1 ¼ RXtðathhtÞ.
10: Compute gt according to (15).
11: Choose a step size gt by Armijo line search (19) and

set uutþ1 ¼ uut � gtgt.
12: Let t ¼ tþ 1.
13: end while

Next, we show that Algorithm 2 is guaranteed to converge
to a stationary point of fðX; uuÞ by the following Theorem.

Theorem 1. The BNRCG algorithm is guaranteed to converge to
a stationary point ðX	; uu	Þ of fðX; uuÞ where gradfðX	; uu	Þ ¼ 0
andruufðX	; uu	Þ ¼ 0.

Proof. Proof is in Appendix A, available in the online sup-
plemental material. tu

4.3 Automatic Latent Factor Detection by Active
Subspace Search

Although all the fixed-rankmatrices lie on the samemanifold,
there is still a challenge: how to estimate the rank of the recov-
ered matrix? In this section, we present an approach to esti-
mate the rank in a stage-wisemanner.

We have introduced BNRCG to alternately update X and
uu with the rank r of X fixed. However, r is often unknown in
practice. In this section, we present an active subspace
search method to tackle this issue by estimating the rank of
X automatically. Our approach is built upon BNRCG and
treats BNRCG as a subproblem. We name this method
ARSS-M3F and summarize it in Algorithm 3.

As shown in Algorithm 3, after initializing X0 ¼ 0 where
��0 ¼ b, ARSS-M3F performs the following two main stages
at each iteration:

� It identifies the most active subspace by the worst-
case analysis (Steps 3-5).

� It finds the solution of the fixed rankM3F problem by
BNRCG (Steps 6-9).

In the first main stage, we compute the gradient fðX; uÞ
w.r.t. X, denoted by G, and find the most active subspace by
conducting a truncated SVD onG with the dimensionality of

r. In the secondmain stage, we initialize Xk ¼RXk�1ð�tmin
�XrÞ

where the step size tmin is determined by the line search
method on the following condition:

fðRXk�1ð�tminG
k�1ÞÞ

� fðXk�1Þ � tmin

2
hGk�1;Gk�1i:

(20)

Then we use the initialized Xk as the input of BNRCG (Algo-
rithm 2) where Xk and uk are updated alternately. We
increase the rank by r ¼ rþ r in Step 9, and then set r as the
estimated rank of Algorithm 2. Considering the Inequal-
ity (20), the objective value fðXkÞ monotonically decreases
w.r.t. the iteration index k. As a result, we have the follow-
ing stopping condition for Algorithm 3:

ðfðXk�1Þ � fðXkÞÞ=ðrfðXk�1ÞÞ � �; (21)

where � is a stopping tolerance. As the rank of X increases
gradually stage by stage, we can ultimately estimate the
rank of the underlying low rank matrix.

Algorithm 3. ARSS-M3F

1: Initialize X0 ¼ 0, r ¼ 0, ��0 ¼ b and u. Let k ¼ 1.
2: while stopping condition not achieved do
3: Find active subspaces as follows:

4: (a): ComputeG ¼ @fðXk;uÞ
@Xk ;

5: (b): Do thin SVD onG: ½Pr;Sr;Qr� ¼ SVDðG; rÞ.
6: Let �Xr ¼ PrSrQ

T
r and perform master problem

optimization:
7: (a): Find an appropriate step size tmin by (20).

8: (b): initialize Xk ¼ RXk�1ð�tmin
�XrÞ (Warm Start).

9: (c): Let r ¼ rþ r and update Xk and uk by BNRCG
(Algorithm 2).

10: Set k ¼ kþ 1.
11: end while

Now we discuss a little bit on the computational expense
on SVDs. First, our algorithm does not require full SVDs.
Take a look at BNRCG in Algorithm 2, which restricts the
solution at each of the tth iteration Xt on a manifold Mr.
Recall in Eq. (3), all matrices on Mr have r non-zero singu-
lar values. As long as the solution is restricted on the mani-
foldMr, we can only consider the largest r singular values.

