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Abstract. Deep learning (DL) has achieved remarkable performance on
digital pathology image classification with whole slide images (WSIs).
Unfortunately, high acquisition costs of WSIs hinder the applications in
practical scenarios, and most pathologists still use microscopy images
(MSIs) in their workflows. However, it is especially challenging to train
DL models on MSIs, given limited image qualities and high annotation
costs. Alternatively, directly applying a WSI-trained DL model on MSIs
usually performs poorly due to huge gaps between WSIs and MSIs. To
address these issues, we propose to exploit deep unsupervised domain
adaptation to adapt DL models trained on the labeled WSI domain
to the unlabeled MSI domain. Specifically, we propose a novel Deep
Microscopy Adaptation Network (DMAN). By reducing domain discrep-
ancies via adversarial learning and entropy minimization, and alleviating
class imbalance with sample reweighting, DMAN can classify MSIs effec-
tively even without MSI annotations. Extensive experiments on colon
cancer diagnosis demonstrate the effectiveness of DMAN and its poten-
tial in customizing models for each pathologist’s microscope.

Keywords: Histopathology image classification · Unsupervised
domain adaptation · Deep learning · Microscopy image · While slide
image

1 Introduction

Histopathology image is a gold standard for clinical diagnosis of cancer [1,2].
By examining processed tissue slides, pathologists are able to identify abnormal
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(a) normal (WSI) (b) adenoma (WSI) (c) adenocarcinoma (WSI)

(d) normal (MSI) (e) adenoma (MSI) (f) adenocarcinoma (MSI)

Fig. 1. Examples of the inter-domain discrepancy between WSIs (a–c) and MSIs (d–
f), and the intra-domain discrepancy in each category. Bottom right of each subfigure
shows the zoomed view.

tissues, pinpoint cancer types, and differentiate cancer stages at the cell level.
Notably, this task is highly labor intensive and requires extensive expertise.
Hence, computer-aided diagnosis (CAD) has been in great demand [3–5].

Despite success of deep learning (DL) [6–8] in medical image analysis, it
hinges on massive annotated images for training [2]. Thanks to digital slide
scan devices and hence a growing number of labeled whole slide images (WSIs),
remarkable performance has been achieved on digital pathology image classifica-
tion (DPIC) tasks, such as colon cancer diagnosis [9] and survival analysis [10].

However, due to high acquisition costs of WSIs, pathologists still largely rely
on microscopes in their workflows. This brings the need for CAD systems for
microscopy images (MSIs), where MSIs captured by digital cameras are fed into
computers as a stream for analysis. Unfortunately, it is even more challenging
to train DL models on MSIs due to: (1) variances of microscope devices in, e.g.,
light sources, scope shades and view fields; (2) varied preferences of pathologists,
e.g., some pathologists prefer darker light; (3) wild imaging environments with
white noises, motion blurs and losses of focus. To combat these challenges, one
attractive option is to customize models for each pathologist with a small num-
ber of MSIs gathered on his or her own device. However, annotation costs for
such customized MSIs are inevitably expensive. To this end, we are motivated
to leverage labeled data in the WSI domain to improve the performance in
the unlabeled MSI domain. This problem, known as deep unsupervised domain
adaptation (DUDA) [11–13], remains largely unexplored for MSIs [1].

DUDA from WSIs to MSIs poses three challenges. As shown in Fig. 1, the
first challenge is the inter-domain discrepancy, mainly derived from different
imaging devices and techniques [1]. In this regard, directly applying a WSI-
trained model to MSIs tends to perform poorly and be impractical. The second
challenge lies in the intra-domain discrepancy, which originates from inconsistent
data preparations, such as tissue collections, sectioning and staining [14]. Such
inconsistency would result in intra-class inhomogeneity and raise the difficulty
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Fig. 2. The scheme of Deep Microscopy Adaptation Network, where GAP means
Global Average Pooling [6] and GRL denotes Gradient Reverse Layer [11]. Consid-
ering the practical requirement of low computational cost and high inference speed, we
implement MobileNetV2 [6], a highly efficient deep convolutional network, to extract
features and predict classes.

of DPIC [15]. Lastly, class imbalance makes it particularly difficult to classify
minor but important categories [2], e.g., the adenocarcinoma in Fig. 1. However,
most DUDA methods for general images [11–13] and for WSIs [14,16,17] neglect
the intra-domain discrepancy and class imbalance, hence performing poorly in
this task.

