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Generating Visually Aligned Sound from Videos
Peihao Chen, Yang Zhang, Mingkui Tan, Hongdong Xiao, Deng Huang, and Chuang Gan

Abstract—We focus on the task of generating sound from
natural videos, and the sound should be both temporally and
content-wise aligned with visual signals. This task is extremely
challenging because some sounds generated outside a camera
can not be inferred from video content. The model may be
forced to learn an incorrect mapping between visual content and
these irrelevant sounds. To address this challenge, we propose
a framework named REGNET. In this framework, we first
extract appearance and motion features from video frames to
better distinguish the object that emits sound from complex
background information. We then introduce an innovative audio
forwarding regularizer that directly considers the real sound as
input and outputs bottlenecked sound features. Using both visual
and bottlenecked sound features for sound prediction during
training provides stronger supervision for the sound prediction.
The audio forwarding regularizer can control the irrelevant
sound component and thus prevent the model from learning an
incorrect mapping between video frames and sound emitted by
the object that is out of the screen. During testing, the audio
forwarding regularizer is removed to ensure that REGNET can
produce purely aligned sound only from visual features. Extensive
evaluations based on Amazon Mechanical Turk demonstrate that
our method significantly improves both temporal and content-
wise alignment. Remarkably, our generated sound can fool the
human with a 68.12% success rate. Code and pre-trained models
are publicly available at https://github.com/PeihaoChen/regnet.

Index Terms—video sound generation, visually aligned sound,
audio forwarding regularizer.

I. INTRODUCTION

VARIOUS visual events in our daily life are usually
accompanied by different sounds. Because visual events

and sounds are correlated, a person can instinctively infer
sounds by observing visual events. In this paper, we will
address the task of deriving sound from silent videos, which is
beneficial to many real-world applications, such as video editing
automation, generating sound for silent film, and assistance for
people with visual impairment.

The alignment to the corresponding video is an essential
characteristic for plausible generated sound. Specifically, a
visually aligned sound should have two aspects. The first aspect
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is the temporal alignment, i.e., synchronization. A temporally-
aligned approach should produce a sound event at exactly the
time or soon after the time when the corresponding visual event
occurs. For example, a dog barking should be synchronized
with the visual event in which the dog opens its mouth and leans
forward. The second aspect of the alignment is the content-
wise alignment. A sound that is content-wise aligned should
produce only the types of sound that correspond to what is
happening in the video. For example, when a dog opens its
mouth, we would expect to hear a dog barking instead of a
human utterance.

Unfortunately, despite various recent research efforts that
apply deep generative models to produce visually aligned
sound that is conditional on visual features [1], [2], the
alignment issue remains challenging. However, alignment is a
considerably lesser concern for other sound generation tasks,
including speech synthesis and voice conversion. This leads to
the following research question: why is alignment especially
challenging for generating visually aligned sounds?

In this paper, we will uncover an important explanation from
an information perspective. Unlike speech synthesis, where
text and speech have significant information correspondence,
in the task of generating sound from video, visual and sound
information do not have a strict correspondence. In most cases,
sound can be decomposed into two parts. The first part is
visually relevant sound, which can be inferred from video
content, e.g., when we see a dog open its mouth and lean
forward, we will naturally associate this video clip with the
sound of barking. The second part is visually irrelevant sound
that cannot be inferred from video content, e.g., people talking
behind the camera. In the training phase of the existing sound
generation paradigm, only video frames are taken as input
and the loss is calculated between the predicted sound and
the ground truth sound which contains both visually relevant
and irrelevant information. This information mismatch issue
in the existing training paradigm may confuse the model. To
minimize the loss, the model is forced to learn an incorrect
mapping between video frames and visually irrelevant sound,
which cripples the alignment performance.

To generate visually aligned sound from videos, we propose
a spectrogram-based sound generation model named REGNET.
Specifically, there are two mechanisms to ensure visual align-
ment. First, REGNET introduces a time-dependent appearance
and motion feature extraction module, which provides sufficient
visual information for generating the temporal and content-
wise aligned sounds. Second and more critically, to resolve
the information mismatch issue induced by visually irrelevant
sound information, we introduce a novel mechanism referred
to as audio forwarding regularizer. The audio forwarding
regularizer passes the ground truth sound through an encoder
with a bottleneck and applies the resulting bottlenecked sound

https://github.com/PeihaoChen/regnet
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features with the visual feature to predict the ground truth sound
itself. We will show in the experiment part that this mechanism
is helpful for visually aligned sound generation. During training,
the audio forwarding regularizer can control for the irrelevant
sound component to ensure that the audio generation module
can learn a correct mapping between visual features and the
relevant sound component. During testing, the audio forwarding
regularizer is removed, so that REGNET is able to generate
purely aligned sound only from visual feature. In addition,
we introduce generative adversarial networks (GANs) [3] to
improve the quality of the generated sound. We have assembled
a video dataset that contains distinctive video and sound events
(and thus alignment between sound and video is crucial).
Extensive evaluations on Amazon Mechanical Turk (AMT)
demonstrate that REGNET significantly improves over existing
methods in terms of the temporal and content-wise alignment
of the generated sound.

Our main contributions are listed as follows:
• We explore the challenges of generating visually-aligned

sound in the aspect of information mismatch between
visual features and sounds. To solve these challenges, we
propose a novel audio forwarding regularizer to provide
missing information during the training phase.

