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Usually many real datasets in pattern recognition applications contain a large quantity of noisy and
redundant features that are irrelevant to the intrinsic characteristics of the dataset. The irrelevant
features may seriously deteriorate the learning performance. Hence feature selection which aims to
select the most informative features from the original dataset plays an important role in data mining,
image recognition and microarray data analysis. In this paper, we developed a new feature selection
technique based on the recently developed graph embedding framework for manifold learning. We first
show that the recently developed feature scores such as Linear Discriminant Analysis score and
Marginal Fisher Analysis score can be seen as a direct application of the graph preserving criterion. And
then, we investigate the negative influence brought by the large noise features and propose two
recursive feature elimination (RFE) methods based on feature score and subset level score, respectively,
for identifying the optimal feature subset. The experimental results both on toy dataset and real-world
dataset verify the effectiveness and efficiency of the proposed methods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many real datasets such as images and microarray data are
represented as very high dimensional vectors which bring great
challenge in data mining and further processing [1-3]. High
dimensionality not only increases the learning cost, but also
deteriorates the learning performance, known as the problem of
“Curse of dimensionality” [4]. Hence dimensionality reduction
has attracted great attentions in pattern recognition and machine
learning applications such as computer vision and microarray
data analysis. Generally speaking, there are mainly two kinds of
dimension reduction techniques, i.e. feature extraction [5,6] and
feature selection [7,8], to tackle with the “Curse of dimension-
ality”. Feature extraction refers to the techniques that map the
high dimension data (linearly or nonlinearly) to the lower
dimensional subspace under some constraints. And feature selec-
tion refers to selecting the most informative features from the
original dataset. Feature selection has received great attentions
and is being widely used in recent years. One typical application
of feature selection is the gene selection in the microarray
data analysis. In general, the original microarray data contains
thousands of genes (most of them are proved to be redundant)
with a small number of samples, which causes the small sample
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size problem [6] and raises the difficulties in diagnosis. Hence,
selecting high discriminative genes (or features) from the rude
gene expression data can improve the performance of cancer
classification and cut down the cost of medical diagnosis.

Many feature selection methods have been proposed in recent
years. These methods can typically be categorized into two
groups: wrapper method [9,10] and filter method [11-14]. The
wrapper method selects the discriminative features dependently
on the classifier used. The wrapper method can be expected to be
of high performance, but it is difficult to scale to large datasets
owing to the expensive computation cost. The wrapper methods,
such as SVM-RFE can be expected of good performance in
identifying optimal feature subset [9]. However, they are compu-
tationally more expensive compared with filter methods and lack
of good generalization capability over classifiers [14]. What's
more, if the classifier is not well trained, the performance of the
wrapper methods may decline.

The filter method refers to selecting informative features
according to their discriminative power without considering any
knowledge of the classifier. The filter method possesses the
advantages of high speed and capability of dealing with large
datasets, but lack of abilities to find the optimal feature subset.
Typical filter methods includes T-statistics [12], signal-to-noise
ratio method [2] and Fisher score [13]. These methods have
shown good performance on linear feature selection but poor
performance on nonlinear feature identification owing to that
they cannot reveal the mutual information among features. To
solve this problem, some new feature scores have been proposed
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recently based on the graph constructed on the samples, such as
Locality Sensitive Discriminant Feature (LSDF) score [1] and
Laplacian score [15]. Recently, Nie et al. proposed a subset level
(SL) score based method identifying the optimal feature. The SL
method can be viewed as a special filter method but shows much
better performance than traditional filter methods [14]. By
exploring the intrinsic structure of the dataset, we can possibly
find more informative features [1,14,15]. Particularly, via the
intrinsic graph, some features with complex nonlinear structures
can be identified, which is a hard problem for linear feature
selection methods such as SVM-RFE. However, their performance
may be declined as the noise features increase. Note that, in the
traditional graph based feature selection methods, the graph is
pre-computed with all features, including both informative and
noninformative features. When doing feature selection, one
assumes that only a small part of features are informative. Under
this scenario, one can hardly build a stable graph when there are
relatively large number of noise features. Correspondingly, the
performance of the feature selection can no longer be guaranteed.
An empirical study of this issue will be presented in Section 3.1.