To solve these challenges, we propose a novel Deep Microscopy Adaptation
Network (DMAN) algorithm. Specifically, we minimize both domain discrepan-
cies via adversarial learning and entropy minimization, while alleviating class
imbalance with sample reweighting. In this way, DMAN is able to learn domain-
invariant and discriminative features which contribute to DPIC of MSIs with
only labeled WSIs. Notably, this approach eliminates the need for annotating
MSIs and helps to customize models for each pathologist’s microscope, thus
showing great potential for real-world applications.

2 Method

2.1 Problem Definition

This paper studies deep unsupervised domain adaptation (DUDA) from WSIs to
MSIs. In this case, WSIs are well-labeled as the source domain, while the target
domain (i.e., MSIs) is fully unlabeled. Formally, we formulate source data as
Ds = {xs

i , y
s
i }ns

i=1, where xs
i denotes the i-th WSI with ys

i as its label, and ns is
the total number of WSIs. Meanwhile, target data is denoted as Dt = {xt

j}nt
j=1,

where xt
j is the j-th MSI and nt is the number of unlabeled MSIs. Both domains

have the same label space with C classes. The goal of this paper is to learn a deep
neural network, Gy(Gf (x)) → y, which learns domain-invariant features Gf (x)
for both domains, so that the classifier Gy(·) trained with labeled WSIs can
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also apply to unlabeled MSIs. To this end, we propose a novel Deep Microscopy
Adaptation Network (DMAN).

2.2 Deep Microscopy Adaptation Network

As shown in Fig. 2, DMAN consists of three key components: a deep convolu-
tional network Gf for feature representation, a classifier Gy for prediction, and
a domain discriminator Gd to discriminate features of WSIs from those of MSIs.

To overcome the three challenges described in Sect. 1, i.e., inter-domain dis-
crepancy, intra-domain discrepancy, and class imbalance for classification, we
train DMAN with the following three strategies, respectively. First, we adopt
domain adversarial learning [13] to enforce Gf to learn domain-invariant fea-
tures, so that the inter-domain discrepancy is minimized. On one hand, a domain
discriminator Gd is trained by minimizing a domain classification loss Ld to ade-
quately distinguish feature representations between WSIs and MSIs; on the other
hand, the feature extractor Gf is trained to confuse the discriminator by max-
imizing Ld. Following [11,14], we implement the adversarial optimization with
a gradient reversal layer (GRL) which reverses the gradient ∇Ld when back-
propagating ∇Ld to Gf . Second, to alleviate the intra-domain discrepancy and
encourage intra-class homogeneity, we train the base network (Gf , Gy) by min-
imizing the prediction entropy Lh. Third, we also exploit a class classification
loss Lc, namely focal loss, to train the imbalance-aware and discriminative base
network (Gf , Gy). We summarize the overall optimization procedure as follows:

(θ̂f , θ̂y) = argmin
θf ,θy

−αLd
︸ ︷︷ ︸

domain loss

+ βLh
︸︷︷︸

entropy loss

+ μLc
︸︷︷︸

focal loss

,

(θ̂d) = argmin
θd

αLd
︸︷︷︸

domain loss

, (1)

where θf , θy and θd indicate parameters of Gf , Gy and Gd, respectively. More-
over, α, β and μ are trade-off parameters. Note that the whole training process
can be implemented with standard backpropagation in an end-to-end manner.

We next detail domain classification loss Ld in Sect. 2.3, entropy loss Lh in
Sect. 2.4 and class classification loss Lc in Sect. 2.5.

2.3 Adversarial Learning for Inter-domain Adaptation

Diverse imaging devices and techniques intrinsically result in huge domain dis-
crepancies between WSIs and MSIs. To resolve the discrepancies, as we men-
tioned above, we resort to domain adversarial learning. Specifically, as shown in
Eq. (1), the key is to train the domain discriminator Gd and the feature extrac-
tor Gf via a minimax optimization problem regarding the domain loss. To this
end, most existing methods [11,13] adopt the generative adversarial loss [7] as
the domain classification loss Ld:

− 1
nt

∑

xt
j∈Dt

log
(

Gd(Gf (xt
j))

) − 1
ns

∑

xs
i∈Ds

log
(

1 − Gd(Gf (xs
i ))

)

, (2)
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where the domain label of the source domain is 0, and that of the target domain
is 1. Such a loss with sigmoid cross-entropy only evaluates domain classification
correctness but fails to measure the domain distance [18]. As a result, maximizing
this loss may not guarantee an effective Gf capable of learning highly domain-
invariant features. Instead, inspired by LSGAN [18], we propose to use the least
square loss for inter-domain adaptation:

Ld =
1
nt

∑

xt
j∈Dt

(

Gd(Gf (xt
j))−1)2 +

1
ns

∑

xs
i∈Ds

(

Gd(Gf (xs
i ))

)2
. (3)

This loss, directly matching a domain label with the prediction without sigmoid,
preserves domain distance. In this sense, it not only improves domain confusion
but also stabilizes training, thus boosting performance of DUDA.