• We propose REGNET, which is an algorithm capable of
generating visually aligned sound in high temporal and
content-wise alignment.

II. RELATED WORKS

Visually aligned sound synthesis. Synthesizing audio for
video has recently attracted considerable attention [4], [5],
[2], [3], [1]. Owens et al. [4] propose the task of predicting
the sound emitted by hitting and scratching objects with
a drumstick. Chen et al. [5] exploit conditional generative
adversarial networks [3] to achieve cross-modal audio-visual
generation of musical performances. Chen et al. [1] propose to
generate sound considering the sound class and use perceptual
loss to align semantic information. Zhou et al. [2] collect an
unconstraint dataset (VEGAS) that includes 10 types of sound
recorded in the wild and propose a SampleRNN-based method
to directly generate a waveform from a video. However, these
studies disregard the information mismatch issue between video
and sound, which may cause poor temporal synchronization
and content-wise alignment.

Visual-sound learning. The synchronized visual and sound
information contained in most videos provide supervision for
each other [6], [7]. Based on visual supervision, Harwath et
al. [8] present a network to learn associations between natural
image scenes and audio captions. Arandjelovic et al. [9] and
Aytar et al. [10] learn the visual-audio correlation via unlabeled
videos in an unsupervised manner. Several recent works [11],
[12], [13] perform visual sound separation using visual-sound
representation. Also, Gan et al. [14] present a moving vehicle
tracking system based on visual-sound relationships. Some
other interesting visual-sound researches include audio-visual
co-segmentation [15] and audio-visual navigation [16]. We also
learn visual-sound representation and transform information
from the video domain to the audio domain.

Text to speech (TTS). TTS is to synthesize audio speak
from text. Ling et al. [17] use neural networks to predict sound
features from pre-tokenized text features and then generate
a waveform from these features. Van et al. [18] synthesize
impact sounds from physical simulations. Van et al. [19]
introduce WaveNet to generate a raw audio waveform. Mehri et
al. [20] propose a model for unconditional audio generation,
and Sotelo et al. [21] present Char2Wav for speech synthesis.
Shen et al. [22] propose to predict mel spectrogram from text
and then transform it to a waveform using WaveNet. Our task is
closely related to TTS, but we consider visual information the
input and synthesize various kinds of visually aligned sounds
in daily life.

Generative adversarial network. GANs [3] have achieved
considerable success in generating high-quality images [23],
[24], [25], [26], [27]. However, directly adapting image
GANs architectures, such as CGANs [28], DCGANs [29]
and WGANs [30], may be problematic for audio generation.
Inspired by Reed et al. [31], which generate images conditioned
on text captions, Chen et al. [5] design conditional GANs to
achieve cross-modal audio-visual generation. By investigating
waveform and spectrogram strategies, Donahue et al. [32]
attempt to apply GANs to synthesize one-second slices of
raw-waveform audio in an unsupervised manner. To generate
high-fidelity and locally coherent audio, Engel et al. [33] apply
GANs to model log magnitudes and instantaneous frequencies
with sufficient frequency resolution in the spectral domain. In
this paper, we apply GANs on a spectrogram to improve the
sound quality.

III. REGNET FRAMEWORK

In this section, we will introduce the challenge of generating
visually aligned sound, together with the description about
our proposed REGNET framework. Then, we will discuss why
the REGNET is capable of solving this challenge and learn a
correct mapping between video frames and visually relevant
sound.

A. Problem formulation

First, we will mathematically formulate the problem and
discuss its challenges. For the remainder of this section, we will
use the upper-case letters X or X to denote random variables
(unbolded) or random vectors (bolded), respectively, and the
lower-case letters, x or x to denote deterministic values. E[·]
denotes the expectation.

Denote (V (t),S(τ)) as a visual-sound pair. V (t) represents
the visual signal (vectorized) at each frame t. S(τ) represents
the sound representation (waveform or spectrogram) at each
frame τ . We use different frame indexes t and τ because visual
and sound signals have different sampling rates.

We introduce our formal modeling of the challenge that
sound has a visually irrelevant component that can not be
inferred from video content, such as people talking behind
a camera. Assume that the audio can be decomposed into a
relevant signal and an irrelevant signal:

S(τ) = Sr(τ) + Si(τ), (1)
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Fig. 1: Comparisons between the existing paradigm and our training and testing paradigm. (a) For the existing paradigm, the
model is forced to learn an incorrect mapping between a visual signal and visually irrelevant sound. (b) We avoid this situation
by incorporating an audio forwarding regularizer. (c) During the testing phase, the visually relevant sound is predicted by
removing the audio forwarding regularizer.
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Fig. 2: Influence of different information capacities of audio
forwarding regularizer. (a) Because the capacity is too large,
the generator perfectly reconstructs the sound but has a weak
dependence on the visual signal V . (b) Because the capacity is
too small, the generator is forced to learn an incorrect mapping
between the visual signal V and the irrelevant sound Si.

where the subscript r denotes “relevant”; the subscript i denotes
“irrelevant”. We further assume that a relation only exists
between the video and relevant sound, which is denoted as
f(·). Irrelevant sound is independent of both the relevant sound
and visual features. Formally,

Sr(τ) = f(V (t)), Si(τ) ⊥ Sr(τ), Si(τ) ⊥ V (t), (2)

where ⊥ denotes independence.
Our goal is to generate the visually relevant component

Sr
1 from the visual signal V . However, the visually relevant

component Sr is not directly available during training. Instead,
we only have the sound representation S, which is a mixture of
Sr and Si. As shown in Figure 1 (a), the existing models take
the visual signal V as input and regard the sound representation
S as target. In this setting, only the visual information is
provided but the model is forced to predict both visually
relevant and irrelevant sound which is independent of the
visual signal. With insufficient information, the model can only
learn an incorrect mapping between V and Si, which produces
artifacts and misalignment in generated sound. We refer to it
as an information mismatch challenge.