In the view of ARSS-M3F in Algorithm 3, the estimated
rank r is initialized by r ¼ 0 and updated by r ¼ rþ r
(Line 9). As can be seen, the estimated rank r is usually very
small, so the SVDs in BNRCG is partial SVDs, rather than
full SVDs. In the experiment, specifically in Table 2, we find
that the average rank estimated by ARSS-M3F on real-world
data is usually very small, e.g., 8, 12.

Second, part form the unnecessary full SVDs, our method
maintains the active basis by first performing partial SVDs
in the beginning of the algorithm, where the rank r is usu-
ally set to a very small value, e.g., 1 or 2. In the subsequent
iterations, therefore, the algorithm takes advantage of the
maintained active basis to avoid repeated partial SVDs.

5 ROBUST MATRIX FACTORIZATION FOR OUTLIER

DETECTION

In this section, we investigate robust matrix factorization
where sparse outliers occur. Many literatures cope with
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sparse outliers via RPCA, while there are fewMF approaches
proposed based on manifold optimization. Similarly, armed
with manifold optimization techniques, we propose a stage-
wise algorithm to deal with outlier detection, which is also
shown to inherit the efficiency to handle large-scale data.

Outlier removal is a requirement for matrix recovery
algorithms in many real applications where sparse large
errors occur. ‘1 loss is known to be insensitive to outliers,
and achieves great success in outlier removal. However, the
‘1 loss is non-smooth, and most existing matrix factorization
methods focus on smooth functions rather than non-smooth
loss. For example, Algorithm 2 requires a smooth loss func-
tion fðX; uuÞ. This section thus enables matrix factorization
algorithms to deal with non-smooth loss based on ALM. We
take ‘1 loss as an example for convenience.

Algorithm 4. Matrix Factorization for Non-Smooth
‘1-Norm Loss by ALM

1: Initialize E0 ¼ 0, Z0 ¼ 0, X0 ¼ 0, m0 > 0 and r > 1.
Set k ¼ 0.

2: while not converge do
3: while not converge do
4: Xkþ1 ¼ LRGeomCGðXkÞ (Algorithm 5).

5: Ekþ1 ¼ S 1
mk
ðPVðY� Xkþ1 � Zk

mkÞÞ (Eq. (27)).
6: end while
7: Zkþ1 ¼ Zk þ mkðPVðEkþ1 þ Xkþ1 � YÞÞ.
8: mkþ1 ¼ rmk:
9: Set k ¼ kþ 1.
10: end while

First, we specify the loss function of a matrix factoriza-
tion problem as follows:

min
X

jjPVðYÞ � PVðXÞjj1; s.t. rankðXÞ ¼ r; (22)

where X 2 Rm�n is the low-rank matrix to be recovered, and
Y 2 Rm�n is the observation matrix. PV denotes the orthogo-
nal projection onto the linear space of matrices support on
V: PVðXÞ ¼ Xij if ðijÞ 2 V; PVðXÞ ¼ 0 otherwise. By intro-
ducing an auxiliary variable PVðEþ XÞ ¼ PVðYÞ, Prob-
lem (22) becomes:

min
X;E

jjEjj1; s.t. PVðEþ XÞ ¼ PVðYÞ; rankðXÞ ¼ r: (23)

To deal with the equality constraint, we construct the aug-
mented Lagrangian function as follow:

LðX;E;Z;mÞ ¼ jjEjj1 þ hZ; ðPVðEþ X� YÞÞi

þ m

2
jjPVðEþ X� YÞjj2F ;

(24)

where X 2 Mr, Z 2 Rm�n are the Lagrangian multipliers,
and m > 0 is a penalty parameter.

The optimization can then be performed by alternately
updating the four variablesX, E, Z and m. The outline of exact
ALM is summarized in Algorithm 4, but we apply the inexact
ALM framework for the sake of efficiency in our experiments.
Inexact ALM, widely used in many works [51], performs the
innder loop of Algorithm 4 starting from Line 3 only once in
each outer loop. In the following two sections, we present the
updating details ofX and E, respectively.