Regarding the above ambiguity in graph based feature selec-
tion, in this paper, we assume that we can obtain a reasonable
graph which can relatively describe the relationship among
patterns with given features. Considering that with large number
of features, the graph can be contaminated by the noise features,
we start from all features and recursively build the graph with the
remaining features and then remove the non-informative features
with respect to the current graph. With this recursive strategy, we
proposed two new feature selection methods, namely the feature
score based recursive feature elimination method (FS-RFE) and
the subset level score based recursive feature elimination method
(SL-RFE). Although they are still local, the proposed methods can
be expected to have better performance. In summary, the con-
tributions of this paper are: (I) We reveal that the traditional
graph based feature selection methods are sensitive to large
noises. (II) To avoid the negative influence brought by the noise
features to the graph, we proposed an FS-RFE method and an
SL-RFE method for identifying the optimal feature subsets. The
experimental results verified the performances.

The rest of this paper is organized as follows. A short
introduction to the graph embedding framework is given in
Section 2. In Section 3, we present a feature score recursive
feature elimination method (FS-RFE) and a subset level score
recursive feature elimination method (SL-RFE) for feature selec-
tion. The experimental results are presented in Section 4. The
conclusions are finally discussed in Section 5.

2. Prior knowledge: graph embedding

For a general learning problem, let X =[X1,Xo,...,Xn] denote
the dataset and x,eR™ is a sample with m dimensions. The
dataset can also be written as X =[f;,f>,...,fn]", where f;eR"
(i=1,2,...,m) are the feature vectors. In supervised learning
tasks, a sample X, is labeled by class label c¢; € {1, 2, ...,n.}, where
n. is the number of classes. Generally, the dimension m is
always very large which increases the difficulties of learning.
Yan et al. present a novel unifying framework, named graph
embedding, to formulate various feature extraction methods and
provide new perspective in designing new methods [6]. In graph
embedding framework, an intrinsic graph G and a penalty
graph GP are adopted. Graph G={X,S} and G’ =(X,S"} are two
undirected weighted graphs with similarity matrix S and SP that
can be the adjacency matrix or similarity matrix, depending on
different applications. Let L=D-S be the Laplacian matrix of
graph G, where D is a diagonal matrix with entries D; = 3=, _ ;S;;.

Similarly we can get the Laplacian matrix L? of GP. The intrinsic
graph G denotes the similarity characteristics to be strengthened
while the intrinsic graph G” refers to the similarity characteristics
to be suppressed. Simply suppose we project to a one dimensional
line, then the graph-preserving criterion of the graph embedding
framework is formulated as follows:

: 2
y=arg yTré}IlEAg;Hyi—yjH Sijs (1
where y is the lower dimensional representation of X with
Y =[¥1.Y2,-...¥aI". The above projection often appears in classifi-
cation, where the data is projected to a direction that is per-
pendicular to the separating hyperplane [16]. By simple algebra
calculation, we can get a simpler form with matrix formulations

y=arg min Yy, )

where matrix B can be the identity matrix I or the Laplacian
matrix of the penalty graph GP, that is B=L". The constrained
minimization problem (1) and (2) can be interpreted as two
aspects: on the one hand, for those vertices near to each other,
we would like to make them be near in their lower representa-
tions, which can be realized by minimizing the objective function
of (1) or (2); on the other hand, for those vertices far from each
other, we would make them apart as far as possible, which can be
realized by maximizing y’By=1. By taking the two aspects
together, it amounts to solve the constrained minimization
problem (2) or the constrained maximization problem (3)

y=arg max y'By. 3)
yLy =1

There are three extensions of the above graph preserving criterion,
i.e. linearization, kernelization and tensorization. In this paper,
only the linear extension will be considered. In the linear exten-
sion, suppose that the high dimension data X will be linearly
mapped to a lower dimensional subspace by linear projection
y=w'X, where yeR" Then the optimal projection direction
w can be obtained by solving the following constrained maximi-
zation problem:

max w/XBXTw. (4)

w* = arg
wiXLXTw = 1

The above constrained maximization problem can be reformulated
as a general Rayleigh quotient problem [17]:
wXBX w

wiXiXw’