B. REGNET framework with audio forwarding regularizer

We propose a REGNET to resolve the information mismatch
challenge by introducing an audio forwarding regularizer. As

1The time argument is removed to represent that it is a collection of the
signal at ALL frames.

shown in Figure 1 (b), REGNET consists of three modules: the
visual encoder Ev(·), the audio forwarding regularizer Es(·)
and the generator G(·, ·).

The visual encoder Ev(·) takes the visual signal V as the
input and outputs a set of frame features. The audio forwarding
regularizer Es(·) takes the sound signal S as the input and
outputs what we refer to as the regularizer output. The generator
G(·, ·) then predicts S with frame features and the regularizer
output as input. There are two different types of predictions,
with or without the audio forwarding. The prediction with audio
forwarding, denoted as Ŝa, is predicted from both the frame
features and the regularizer output. The prediction without
audio forwarding, denoted as Ŝ0, is predicted by removing
audio forwarding regularizer. As shown in Figure 1 (c), in this
work, we replace the regularizer output by a zero vector when
predicting Ŝ0. Formally,

Ŝa = G(Ev(V ), Es(S)), Ŝ0 = G(Ev(V ),0). (3)

The predicted sound with audio forwarding or without audio
forwarding, respectively, i.e., Ŝa and Ŝ0, will be utilized during
the training and testing phases. We exploit the adversarial
training mechanism to render the predicted sound more realistic.
The discriminator D(·, ·) tries to discriminate whether the input
sound is real or fake, conditional on the visual signal, i.e.,
D(S′,V ), where S′ can be either generated sound or real-
world sound.

From Equation (3), the significant difference between REG-
NET and the existing paradigm is the introduction of the audio
forwarding regularizer, which can be regarded an information
bottleneck to control for the audio forwarding. As will be
discussed in the next subsection, with careful bottleneck tuning
in the training phase, audio forwarding regularizer can provide
supplementary visually irrelevant sound information for the
generator. With sufficient information in the training phase,
including visual signal and irrelevant sound information, the
information mismatch challenge is resolved. The generator can
learn the correct mapping between a visual signal and visually
aligned sound. During the testing phase, the interference of the
irrelevant sound is removed, and the generator can generate
visually relevant sound using only visual signals.

Training details: During training, the generator tries to
minimize the following loss, which involves the prediction
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with audio forwarding:

Lrec + LG = E[‖Ŝa − S‖22] + E[log(1−D(Ŝa,V ))], (4)

where the first term is the L2 reconstruction error, and the
second term is the adversarial loss.

On the other hand, the discriminator tries to discriminate the
real sound from the predicted sound with audio forwarding,
which minimizes the following standard adversarial loss:

LD = −E[log(D(S,V ))]− E[log(1−D(Ŝa,V ))]. (5)

Testing details: In the testing phase, we will not use any
regularizer output that involves the ground truth sound. Instead,
we will consider the Ŝ0 defined in Equation (3) the predicted
results.

As readers may have noticed, REGNET introduces two
relatively unintuitive mechanisms. First, the audio forwarding
regularizer sends information about S to predict S. This process
resembles cheating during training. Second, a mismatch exists
between training and testing. During training, Ŝa is employed,
whereas Ŝ0 is employed during testing. In the next subsection,
we will show that these mechanisms can produce the desirable
outcome.

C. Why does REGNET work?

In a visually sound generation task, we expect the generator
to infer visually relevant sound from a visual feature. During
training, however, only a mixture of visually relevant and
irrelevant sounds is available to be regarded the target. The
generator is forced to infer the irrelevant sound to minimize
the gap between the prediction and the target. Considering the
visual feature the input, the generator cannot reasonably infer
irrelevant sound because they are independent of each other. To
resolve this conflict, some information about visually irrelevant
sound should also be considered the input. In this paper,
we introduce an audio forwarding regularizer to provide this
information. Two sources of information are available to predict
S: the visual feature and the regularizer output. By carefully
tuning the information capacity of the audio forwarding channel,
the regularizer output can take the responsibility of predicting
visually irrelevant sound, which enables the generator to learn
the correct mapping between a visual feature and the desired
sound. In the following, we analyze the influence of information
capacity in three cases.

Too large capacity: if the information capacity is too large
(as shown in Figure 2 (a)), then the audio forwarding channel
can send all information about S for prediction, which enables
a perfect prediction of S but a lack of dependence on the visual
feature. As the capacity starts to decrease, the audio forwarding
channel will prioritize sending the information about Si and
enable the visual feature to address the information about Sr,
because the regularizer output is the only source of sound Si.

Too small capacity: if the information capacity is too small
(as shown in Figure 2 (b)), then some information about Si

will not be accounted for. To minimize the reconstruction loss
between the prediction and the sound S, the model is forced
to learn incorrect mapping between a visual feature and the
irrelevant sound Si, resulting in artifacts and misalignment

in the generated sound, which is the case for most existing
training paradigms.