5.1 Optimization of X

When updating X, we fix all the remaining variables in the
augmented Lagrangian function (24). Let k denotes the
index of iteration. We have the following relation:

Xkþ1 ¼ argmin
X2Mr

hZk;PVðEk þ X� YÞi

þ mk

2
jjPVðEk þ X� YÞjj2F

¼ argmin
X2Mr

mk

2

� jjZkjj2F
ðmkÞ2

þ jjPVðEk þ X� YÞjj2F

þ 2

mk
hZk;PVðEk þ X� YÞi

�
� mk

2

jjZkjj2F
ðmkÞ2

¼ argmin
X2Mr

jjPVðMkÞ � PVðXÞjj2F ;

(25)

where Mk ¼ Y� Ek þ Zk

mk. Problem (25) can be minimized by

LRGeomCG proposed in [22], which shares a number of
geometric concepts and operations with BNRCG in Algo-
rithm 2, e.g., retraction, vector transport and Armijo line
search. We thus provide a brief summary of this algorithm
in Algorithm 5. Moreover, Algorithm 5 is guaranteed to
converge to a stationary point [22].

Algorithm 5. LRGeomCG(Xinitial) [22]

1: Initialize X1 ¼ Xinitial, hh0 ¼ 0, and t ¼ 1.
2: while stopping conditions not achieved do
3: ComputeHt ¼ �gradfðXtÞ according to (6).
4: Compute the conjugate direction with PR+ rule:

hht ¼ Ht þ btT Xt�1!Xtðhht�1Þ 2 TMr.

5: Choose a step size at and set Xtþ1 ¼ RXtðathhtÞ.
6: Let t ¼ tþ 1.
7: end while

5.2 Optimization of E

When updating E, we fix all the remaining variables in the
augmented Lagrangian function (24). Let k denotes the
index of iteration, and then, similarly to the update of X, we
have the following relation:

Ekþ1 ¼ argmin
E

jjEjj1 þ hZk;PVðEþ Xkþ1 � YÞi

þ mk

2
jjPVðEþ Xkþ1 � YÞjj2F

¼ argmin
E

1

mk
jjEjj1 þ

1

2
jjPVðE�NkÞjj2F ;

(26)

where N ¼ Y� Xkþ1 � Zk

mk. The above problem is known as a

soft-thresholding problem, and we are able to solve it easily
by the following soft-thresholding operator:

S 1
m
ðAijÞ ¼ signðAijÞmax

�
jAijj �

1

mk
; 0

�
; (27)

where signðAijÞ returns the sign of Aij. In our problem, to

obtain Ekþ1, A ¼ PVðEk � ðY� Xkþ1 � Zk

mkÞÞ.

5.3 Convergence Analysis

Problem (23) is non-convex due to the presence of the rank
constraint. We provide the theoretical analysis to show that
Algorithm 4 is guaranteed to converge to a stationary point.
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Lemma 2. Assume that for any v 2 @jjEkjj1
@Ek

we have jjvjj1 � B
where k � 0 and B � 0. Given the non-decreasing sequence
fmkg with m0 > 0, and Z0 = 0, then the sequence fZkg in
Algorithm 4 is bounded, i.e., jjZkjjF � B for every k.

Proof. Proof is in Appendix A, available in the online sup-
plemental material. tu

Remark 1. We emphasize in proof of Lemma 2 that the

assumption (i.e., jjvjjF � B for any v 2 @jjEkþ1jj1
@Ekþ1 ) in

Lemma 2 always holds in our case. Consider the compu-

tation of Ekþ1, i.e., Ekþ1 ¼ S 1
mk
ðPVðY� Xkþ1 � Zk

mkÞÞ. In this

soft-thresholding operator, Y is the given observation

matrix and thus all elements in Y are bounded. Then Ekþ1

is bounded if Xkþ1 and Zk

mk are bounded. X
kþ1 is derived by

solving Problem (25), whose convergence is guaranteed

in [22]. Thus, all elements in Xkþ1 are bounded as long as
Ek and Zk

mk are bounded. Given that we initialize E0 ¼ 0

and Z0 ¼ 0 and the non-decreasing sequence fmkg with

m0 > 0, for any k � 0, all elements in Xk is bounded. This

shows that jjvjjF � B always hold in our case.