Most of the linear feature extraction methods, such as Linear
Discriminant Analysis (LDA) [12], MFA [6] can be formulated
within the graph embedding framework. The only difference
among them just lies in the different definitions of the intrinsic
graph G and the corresponding penalty graph GP. Here we only
present the graph definitions of LDA and MFA. LDA searches for
the projections that minimize the intra-class scatter and at the
same time maximize the inter-class scatter, which is equivalent to
the problem (5) by defining the intrinsic graph and the penalty
graph as

Sij=0c,, /Ny 1#], 6
Si=1/N=S; i#], ”

(6))

w* = arg max
w

where 5&,(]:1, if ¢;=c;, otherwise EQ'CJ:O. Obviously in the
intrinsic graph of LDA, all the data points in the same class are
interconnected with weight Sy;, while in the penalty graph the data
points from different classes are interconnected with weight S{j
Therefore, LDA fails to discover the local geometrical structure of
the data manifold [6] and therefore can not deal with nonlinear
problems. To preserve the local structure of the original data in the
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Fig. 1. Intrinsic graph and penalty graph of MFA.

subspace, MFA finds the projections which maximize the margin
by discovering the local manifold structures. The intrinsic graph
and the penalty graph of MFA are respectively defined as Egs.
(7) and (8).

1 ifie I\Jk1 (]) orj € I\Ik1 @),
Sij = { 0 else, @

where Ny, (i) denotes the index set of the nearest neighbors of data
i that are in the same class.

1 if (i,j) e Py, (ci,c)) ¢ #¢j,
P K2 ) J
S = { 0 else, ®)

where Py, (c;,¢;) is a set of data pairs that are the k, nearest pairs
among the class ¢; and ¢;. In two class problems, the data points
indexed by Py, (c;,cj) are to some extent like the support vectors in
SVM classifiers, which are commonly believed to be more impor-
tant for classification [18]. Compared with LDA and SVM, the
major advantage of MFA is that it has a special strength for mining
the nonlinear structures of the original dataset. The intrinsic graph
and the penalty graph are illustrated in Fig. 1, where the dashed
line denotes the edges of the penalty graph and the solid line
denotes the edges of the intrinsic graph.

When calculating the graph, to avoid the attributes in greater
numeric ranges dominate those in smaller numeric ranges, the
feature vectors should be scaled in the data preparation. For
example, the feature vector f can be firstly centered and then
scaled so that Ifil=1. Let 1=[1,1,...,1]7, the feature vector can
be preprocessed according to

f—f11

f——— 9
If—£T11 ©

3. Graph embedding based feature selection
3.1. Feature score for measuring feature importance

Over the past years, many indices have been proposed to
measure the importance of a feature, such as t-test score [12],
Fisher score (also know as LDA score) [13], and LSDF score [1]. In
the wrapper methods, the importance of a feature is usually
measured according to its contribution to induced classifiers. For
example, in SVM-RFE, the features are ranked according to their
contribution to the margin, and the less important features are
recursively removed from the feature list.

Intuitively, we say that a feature is important than another one
if the former can better represent the intrinsic structure of the
original data. The intrinsic structure here can be explained as the
sub-manifold structures of the dataset in supervised cases or the

manifold structure in unsupervised cases. To be specific, in graph
embedding, the importance of a feature can be measured by the
degree which respects the graph structure [15]. Recalling the
graph preserving criterion in the linear extension, we should solve
the maximization problem of (5), which can be reformulated as

wiw;f! Bf;
w* = arg maxzzlij;_] .
W Y wiwifi Lf;
To compute the contribution of a feature f; to the above
problem, we can simply set the weights of other features
w;(i #J) to 0, which is to some extent like the sensitivity analysis.
Then a feature score can be calculated as follows [15]:
T
f; Bf;
-
f; Lf;

(10

0c() = amn
Back to the definition of the graph preserving criterion, the
feature score is equivalent to projecting the data to the axis and
searching for the axis where the generalized Rayleigh quotient
value is maximized as the most informative feature.