Just right capacity: if the information capacity is just right
(as shown in Figure 1 (b)), the audio forwarding channel
sends all information about Si, while the visual feature takes
responsibility for the Sr part. The generator is allowed to learn
a solid mapping between a visual feature and the relevant sound
Sr. During testing, the audio forwarding regularizer is removed
and the REGNET can infer the desired visually aligned sound
from video content, which eliminates the inference of visually
irrelevant sound.

Therefore, the key to the success of REGNET is to obtain
proper control for the information capacity of an audio
forwarding regularizer.

IV. REGNET ARCHITECTURE

In this section, we will illustrate the architecture of each
module in REGNET and provide details of the vocoder, which
is used to convert the predicted spectrogram into a waveform.
The schematic of REGNET is shown in Figure 3.

Visual encoder. We design a time-dependent visual encoder
to extract appearance and motion features for visually aligned
sound generation. Specifically, a BN-Inception [34] model is
utilized as a feature extractor to explore RGB and flow features
at T different time steps, which are the visual signal in Section
(III). The BN-Inception model is pretrained on ImageNet and
frozen in the training phase. The concatenation of T RGB and
flow features is processed by the visual encoder, which consists
of three 1D convolutional layers and a two-layer bidirectional
LSTM (Bi-LSTM) [35]. Each convolutional layer is followed by
a batch normalization (BN) [34] layer and a rectified linear unit
(ReLU) [36] activation function. The outputs in the forward and
backward paths of Bi-LSTM at each time step are concatenated
as T encoded visual features.

Audio forwarding regularizer. We design an audio forward-
ing regularizer to provide supplementary visually irrelevant
sound information for sound prediction during training. The
audio forwarding regularizer takes as input the ground truth
spectrogram, which is the mixture of visually relevant and
irrelevant sounds. The ground truth spectrogram is processed
by a two-layer Bi-LSTM with the cell dimension D. The
concatenation of the outputs in the two paths of Bi-LSTM is
a 2D × T ′ feature map, where T ′ is the time dimension of the
input spectrogram. Then, we uniformly downsample this feature
map by S, which generates a 2D × (T ′/S) feature map with
some information eliminated. To match the temporal dimension
of encoded visual features, we upsample it by replication
and generate the 2D × T regularizer output. Note that the
Bi-LSTM can be regarded as an information bottleneck. We
control for its information capacity by changing its output
dimension D and adjusting the downsampling rate S. The
audio forwarding regularizer with a larger output dimension
and smaller downsampling rate passes through richer sound
information. The intuitive influence and empirical influence of
the information capacity are discussed in subsection III-C and
V-H, respectively.
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Fig. 3: Schematic of our REGNET . (a) The visual encoder summarizes the extracted RGB and flow frame features as
time-dependent visual features. (b) The audio forwarding regularizer takes the real sound as input and outputs bottlenecked
sound features. (c) The generator considers visual features and bottlenecked real sound information to reconstruct the real sound
(spectrogram) in the training phase.

Generator. We design a generator to predict sound (spec-
trogram Ŝ2) from the concatenation of an encoded visual
feature and regularizer output. First, we predict the initial
spectrogram Î by two 1D convolutional layers and two 1D
transposed convolutional layers. With the exception of the
last layer, each layer is followed by a BN layer and a ReLU
activation function. Then, a post-network [22], which consists
of five 1D convolutional layers, is introduced upon Î to add
the fine structure R̂ in a residual way. Specifically, Ŝ = Î+R̂,
where Î and R̂ are the input and output of the post-network.

In addition to the supervision on the final predicted spectro-
gram Ŝ, we also add the L2 constraint on the initial predicted
spectrogram Î , which is expressed as follows:

L′
rec = E[‖Î − S‖22]. (6)

The loss in Equation (4), (5) and (6) can be summarized as
follows:

Ltotal = Lrec + αL′
rec + β(LG + LD). (7)

Discriminator. We introduce the discriminator D for ad-
versarial training. The discriminator D takes as input the
extracted frame feature and a spectrogram and distinguishes
whether the spectrogram is derived from real video or generated
by the proposed REGNET. The PatchGANs [37] is applied
to preserve the high-frequency structure in the local area.
Specifically, we first separately process the input frame feature
and spectrogram with two 1D transposed convolutional layers
and a 1D convolutional layer. Then, we concatenate them and
use four 1D convolutional layers to predict a score that indicates
whether the input spectrogram is real or fake.

2We use Ŝ to represent the spectrogram with or without audio forwarding.

Vocoder. Given a synthesized spectrogram, we apply
WaveNet [19] to convert it to a waveform. Instead of predicting
the discretized value, we estimate a 10-component mixture
of logistic distributions (MoL) to generate 16-bit samples at
22,050 Hz. We independently train the WaveNet model for
each sound class.

V. EXPERIMENTS

In this section, first, we describe the datasets in experiments
and then provide implementation details. Second, we compare
the proposed REGNET with a state-of-the-art method in terms
of the alignment and reality. Last, we conduct ablation studies
to explore the influence from the audio forwarding regularizer
in REGNET.