Theorem 2. Suppose that the sequences fXkg, fEkg, fZkg and
fmkg are generated by Algorithm 4. Then any accumulation
point ðX	;E	Þ of Algorithm 4 is a stationary point, where the
gradient of Problem (24) w.r.t. X vanish.

Proof. Proof is in Appendix A, available in the online sup-
plemental material. tu

6 EXPERIMENTS

In this section, we investigate the performance of the pro-
posed algorithms on three experiments, namely, collabora-
tive filtering, HDR imaging and batch image alignment. We
emphasize that HDR imaging is very similar to batch image
alignment except that HDR imaging usually considers RGB
images, while batch image alignment often consider grey
scale images. In the collaborative filtering experiment, we
apply the proposed ARSS-M3F (Algorithm 3) to exploit the
discrete ordinal data in recommender systems. In the HDR
imaging and batch image alignment experiments, we apply
the proposed robust matrix factorization algorithm (Algo-
rithm 4) to detect sparse outliers.

6.1 Collaborative Filtering

We demonstrate the performance of the proposed methods,
namely BNRCG-M3F with fixed-rank problems and ARSS-
M3F, by comparing them with several related state-of-the-

art methods: FM3F [18], GROUSE [31], LMAFIT [23],
ScGrassMC [24], LRGeomCG [22], RTRMC [28] and
libpmf [54], on both synthetic and real-world CF tasks.
Seven datasets are used in the experiments, comprising
three synthetic datasets and four real-world datasets, Mov-
ielens 1M, Movielens 10M [55], Netflix [56] and Yahoo!
Music Track 1 [57]. The two small scale synthetic datasets
are respectively used to investigate the sensitivity of the reg-
ularization parameter and compare the convergence behav-
ior of the M3F algorithms. The large scale ordinal synthetic
dataset, along with the four real-world recommender data-
sets, is used to demonstrate the performance and efficiency
of our methods. The size of Netflix is 480,189 by 17,770 with

100,480,507 entries, and Yahoo! Music is 1,000,990 by
624,961 with 262,810,175 entries. They are both of large size
and very sparse (98.82 and 99.96 percent zeros respectively).
By comparing the results achieved on them, we aim to show
the satisfactory efficiency of our proposed algorithms in real
applications.

The root-mean-square error (RMSE) on both the training

set and the testing set will be used as the comparison metric:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij2PðY	
ij � YijÞ2=jPj

q
, where Y	 denotes the

reconstructed ratings according to (13), and jPj denotes
number of elements in the set P. All the experiments are
conducted in Matlab on a work station with an Intel(R)
Xeon(R) CPU and 64 GB memory.

6.1.1 Synthetic Experiments

In the synthetic experiments where we know the ground-
truth, we will demonstrate four points: 1) The sensitivity of
the regularization of the proposed M3F methods; 2) The effi-
ciency of BNRCG-M3F and ARSS-M3F over other methods;
3) The importance of the squared hinge loss measure over
other measures for rating data, e.g., the least square error;
4) The effectiveness of latent factor detection by ARSS-M3F.
To demonstrate the above points, we study three synthetic
problems on two scales.

Motivated by [20], [24], we first generate a ground-truth
low-rank matrix for each of the three synthetic problems bybX ¼ bUdiagðbddÞbVT, where dd is an r-sparse vector with each non-
zero entry sampled from Gaussian distribution Nð0; 1000Þ,bU 2 Stmr and bV 2 Stnr . In both of the small-scale problems, bX is
of size 1;000� 1;000 with r ¼ 20, while the large-scale prob-
lem bX is of size 20;000� 20;000 with r ¼ 50. After sampling
the original entries, we respectively produce the binary rat-
ings by bYij ¼ sgnðbXijÞ, and the ordinal ratings f1; 2; 3; 4; 5g by
projecting the entries of bX into five bins according to their val-
ues,which results in a ratingmatrix bY. Once bY has been gener-
ated, we sample l ¼ rðmþ n� rÞ � zos entries from bY
uniformly to form the observed ratings Y, where zos is the
oversampling factor [51]. In the experimentswe set zos ¼ 3:5.