From Ref. [15], the O¢-score is very effective for measuring the
importance of the linear features. However, when dealing with the
nonlinear feature selection problem, it is sensitive to the noise,
which increases the difficulties of the nonlinear feature identifica-
tion. The reasons are analytically illustrated as follows. In the
manifold learning, the local structure which is usually character-
ized by the K-NN nearest neighborhood graph is very important to
the learning performance. And the matrices B and L are usually the
point-to-point distance based matrices. Then suppose a dataset
with mg nonlinear informative features (indexed by an index set
Ip) and my noise features. If my — oo, then BB and L L™,
where B and L are the matrices calculated without the
informative features. Then the 0¢-score reduces to the 0-score.

o fBU
)~ L. (12)
j j

Obviously, the nonlinear structure of the original dataset will
lose when the number of noise features is relatively far more than
the informative features, i.e. mg < my, which is a common
problem in pattern recognition applications especially in micro-
array datasets. Therefore, the nonlinear structure of the dataset
may be hidden when the number of the noise features is
relatively too large. However, the scores of linear features will
be little influenced by the noise. The reason is that the local
structure of the linear dataset is no longer as important as in the
nonlinear data. In fact, the linear separability can be well
described just using the label information. Obviously, the LDA
score is noise independent. That is to say, although B"™ and L
may lose the nonlinear information of the dataset, they are good
enough to describe the linear separability.

To further illustrate this issue, an experiment on two toy
datasets is performed. Each dataset contains two informative
features, with which the first dataset is linearly separable while
the latter one is nonlinearly separable, as respectively shown in
Fig. 2(a) and (b). We measure the difference between the scores of
the informative features with the scores of the noises by score
ratio value (SRV)

m*\lo\ziel Oc (i)
SRV =log | ——=—""2——|,
g{ [To]>=i < 1, 0c(d)

where |Iy| denotes the number of features in the feature subset
index Ip. The larger the SRV value is, the larger the difference
between the feature subset and the remained features will be. If
the mean of the informative feature scores is equal to the mean of
the noise feature scores, then the SRV=0. Fig. 3 shows the SRV

(13)
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feature 2
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Fig. 2. Toy dataset for two class problem. (a) Linear case. (b) Nonlinear case.

values of the two toy datasets with respect to the number of
features with noises. The SRV values of the two features with the
largest scores are also recorded. For the linear features, although
SRV value varies with the increase of the features with noises, it is
always larger than 1 even with large number of noise features.
However, for the nonlinear dataset, the SRV will sharply decrease
with the increase of the features with noises. Then we cannot
select the right informative features just according to their scores.

Although a single feature cannot fully describe the manifold
structure of the original dataset, to some extent it can represent
some information of the whole dataset. To overcome the negative
influence of the noise features, following the graph preserving
criteria, a new single feature score, called 0s-score, can be defined
as follows:

=y (14)
i

where matrices B? and L? are constructed using B and L
corresponding to the sole feature f;. Apparently, the 0s-score is
noise independent.

15+

—A— nonlinear feature
—¥— nonlinear max score
—8— linear feature

score ratio value
—-—

—O— linear max score

05+

0 100 200 300 400 500 600
number of features

Fig. 3. Score ratio value with different numbers of features.

Fig. 4 compares the plot figures of the 0;-MFA score and
0s-MFA score on a nonlinear toy problem. In the toy dataset, there
are 600 features in total and only two of them are nonlinear
informative features described in Fig. 2(b). To facilitate display,
we place the two informative features on position 200 and
position 400. The 598 noises are generated as follows: the first
199 and last 200 noise features are uniform distributed noises
generated by f =446 x rand(n,1). The middle 199 noise features
are norm distributed noises generated by f=4+6 x randn(n,1).
Obviously, the 0g-score cannot correctly identify the two infor-
mative features. However, with the 0s-score, the two informative
features can be accurately identified.