2.4 Entropy Minimization for Intra-class Homogeneity

Color, scale, resolution and intensity variations are common in WSIs and MSIs.
These variations intrinsically lead to intra-class inhomogeneity in DPIC [14], and
thus degrade performance of existing deep algorithms [2]. To solve this issue, we
propose to impose the following entropy loss:

Lh = − 1
nt + ns

∑

xi∈Ds,Dt

C
∑

k=1

Gk
y(Gf (xi)) log

(

Gk
y(Gf (xi))

)

, (4)

where C denotes the class number and Gk
y(Gf (·)) indicates the predicted proba-

bility of class k. Note that, the conditional entropy is a measure of class overlaps,
so minimizing entropy encourages small overlaps among classes but high com-
pactness within a class [19], and thus alleviate intra-class inhomogeneity.

2.5 Focal Loss for Class-Imbalance Classification

We next detail class classification loss Lc based on only labeled WSIs (xs
i , y

s
i ).

Most existing DL models for medical image classification adopt cross-entropy:

− 1
ns

∑

(xs
i ,ys

i )∈Ds

C
∑

k=1

ys
i,k log

(

Gk
y(Gf (xs

i ))
)

, (5)

where ys
i,k means the label of the i-th source sample regarding class k. Although

cross-entropy performs well in many class-balanced classification tasks, it ignores
the class-imbalance issue, which is quite common in DPIC [1]. One possible solu-
tion to this issue is cost-sensitive learning, which assigns uneven misclassification
costs for different classes. One critical problem here is how to define costs for
multiple classes, since the ground-truth distribution of classes is unknown and
complicated in real-world DPIC tasks.
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Our solution is motivated by an observation that class imbalance intrinsically
makes classification of minority classes more difficult. As a result, the predicted
probabilities of minority classes would be lower than those of majority classes [8].
Hence, if we assign higher costs for the predictions with low probabilities but
assign low costs for those with high probabilities, we can redress the imbalance
better. Inspired by this observation, we propose to use the focal loss [8] as follows:

Lc = − 1
ns

∑

(xs
i ,ys

i )∈Ds

C
∑

k=1

ys
i,k(1 − Gk

y(Gf (xs
i )))

γ log
(

Gk
y(Gf (xs

i ))
)

, (6)

where γ is a hyperparameter to determine the degree to which classification
focuses on minority classes. To avoid excessive cost mitigation on majority
classes, a balanced value of γ is expected. By minimizing this loss, DMAN focuses
more on minority classes and thus deals with class imbalance better.

3 Experimental Results

We evaluate our method on the following settings.

Dataset: 303 H&E stained histopathology slides, diagnosed as 3 types of colon
polyps (normal, adenoma, and adenocarcinoma), are provided by the Sixth Affil-
iated Hospital of Sun Yat-sen University. WSI of each slide is acquired in 40×
magnification scale (229 nm/pixel) by the Hamamatsu NanoZoomer 2.0-RS scan-
ner. ROIs corresponding to the 3 types are then annotated by experts on WSI
scans with our in-house tool. MSIs of 30 slides are acquired with microscope
in 10× magnification scale (FOV: 2.73× 2.73 mm2, matrix size: 2048× 2048).
Specifically, we focus on 10× magnification scale, since it is the preferred scale
for pathologist’s diagnosis. For consistency, WSIs are down-sampled to the same
resolution as MSIs. Then, a sliding window crops MSIs and annotated WSI
regions into patches of size 512. The label of each patch is defined by the anno-
tation in its center. WSI and MSI patches acquired from 15 slides are taken as
the testing set, and the rest serves as the training set. Data statistics are shown
in Table 1.

Table 1. Statistics of dataset

Domain Training set Test set

normal adenoma adenocarcinoma Total normal adenoma adenocarcinoma Total

WSI 36,047 3,627 3,080 42,754 1,944 201 223 2,368

MSI 2,696 1,042 1,084 4,822 1,110 487 713 2,310

Baselines: We first compare DMAN with two baselines directly trained on
WSIs, including Source-only-C (with cross-entropy loss) and Source-only
(with focal loss). We also evaluate two other baselines that harness the collective
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power of WSIs and annotated MSIs, including Fine-tuning (finetuning the
model on WSIs with 500 labeled MSIs), and Mix (training with a mixture of
WSIs and 500 labeled MSIs). We also compare DMAN with several state-of-the-
art DUDA methods, including DDC [12], DANN [11], and ADDA [13]. For
fair comparison, all methods employ the same network structure to DMAN but
with different losses and optimization rules. For completeness, we also evaluate
two variants of DMAN, i.e., DMAN-F (using focal loss as the domain loss) and
DMAN-H (without the entropy loss).