6.1.2 Sensitivity of Regularization Parameter

In this section, we perform experiments on the small-scale
binary matrix to demonstrate the sensitivity of regularization.
To illustrate the impact of regularization in the proposed
methods, we test BNRCG-M3F with various regularization
parameters �. Fig. 1 reports the training RMSE and testing
RMSE. The convergence is shown in Fig. 2a. As can be seen,
regularization is crucial to prevent overfitting.

Fig. 1. RMSE of BNRCG-M3F on binary rating data.
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6.1.3 Convergence of M3F on Ordinal Rating Data

In this section, we perform experiments on the small-scale
ordinal matrix. We compare the proposed algorithms with
the six baselinemethods and collect the convergence behavior
of the three M3F methods. The ground-truth rank is used as
the estimated rank for all methods excludingARSS-M3F.

The convergence behavior of our methods and FM3F is
illustrated in Fig. 2b, which shows that our methods can
converge faster to a better stationary point. Table 2 reports
the resultant RMSE on the testing set and the computational
time of each method on the small-scale synthetic ordinal rat-
ing dataset.

6.1.4 Efficiency of M 3F on Ordinal Rating Data

In this section, we perform experiments on the large-scale
ordinal matrix. We compare our methods with the five base-
line algorithms. We use the ground-truth rank as the esti-
mated rank for all methods except ARSS-M3F. The average
estimated rank of ARSS-M3F is 42, which is close to the
groundtruth rank of 50. According to the estimated rank in
the two synthetic datasets, the latent factor detection of
ARSS-M3 is effective. The RMSE on the testing set and
computational time of each algorithm are listed in Table 2.

6.1.5 Real-World Experiments

To demonstrate the significance of the hinge loss to the rat-
ing data and effectiveness of latent factor estimation of our
method in real-world data experiments, we study four large
scale datasets, namely Movielens 1M, Movielens 10M, Net-
flix and Yahoo! Music Track 1. The baseline methods

comprise FM3F, GROUSE, LMAFIT, ScGrassMC,
LRGeomCG and RTRMC.

Table 1 lists the size statistics of the four datasets. The
vast majority (99.71 percent) of ratings in Yahoo! Music
Track 1 are multiples of ten. For convenience, we only con-
sider these ratings. For Movielen 10 M and Yahoo! Music
Track 1, we map the ratings to ordinal integer values prior
to the experiment. For each dataset, we sample 80 percent
of data into the training set and the rest into the testing set.

Table 2 reports the computational time of all comparison
methods and testing RMSE on the four datasets. The resul-
tant RMSE demonstrates that our method can recover the
matrix with lower error than least square loss. Note that in
all experiments on both synthetic and real-world data, no
model selection cost is included for any comparison
method. If model selections are considered, the time cost of
the comparison methods will be much higher. Some results
for GROUSE and M3F are not available due to their high
computation cost. Table 2 shows that ARSS-M3F and
BNRCG-M3F recover the rating matrix efficiently and out-
perform other comparison methods in terms of RMSE on
the four real-world datasets. It is worth mentioning that
although LRGeomCG is faster on Yahoo dataset, it achieves
much worse RMSE than the M3F-based methods.