A. Datasets

To evaluate the temporal alignment of our generated sound,
we collect 8 video categories that have high synchronization
between visual and audio contents. Such synchronization
is evaluated according to the “visual relevant” experiment
introduced in [2]. Specifically, we exchange the sound between
two videos in the same sound class and then test the turkers on
Amazon Mechanical Turk (AMT) to determine whether they
perceive this change. If the turkers are sensitive to this change,
it means the sound is highly synchronized with the visual
content. According to the results, we select 4 sound classes
from the VEGAS [2] dataset, namely Fireworks, Dog, Drum,
Baby crying, and 4 sound classes from the AudioSet [38]
dataset, namely Cough, Hammer, Gun, Sneeze. We denote
them as Sub-VEGAS and Sub-AudioSet dataset respectively.
On average, each class contains 1626 videos, and the length
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Sound-Mismatched.

TABLE I: Evaluation of alignment. We report the percentage
of the human judgments, where the results are preferred over
the other methods based on three criteria.

Baseline Ours
Sound-Missing 39.38% 60.62%
Sound-Redundant 40.67% 59.33%
Sound-Mismatched 43.23% 56.77%

for each video is 6.73 seconds. The last 128 videos from each
class are selected to build a testing set.

B. Implementation details

Data preprocessing. The training videos are at 21.5 frames
per second (fps) and are padded to 10 seconds by duplicating
and concatenating. We extract the RGB and flow features after
the last average pooling layer in the BN-Inception network.
The sampling rate of audio is 22,050 Hz. The raw waveform is
converted to a spectrogram via a Short Time Fourier Transform
(STFT). The hop size of the STFT is set to 256 with a window
length of 1,024. We transform the spectrogram on the mel
scale and set the number of mel frequency bins to 80. The first
220,160 points in the raw waveform are selected for the STFT,
and thus, the time dimension of the spectrogram is 860.

Training details. The REGNET is implemented in PyTorch.
The loss is illustrated in Equation (7) and we set α and β to
1 and 10,000, respectively. We train the proposed REGNET
for 1,000 epochs and the Adam optimization method [39]
is adopted with an initial learning rate of 0.0002. Each
category is independently trained. The output dimension D

and downsampling rate S for the audio forwarding regularizer
are set to 32 and 860, respectively, by default.

Baseline. Visual2Sound [2] is a state-of-the-art method for
generating sound given visual input, which applies SampleRNN
to directly generate a waveform based on the encoded visual
feature. We consider it our baseline and use the generated
results provided by the authors of [2] for performance compar-
isons.

Evaluation metrics. We design several metrics to evaluate
the alignment and quality of the generated sound. We describe
the details of each metric with its abbreviation. 1) Sound-
Missing: the moment when an action (or event) may reveal

TABLE II: Results of the “real-or-fake” task. We show
the percentages that indicate the frequency that a video is
determined to be real.

Real sound Ours
Dog 85.54% 71.09%
Drum 86.71% 67.04%
Fireworks 91.01% 86.33%
Baby 91.33% 72.59%
Cough 82.03% 55.98%
Gun 91.19% 70.13%
Hammer 90.36% 68.57%
Sneeze 80.21% 53.24%
Average 88.65% 68.12%

sound but the model fails to generate it. 2) Sound-Redundant:
the moment when no action (or event) may reveal sound
occurs, but the model generates redundant sound. 3) Sound-
Mismatched: the content of the generated sound is mismatched
with the video content. 4) Real-or-fake: Whether the generating
sound is able to fool the human into thinking that it is a real
sound. For the first three metrics, the turkers are asked to select
the video with fewer misaligned moments, which indicates
better alignment performance. For the real-or-fake task, we
present the percentage that indicates the frequency that a video
is determined to be real. Each HIT is conducted by three
turkers, and we aggregate their votes. The first two metrics and
the third metric evaluate temporal alignment and content-wise
alignment, respectively. The fourth metric measures general
alignment and sound quality.

C. Evaluation on alignment

Setup. A visually aligned sound should be temporally and
content-wise aligned to the video. For temporal alignment,
we use Sound-Missing and Sound-Redundant as evaluation
metric; for content-wise alignment, we use Sound-Mismatched
as evaluation metric. In the AMT test, the subjects are shown a
paired video with the same visual content but different sounds,
which are generated by REGNET and the baseline, respectively.
The subjects are required to choose the video with the better
performance on alignment. The experiment is conducted on
Sub-VEGAS because the authors of [2] only provide the results
in four video types in Sub-VEGAS.
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(b) Ground truth

(c) Prediction (Ours-woREG)

(a) Incorporated noise

(d) Prediction (Ours)

(e) Prediction (narrow variant) (f) Prediction (wide variant)

Fig. 5: Spectrograms in the experiment using Dog-gauss data.
We mix the Gaussian noise (a) into the ground truth audio (b)
to build the Dog-gauss simulated training sample. (c), (d), (e)
and (f) are the predicted spectrograms from different models,
in which the one from our REGNET (d) is able to get rid of the
influence from the incorporated noise and preserve the sound
architecture.

Results. We compare our method with baseline [2] and
report the results in Table I. REGNET outperforms the baseline
by 21.24% and 18.66% in terms of Sound-Missing and Sound-
Redundant, respectively, which demonstrates that the proposed
REGNET can generate sound with better temporal alignment.
Specifically, approximately 60% of people think that the sound
generated from our REGNET contains less missing sound
moment and less redundant sound. This finding indicates that
our REGNET can better capture the overlap between the visual
information and the corresponding sound, even though the
overlap is small. Besides, REGNET outperforms baseline [2]
by 13.54% on Sound-Mismatched, which indicates that our
REGNET learns a better mapping between visual content and
sound. The sound generated by REGNET is better consistent
with video content.