Implementation Details and Metrics: We implement DMAN with Tensor-
flow. The discriminator consists of three fully connected layers with 1024, 1024
and 1 hidden units, respectively. We use Adam optimizer with the batch size
16 and fixed learning rate 10−5 on a single GPU. Moreover, we set μ= 1, γ = 2,
α = 0.1 and β = 0.1. Ablation studies are not included due to space limit. We use
Accuracy, mean Precision, mean Recall and F1-measure as the metrics.

3.1 Evaluation on Digital Pathology Image Classification

From the results in Table 2, we are able to draw several conclusions. First, we
observe apparent discrepancies between WSIs and MSIs, evidenced by the per-
formance gap between testing Source-only on WSIs and on MSIs. Moreover,
the superiority of Source-only over Source-only-C on MSIs confirms the effec-
tiveness of the focal loss in alleviating class imbalance. Second, fine-tuning
with limited labeled MSIs improves slightly over Source-only due to over-fitting.
Although Mix performs better than Fine-tuning, it also suffers from over-fitting
and performs unsatisfactorily. Third, all DUDA methods outperform Source-
only. Notably, DMAN and DANN (without labeled MSIs) even outperform Mix
(with labeled MSIs). These observations demonstrate positive contributions of
DUDA to DPIC tasks. Lastly, DMAN-based methods outperform all other base-
lines. This validates not only the superiority of our method but also its potential
for customizing to each pathologist’s microscope. Moreover, the improvement
of DMAN over DMAN-F and DMAN-H validates the necessity of least square
domain loss and entropy loss.

3.2 Visualization of Feature Representations

We visualize t-SNE embeddings of learned features after the GAP layer. Take
the adenoma class as an example. Figure 3(a) displays the domain discrep-
ancy between WSIs and MSIs. Figure 3(b–c) show that DDC and DANN fail
to reduce the inter-domain discrepancy and suffer from intra-class inhomogene-
ity. Figure 3(d) displays that DMAN can well resolve both inter-domain and
intra-domain discrepancies.
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Table 2. Comparisons on DPIC in terms of four metrics (%), where Labeled Set and
Test Set indicate the labeled set for training and evaluation, respectively.

Methods Labeled set Test set Accuracy Precision Recall F1-measure

Source-only WSI WSI 93.67 83.77 93.03 87.16

Source-only-C WSI MSI 82.21 87.78 76.15 78.55

Source-only WSI MSI 83.72 88.48 78.59 81.10

Fine-tuning Both MSI 85.02 83.47 85.40 84.15

Mix Both MSI 87.53 86.68 87.16 86.91

DDC WSI MSI 87.14 85.96 88.60 86.96

ADDA WSI MSI 85.11 86.55 83.51 84.72

DANN WSI MSI 88.01 88.60 87.17 87.82

DMAN-F WSI MSI 88.57 89.27 87.83 88.50

DMAN-H WSI MSI 89.09 90.17 88.21 89.10

DMAN WSI MSI 90.48 90.67 90.35 90.50

(a) Source-only (b) DDC (c) DANN (d) DMAN

Fig. 3. t-SNE plots in terms of classes and domains, where clusters of the adenoma are
circled. The closer samples across domains with the same class are, the more effective
domain adaptation is.

4 Conclusion

We have proposed the novel DMAN1 for adapting WSI-trained networks to
predict MSIs. In detail, we propose to reduce inter-domain discrepancy with
adversarial learning and diminish intra-domain discrepancy using entropy min-
imization. Moreover, we exploit the focal loss to effectively alleviate the class-
imbalance issue. In this way, DMAN conduct DPIC of MSIs effectively based
on only labeled WSIs. Promising experiments demonstrate the effectiveness of
DMAN and its potential in customizing models to each pathologist’s microscope.

1 This work was partially supported by National Natural Science Foundation of
China (NSFC) (61876208, 61502177 and 61602185), Guangdong Provincial Scien-
tific and Technological Fund (2017B090901008, 2017A010101011, 2017B090910005,
2018B010107001), Pearl River S&T Nova Program of Guangzhou 201806010081,
CCF-Tencent Open Research Fund RAGR20170105, Program for Guangdong Intro-
ducing Innovative and Entrepreneurial Teams 2017ZT07X183.
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