6.2 HDR Imaging

In this section, we perform HDR imaging experiments to
investigate the performance of our proposed matrix factori-
zation algorithm for non-smooth ‘1-norm loss. We compare
our proposed method with four baselines, including
PSSV [10], LMAFIT [40] and RegL1 [39]. Experiments are
performed on six datasets, namely Waterfall, Forest,
Desk, USYD, Desk-full and USYD-full. These datasets
are summarized in Table 3. All the experiments are

TABLE 1
Statistics of the Real-World Recommender Datasets

DataSets # users # items # ratings

Movielens 1M 6,040 3,952 1,000,209
Movielens 10M 71,567 10,681 10,000,054
Netflix 480,189 17,770 100,480,507
Yahoo! Music Track 1 1,000,990 624,961 262,810,175

Fig. 2. Relative objective values of various methods.

TABLE 2
Experimental Results on Synthetic and Real-World Datasets

Methods Small Synthetic* Large Synthetic* Movielens 1My Movielens 10My Netflixy Yahoo Musicy

RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

FM3F [18] 0.3811 11.99 0.3899 2186 0.9344 212.2051 0.9143 13001 1.0971 65662 - -

GROUSE [31] 0.4718 27.84 0.512 11214 0.9225 39.4184 0.8653 3853 - - - -

LMAFIT [23] 0.4701 6.08 0.4973 827 0.9373 19.9465 0.8424 832 0.9221 4374 24.222 24349

ScGrassMC [24] 0.4638 10.19 0.4714 2149 0.9372 21.3109 0.8427 917 0.9192 5787 24.7982 37705

LRGeomCG [22] 0.4679 6.01 0.4904 814 0.9321 10.2484 0.849 312 0.9015 3151 25.2279 8666

RTRMC [28] 0.4676 8.68 0.4715 884 0.9311 14.1038 0.846 673 0.9102 6465 24.5971 32592

libpmf [54] 0.4900 0.19 0.5115 5.42 0.9082 0.27 0.8021 63.40 1.6008 727.57 23.2410 3917

BNRCG-M3F 0.3698 5.34 0.3915 635 0.9285 13.4437 0.8437 714 0.9022 4118 23.8573 24631

ARSS-M3F 0.3693 5.33 0.3684 542 0.9222 9.5482 0.8411 650 0.9001 3583 23.7902 22065

Computational time is recorded in seconds.
*No model selection cost is included for any fix-rank method as the ground-truth rank is available.
yThe rank detected by ARSS-M3F is used as the estimated rank for other methods. Thus, no model selection is considered. The average rank estimated by
ARSS-M3F on Movielens 1M, Movielens 10M, Netflix, and Yahoo Music is 8, 14, 16, and 28, respectively.
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conducted in Matlab on a work station with an Intel(R)
Xeon(R) CPU and 32 GB memory.

The aim of HDR imaging is to remove the outliers from a
set of low dynamic range images, and generate a ghost-free
HDR image. The outliers in the LDR images can be moving
objects and areas of under-saturation or over-saturation.
Many contemporary devices, e.g., digital cameras and smart
phones, can generate images with very high resolution. For
example, an iPhone can capture 12-megapixel images. To
investigate the efficiency of HDR algorithms, we collect two
16-megapixel datasets by a mirrorless camera, i.e., Desk-full
and USYD-full, whose size imposes a challenge on HDR
algorithms. As a result, we produce two smaller dataset
from Desk-full and USYD-full by resizing LDR images to
1=3 of the original size, and name them Desk and USYD.

Of these baselines, PSSV is an RPCA-like algorithm,
while LMAFIT and RegL1 are built upon matrix factoriza-
tion. We introduce them briefly as follows:

� PSSV [10] Unlike the conventional RPCAwhich min-
imizes the nuclear norm of the matrix to be recov-
ered for a low-rank property, PSSV minimizes the
partial sum of singular values, whose formulation
can be represented as below:

min
X;E

jjXjjr þ �jjEjj1; s.t. Y ¼ Xþ E; (28)

where jjXjjr ¼
Pminðm;nÞ

i¼r si and si represents the ith
singular value of X by descending order. According
to [10], this method outperforms traditional RPCA
algorithms.