Qualitative visualization. We visualize the waveform of
real sound with the sound generated by baseline [2] and our
REGNET in Fig. 4. In the first case (a), where the fireworks
are exploding, the baseline fails to generate any sound. The
second case (b) shows that the baseline generates numerous
redundant sounds when the dog is still. In the third case (c),
where a man is hitting a drum, the baseline contains a metal
hitting sound, which is not content-wise aligned. On the other
hand, the sounds generated by REGNET are more plausible
both in temporal alignment and content-wise alignment. We
strongly encourage readers to view the demo videos in the
supplementary materials.

D. Evaluation on real-or-fake task

Setup. We conduct a “real-or-fake” task to evaluate whether
our REGNET can generate plausible sound. Specifically, we
randomly combine a video with the generated sound or the
real sound, and then require the turkers to make their own
decisions based on the general alignment and sound quality.

TABLE III: L2 distances (×10−2) between the predicted and
the ground truth spectrograms using simulated data.

Training data Ours-woREG Ours-VS Ours
Dog-gauss 3.63 2.03 1.96
Dog-fireworks 3.02 1.82 1.87

TABLE IV: Performance comparisons between REGNET and
the counterpart without audio forwarding regularizer in the
“real-or-fake” task using simulated data.

Training data Ours-woREG Ours
Dog 68.75% 71.09% (+2.34%)
Dog-gauss 58.30% 67.70% (+9.40%)
Dog-fireworks 63.70% 68.80% (+5.10%)

Results. From Table II, 68% of sounds generated from
REGNET success to fool human into thinking that these sounds
are real, which is close to the success rate of the real sound
itself. Note that the videos in the dataset have discriminative
sound (as described in subsection V-A), such that the human is
sensitive to the alignment of these sounds. Fooling human by
the generated sound is difficult. To fool a human, the generated
sound should be temporally and content-wise aligned with the
visual content. Considering the Drum video for example, when
the man is hitting a drum, if the model fails to generate any
sound or generates a drum hitting sound soon at this time, the
human may distinguish that the sound is fake. Also, if the
generated sound does not sound similar to drum hitting, the
human will easily perceive it.

E. Comparison with a simple method

As we train REGNET individually for each type of sound,
one simple method for visually aligned sound generation is
to detect the occurrence of specific actions and then play the
predetermined audio clip. Specifically, we label a time step
as an action occurrence if both the sound and optical flow
amplitudes are higher than a threshold. We use the visual
encoder described in section IV to encode visual features.
Then, we apply a multi-layer perceptron to perform binary
classification. During testing, we manually crop several audio
clips with different lengths from training data. For each detected
action occurrence, we play the predetermined audio clip with
a suitable length.

The “real-or-fake” task on dog video shows that only 43.65%
generated sounds can fool humans, which is significantly worse
than REGNET (71.09%). This result demonstrates that it is non-
trivial to generate plausible sound. One possible reason is that
such a simple method can not handle diverse sounds in one
video (e.g., dog barking from young and old dogs). Besides, it
is hard to define action occurrences without annotations.
F. Effectiveness of audio forwarding regularizer

We aim to evaluate the performance of our REGNET with
and without audio forwarding regularizer. We also evaluate
the necessity of feeding both visual and audio information



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JULY 2020 8

TABLE V: Cosine similarity between the regularizer output
from Dog-fireworks sound and other sounds. The data with
the same background sound generate more similar regularizer
output.

(Similar background) (Different background)
Baby-fireworks Dog-fireworks Dog-gauss Baby-gauss

0.48 0.59 0.26 0.26

TABLE VI: L2 distances (×10−2) on spectrogram to visually
relevant and irrelevant sounds when setting visual feature
to zero and feeding input data to regularizer only. (The
irrelevant sounds indicate Gaussian, fireworks and drum sounds,
respectively for three different input data.)

Input data Dog Gauss. or fireworks or drum
(relevant sound) (irrelevant sound)

Dog-gauss 4.36 0.84
Dog-fireworks 3.69 1.97
Dog-drum 4.53 2.29

to the audio forwarding regularizer to learn irrelevant sound
information.

Simulated data. Based on the Dog data in Sub-VEGAS
dataset, we mix extra noise (visually irrelevant sound) into the
original corresponding audio. With more complicated visually
irrelevant sound in the training sample, it is more difficult
for the model to learn the correct mapping between visual
contents and visually relevant sounds. Besides, in this case,
the incorporated noise becomes the main source of visually
irrelevant sound, and we can approximately regard the original
corresponding audio as the ground-truth visually relevant sound.
Specifically, we separately incorporate two kinds of noise
into the original corresponding audio, including zero-mean
Gaussian noise with a standard deviation of 0.1 and the sound
from fireworks videos, which generates Dog-gauss and Dog-
fireworks simulated data.