� LMAFIT [40] The formulation of LMAFIT is matrix
factorization and is similar to our model

min
X;U;V

jjY� Xjj1; s.t. X ¼ UVT: (29)

� RegL1 [39] The matrix factorization formulation of
RegL1 is as below:

min
U;V

jjY�UVTjj1 þ �jjVjj	; s.t. U>U ¼ I: (30)

This model requires the factor matrix U to be an
orthogonal matrix and V to be low-rank.

By comparing these baselines, we aim to demonstrate that
our proposed matrix factorization algorithm is capable of
dealing with outlier removal problems in a matrix facto-
rization manner, and even to perform better than existing
matrix factorization algorithms for ‘1 loss.

Following [10], we assume that the captured camera
image is presented as I ¼ kRDt in each RGB channel, where

k is a positive scalar, R is the sensor irradiance and Dt is the
exposure time. The observed matrix Y 2 Rm�n is the inten-
sity matrix, which is generated by vectorizing all of the LDR
images and stacking them together, i.e., Y ¼ ½vecðI1Þ; vec
ðI2Þ; . . . vecðInÞ�, where m is the number of pixels in each
LDR image, and n is the number of LDR images. Ideally,
the intensity of each LDR image is linear correlated, so the
rank of the matrix to be recovered X should be 1.

After obtaining the underlying low-rank matrices for
each channel, we apply the method proposed in [58] to con-
struct the HDR image. We list the HDR results of our pro-
posed method and other baselines in Figs. 3, 4, 5, 6, 7, and 8
for WaterFall, Forest, Desk, Desk-full, USYD and USYD-full
respectively. Due to the excessive memory requirement, we

TABLE 3
Summary of LDR Datasets

Datasets # LDR images Resolution

Forest 4 1,024 � 683
Waterfall [9] 8 767 � 505
desk 6 1,536 � 1,152
desk-full 6 4,608 � 3,456
USYD 6 726 � 1,088
USYD-full 6 3,264 � 4,896

Fig. 3. HDR imaging results on Waterfall.Water drops around the tar-
get waterfall are the target outliers to be removed. We show the detail of
some regions by zooming in via the boxes outlined in red, green and
blue. As shown, our method achieves similar outlier detection perfor-
mance to PSSV. LMAFIT removes most of these water drops, but not all.
RegL1 leaves many drops in the HDR image. This figure is best viewed
in color.

Fig. 4. HDR imaging results on Forest. The walking person is the target
outlier to be removed. We show the detail of some regions by zooming in
via the outlined box in red. As shown, our method and PSSV achieve
closely similar outlier detection performance. LMAFIT cannot remove all
the pixels of the walking person. RegL1 achieves the worst result. This
figure is best viewed in color.
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do not obtain the HDR results of PSSV on Desk-full and
USYD-full.

As can be observed from these HDR results in Figs. 3, 4,
5, 6, 7, and 8, our proposed algorithm generally achieves
the best outlier detection performance on all of the six
datasets. Among comparison methods, PSSV obtains very
close outlier detection performance on Waterfall, Forest
and Desk, compared to our method, but perform poorly
on USYD. LMAFIT achieves competitive results on USYD,
but cannot remove outliers well for other datasets. RegL1
generally achieves the worst performance on these six
datasets. This may result from the Gauss-Seidel-like opti-
mization, which could ultimately achieve an unsatisfactory
local minimum.

We list the training time of the proposed method and all
baselines in Table 4. LMAFIT shows the best training speed
but yields unsatisfactory outlier detection results. RegL1
has a slower training speed in the most situations than our
algorithm. PSSV achieves slower training speed than our
method in most cases, and there is an additional issue for
PSSV in which it requires excessive memory for SVDs on
large matrices. We demonstrate by the results in this table
that the proposed method is more stable in outlier removal
and more efficient for large matrix recovery.

6.3 Batch Image Alignment

Batch image alignment is similar to HDR imaging to some
extent, and requires to solve a series of robust low-rank
matrix recovery problems. It aims to align a number of
images of a single target object to a fixed canonical template.
In all these images, misalignment can occur in the image
plane, as well as outlier objects. Similarly to HDR imaging,
the key challenge of batch image alignment is to detect out-
liers. In [12], the authors proposed to solve a number of
low-rank matrix decomposition problems based on nuclear
norm and achieves some success. The formulation of our
matrix factorization algorithm on the image alignment
problem can be written as follows:

min
X;E;t

jjEjj1

s.t. Y 
 t ¼ Xþ E; rankðXÞ ¼ 1;
(31)

where Y 
 t ¼ ½vecðI1 
 t1Þ; vecðI2 
 t2Þ; . . . ; vecðIn 
 tnÞ�, Ii is
the ith image and ti is the corresponding transformation of
the ith image.

We perform our proposed algorithm on theWindows data-
set [12], which consists of 16 misaligned images. All the
experiments are conducted in Matlab on a work station with

Fig. 5. HDR imaging results on Desk. The toy is the target outlier to be
removed. We show the detail of some regions by zooming in via the box
outlined in red. As shown, our method and PSSV achieves close outlier
detection performance. LMAFIT cannot remove all the pixels of the toy.
RegL1 achieves the worst result. This figure is best viewed in color.

Fig. 6. HDR imaging results on Desk-full. The toy is the target outlier
to be removed. PSSV requires excessive memory, so we dit not obtain
PSSV results. We show the detail of some regions by zooming in via the
box outlined in red. As shown, our method outperforms the other two
baselines. LMAFIT cannot remove all the pixels of the toy. RegL1
achieves the worst result. This figure is best viewed in color.

Fig. 8. HDR imaging results on USYD-full. The walking person is the
target outlier to be removed. PSSV requires excessive memory, so we
did not obtain these results. We show the detail of some regions by
zooming in via the outlined box in red. As shown, our method and LMA-
FIT achieve similar outlier detection performance. LMAFIT and RegL1
cannot remove all the pixels of the walking person. We observe that
there are outlier pixels in the top of the red outline box of both PSSV and
RegL1 (the arm). This figure is best viewed in color.

Fig. 7. HDR imaging results on USYD. The walking person is the target
outlier to be removed. We show the detail of some regions by zooming in
via the box outlined in red. As shown, our method and LMAFIT achieve
similar outlier detection performance. PSSV and RegL1 cannot remove
all the pixels of the walking person. We observe there are some outlier
pixels in the bottom of the PSSV red outline box (legs), and the top right
of the RegL1 red outline box (the arm). This figure is best viewed in color.
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an Intel(R) Xeon(R) CPU and 32 GB memory. In this experi-
ment, we set the resolution of each image, i.e., Ii, to
1000� 1000, leading to recovered X 2 R1000000�16. RASL [12]
is chosen as the competing algorithm, which is based on

nuclear norm minimization and also optimized in an ALM
approach. The results are shown in Fig. 9. From Fig. 9, we
observe that our algorithm removes the outliers (e.g., the tree
branches on some of the windows) more effectively than
RASL. The main reason our algorithm obtains better outlier
removal results could be the hard low-rank constraint intro-
duced in our algorithm, i.e., rankðXÞ ¼ 1. In contrast to the
hard constraint in matrix factorization, RASL approximates
the low-rank structure on X by minimizing the nuclear norm.
This is a relatively soft constraint on the low-rank matrix X,
whichmake it possible to preserve a few outliers onX.

We additionally illustrate the training time for both algo-
rithms of the image alignment experiment in Table 5 to
show the efficiency. From the results in Table 5, our method
can achieve better efficiency even when our method
removes more outliers than RASL.

7 CONCLUSION

Matrix factorization achieves state-of-the-art performance on
low-rankmatrix recovery. Different applications require vari-
ous loss functions; For example, the rating data in recom-
mender systems are usually in discrete ordinal values, and
maximum margin loss tends to perform better than least
squared loss. In some computer vision applications, non-
smooth ‘1-norm loss is applied. We propose an effective opti-
mization algorithm to enable the original method to handle
the non-smooth case based on ALM. Extensive experiments
demonstrate that our method is competitive in both smooth
and non-smooth cases in terms of effectiveness and efficiency.
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