Setup. In addition to the proposed REGNET, we construct
a counterpart in which we remove the audio forwarding
regularizer in both the training pahse and testing phase, and
refer to it as Ours-woREG. Also, we input both visual feature
and spectrogram into the audio forwarding regularizer to
construct a variant, namely Ours-VS. We train these models
using simulated data to evaluate whether our REGNET is robust
to different kinds of visually irrelevant sound in the training
samples. We report the success rate for a “real-or-fake” task
because this metric is sensitive to the quality of the generated
sound, especially the alignment and reality. Besides, considering
the original audio in the simulated data as ground truth, we
use the L2 distance to evaluate the performance of REGNET
in generating visually relevant sound.

Objective results. In Table III, we show the L2 distance
between the predicted spectrogram and the ground truth
spectrogram in the experiments using simulated data. Note
that we consider the original audio the ground truth. With two
kinds of simulated data, the predicted spectrogram from our
REGNET and Ours-VS is closer to the ground truth compared
with Ours-woREG counterpart (1.96, 2.03 v.s. 3.63 and 1.87,

TABLE VII: L2 distances (×10−2) between the predicted and
the background sound spectrograms when feeding into zero
vector or regularizer output. (The regularizer output indicates
the regularizer output from Dog-gauss, Dog-fireworks and Dog-
drum, respectively when comparing with different background
sound spectrogram.)

Background sound Zero vector Regularizer output
Gaussian 5.05 2.72
Fireworks 5.56 2.78
Drum 6.11 2.79

1.82 v.s. 3.02, respectively). This finding indicates that the
audio forwarding regularizer enables REGNET to perform better
in generating visually relevant sound. Also, it demonstrates
that the audio forwarding regularizer does not need to take
as input visual content explicitly. We argue that because the
audio forwarding regularizer is trained for each type of video
individually, the video category information is available for
the network as one kind of visual information. Such category
information is enough for regularizer to learn visually irrelevant
sound. In Fig. 5, we visualize four spectrograms, including the
incorporated Gaussian noise, original audio (ground truth), and
predicted spectrograms from our REGNET and Ours-woREG
counterpart. The Ours-woREG counterpart has learned some
incorrect mappings between a visual feature and visually
irrelevant noise, while our REGNET focuses only on generating
the visually relevant component.

Subjective results. In Table IV, we show the performance
of our REGNET and Ours-woREG counterpart in the “real-
or-fake” task. Our REGNET consistently outperforms the
Our-woREG counterpart, and achieves performance gains of
2.34%, 9.40%, and 5.10% on three training data. This finding
demonstrates that the audio forwarding regularizer is important
for generating realistic sound. Note that the incorporated
irrelevant sounds (i.e., Gaussian noise and fireworks sound)
dramatically deteriorate the performance and cause a 10.45%
and 5.05% decrease in performance, while our REGNET is
robust to the irrelevant sounds. One possible reason is that the
proposed audio forwarding regularizer is helpful for eliminating
the negative influence from irrelevant sounds in the training
phase, which enables the model to learn proper mapping
between visual features and visually relevant sounds.

G. Exploration on regularizer output

We aim to explore what the audio forwarding regularizer
has learned. Specifically, we will answer the following three
questions: 1) is the regularizer output from spectrograms
with similar background sounds more similar than those with
different background sounds? 2) what information can be
reconstructed from regularizer output? 3) can the generator
mix in sounds from regularizer output during testing?

Setup. To answer these questions, we generate several
types of simulated data, namely Dog-gauss, Dog-fireworks,
Dog-drum, Baby-gauss, and Baby-fireworks. The term behind
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TABLE VIII: Performance of REGNET variants. The L2 distance (×10−2) is evaluated on the Dog-gauss data, while the other
metrics are evaluated on both Sub-VEGAS data and Sub-AudioSet data.

L2 distance real-or-fake Sound-Missing Sound-Redundant Sound-Mismatched
(Dog-gauss) (Sub-VEGAS and Sub-AudioSet)

Narrow variant S860D8 3.18 70.18% 3.16 3.01 2.95

Wide variant S860D1024 3.19 62.50% 2.96 3.20 2.92
S32D32 3.08 66.67% 2.94 3.22 2.93

REGNET S860D32 1.96 71.09% 3.20 3.35 3.02

the hyphen (-) can be regarded as visually irrelevant sound.
Each type of simulated data includes 128 videos for testing.

For the first question, we train four audio forwarding
regularizers individually on Dog-fireworks, Dog-gauss, Baby-
fireworks, and Baby-gauss data. Then, we input these four
types of sound to the corresponding trained audio forwarding
regularizer to generate four types of regularizer outputs. We use
cosine distance to measure the similarity between regularizer
outputs generated from different sounds.

For the second question, we study what information can
the model reconstruct when it only takes regularizer output
as input. Specifically, we train three REGNET individually
on Dog-gauss, Dog-fireworks, and Dog-drum data. For each
trained REGNET, we set the visual feature as zero and input
the corresponding regularizer output to generate spectrogram.
We measure the similarity between the generated spectrogram
and visually relevant (or irrelevant) sound.

For the third question, we train a REGNET on dog videos
and try to mix in background sounds (i.e., Gaussian, fireworks,
or drum) by replacing zero vector with different representations
(i.e., the regularizer output from Dog-gauss, Dog-fireworks, or
Dog-drum). To measure whether the generated spectrogram
include background sound, we compute the L2 distance
between spectrogram of generated and background sounds.

Results. Table V shows the cosine similarity between
regularizer output from Dog-fireworks and other simulated
data. The data with fireworks background sound (i.e., Baby-
fireworks and Dog-fireworks) have higher similarity values
compared with those with other background sounds. This
indicates the regularizer passes through the background sound
information ignoring the visually relevant sound. For the second
question, in Table VI, the generated spectrogram have smaller
L2 distances to visually irrelevant sound compared to relevant
sound (0.84 v.s 4.36 and 1.97 v.s 3.69 and 2.29 v.s 4.53).
This indicates the regularizer is good at reconstructing the
irrelevant sound component (i.e., Gaussian, fireworks and drum
sounds) compared to the relevant part (i.e., dog sound). We
believe the reason is that the regularizer output mainly contains
irrelevant sound information instead of the relevant one. For
the third question, the L2 distances between the spectrogram
of generated and background sounds are shown in Table VII.
When we feed in regularizer output instead of zero vector,
the distances are relatively smaller (2.72 v.s 5.05 and 2.78 v.s
5.56 and 2.79 v.s 6.11), indicating that the background sound
information contained in regularizer output is successfully
mixed in the output.

H. Exploration on REGNET variants

As intuitively explained in subsection III-C, with appropriate
control for the capacity of the audio forwarding regularizer,
the REGNET can predict visually relevant sound. Next, we will
show how we control for the capacity of the audio forwarding
regularizer and how it affects the prediction Ŝ0.

REGNET variants. We control for the capacity of the audio
forwarding regularizer by changing its downsampling rate S
and output dimension D. By default, S and D are set to 860
and 32 in our REGNET , and thus, we denote it as S860D32.
With a larger output dimension or by sampling the regularizer
output more densely, more information can be passed through
the audio forwarding regularizer. Thus, we design two wide
REGNET variants S860D1024 and S32D32, whose audio forward-
ing regularizer has a larger output dimension of 1024 or a
smaller downsampling rate of 32. Conversely, we decrease D
to 8 and construct the narrow variant S860D8.

Setup. We train the REGNET variants with different ca-
pacities on Dog-gauss data and leverage the L2 distance to
evaluate their performance in generating visually relevant sound.
Besides, we conduct experiments on Sub-VEGAS and Sub-
AudioSet and leverage the “real-or-fake” task with Sound-
Missing, Sound-Redundant and Sound-Mismatched metrics to
evaluate the quality and alignment of the generated sound
from different REGNET variants. To make comparisons among
several variants, the three alignment metrics are evaluated by
the mean opinion score (MOS) test. Specifically, we provide
two reference videos for the turkers and score them as 1 and
5. The higher score indicates better alignment. The turkers are
asked to assign a score of 1-5 according to the corresponding
requirements.

Objective results. In Table VIII, we show the L2 distance
in the experiment with Dog-gauss data. Compared with our
REGNET, both the “narrow variant” and the “wide variant”
have a larger L2 distance between the prediction and the ground
truth sound (1.96 v.s. 3.18, 3.19, 3.08). This finding indicates
that the optimal results are achieved only when the capacity
of the audio forwarding regularizer is appropriately controlled.
We further visualize the predicted spectrogram Ŝ0 in Fig. 5.
For the “wide variant”, when the audio forwarding regularizer
is shut down, the generator misses some of the meaningful
spectrogram structure. This is not surprising because the
audio forwarding regularizer with a large capacity is able
to provide sufficient information about the target spectrogram
during the training phase. The generator tends to use this
information for spectrogram reconstruction instead of learning
mapping between a visual feature and visually relevant sound.
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For the “narrow variant”, the predicted spectrogram contains
considerable noise because the model is forced to learn some
incorrect mapping between a visual feature and noise.

Subjective results. In Table VIII, our REGNET performs
the best for both the “real-or-fake” task and three alignment
metrics. Specifically, 71.09% generated sounds from REGNET
are considered real sounds, compared with 62.50% and 66.67%
generated sounds for the “wide variant” and 70.18% for
the “narrow variant”. Our REGNET also achieves the highest
scores with all three alignment metrics. Note that the “wide
variant” achieves low scores for the Sound-Missing term, which
demonstrates that the model fails to generate sound when action
occurs. The reason is that the audio forwarding regularizer with
excessively large capacity prevents the model from learning
necessary mapping between a visual feature and sound.

I. Exploration on discriminator

As there are multiple possible sounds that are visually
aligned with the visual content, L2 reconstruction loss can
only supervise the network to learn an overall sound structure.
This may result in a smooth spectrogram and low-fidelity
results. Adversarial training mechanism has been proven to be
effective to generate high-fidelity and coherent audio in several
works [33], [32], [5]. To study the necessity of discriminator
in our REGNET, we train a REGNET without adversarial loss
and conduct a “real-or-fake” human study on Sub-VEGAS and
Sub-AudioSet datasets. Ours-woGAN fools 64.04% human on
average, which is worse than REGNET (68.12%). This result
demonstrates that the discriminator is helpful to generate high-
fidelity sounds in REGNET.

VI. CONCLUSION

We explain from an information mismatch perspective why
the temporal and content-wise alignment remains challenging
for generating sound from videos, and propose an audio
forwarding regularizer to solve this challenge. With the audio
forwarding regularizer, our REGNET can leverage sufficient
information for prediction during the training phase and learn a
concrete correspondence between visual information and sound
information. Experiments show that the sound generated by
our REGNET is more plausible and more aligned to video.
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