3.2. Optimal feature subset selection

Identifying the most informative feature subset is an impor-
tant but challenging problem. The optimal feature subset identi-
fication can be seen as the following combinatorial optimization
problem:

Given a feature set F = {f{.f,, ....f,}, find a gene subset 7* = F
that maximize an subset level score objective function F: [T—-R
that

F* =arg }11&)[(71"(.7:1), (15)
1€

where I1 is the space of all possible feature subsets of 7, and F; is
a subset of I1. An optimal subset of feature is not necessarily
unique and the feature selection problem is an NP-hard problem
[19]. And it is very hard to define a reasonable subset score
function, which, apparently, has a profound influence on the final
feature subset. In the filter methods, the scores for each feature
are calculated, and the leading features are selected to construct
the optimal feature subset. Different from evaluating a single
feature in the filter method, Nie et al. proposed a subset level
score to measure the importance of a subset [14],

Zf,- eF flTBfl

tr(FBFT)
max T =
FeR[F=m 3 o fiLf;

arg max

F¥*=ar — 7,
& F - w'x tr(FLFT)

(16)
where W =[w;,W3,...,Wp] is an m x mp zero matrix except for
the positions (I(j),j) with 1, I(j) is the index of the j th selected
feature with j=1,2,...,mg. The optimal feature subset can be
identified such that the subset level score is maximized. Problem

(16) is solved by an iterative algorithm which is implemented as
Algorithm 1 [14].
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Fig. 4. Toy problem with noises. (a) 0c-MFA score. (b) 0s-MFA score.

Algorithm 1. Subset level score method for feature selection

0: Input: The training dataset X, the corresponding label Y
(if applicable), convergence tolerance ¢ and the feature
numbers mg of the final subset.

1: Construct the matrix B and L, and randomly initialize a
feature index set 7’ C F, such that |F'| =my. Set iteration
index k=0.

2 . . g nfiB
Calculate the trace ratio value 4, = ="
Zr,. ef'fi Lf;

3: For each feature, calculate its feature score according to
0.G) = £ Bf,— A, £/ Lf.

4: Rank the feature score in descending order. Update the
index vector I with the indices of the top mg features.

5: Stop if [Ak—Ak_1| <eé, else go to Step 2.
Output: The index of the selected features L.

The subset level score method shows good performance when
the number of noise features is small. However, it is also very
sensitive to large number of noise features when identifying the
nonlinear features. The reasons are similar to those discussed for
the 6s-score. In the subset level score method, the matrices B and
L are computed using all the features. As mentioned previously, if
the number of the noise features is too large, B and L will lose the
nonlinear information, leading to the bias when measuring the
importance of features by 0,(j) = fj-Tij—),kijij [14]. So the key to
improve the subset level score method is also to reduce the
negative influences brought by the noise or irrelevant features.

3.3. Recursive feature elimination for optimal feature subset
identification

Reducing the neglect influences brought by the noisy or
irrelevant features is very important to improve performance of
graph based feature selection. Note that, in the case of large
number of noise features, although the graph may not stable and
accurate, it is a reasonable graph to the original dataset and the
corresponding feature score, though loss of accuracy, it can
relatively represents the importance of features. Based on this
assumption, the features with the least scores can be considered
as the least important. Then we can remove these features as
noises. We can repeat this procedure until the number of features
is less than we need. This strategy is known as the recursive
feature elimination (RFE) method. A typical application of RFE is
the SVM-RFE method which is proposed by Guyon et al. to
identify the most informative genes from the gene microarray
data [9]. The key idea of SVM-RFE is that the influence of the noise
features or irreverent features can be eliminated step by step

while the useful information can be gradually condensed. In
SVM-REFE, the noise features with less contribution to the margin
are eliminated recursively from the gene list and the features that
contribute to the classifier most are kept. The SVM-RFE shows
good performance on linear gene subset identification. However,
it always suffers from the problem of the outliers and is hard to
extend to nonlinear problems. As previously presented, the
intrinsic matrixes B and L play a key role in the graph based
filter methods and the subset level score method. However, the
intrinsic structure presented in B and L will be gradually
weakened with the increase in the noise features. Therefore, with
an RFE scheme we can gradually refine the intrinsic graph and
hence improve the performance. In this paper, two types of RFE
methods based on graph embedding have been proposed. In the
first method, we can recursively remove the features with the
least feature scores and re-compute the B and L for each step. The
feature score based recursive feature elimination (FS-RFE) method
is described in Algorithm 2.

Algorithm 2. Feature score based recursive feature elimination

0: Input The training dataset X, the corresponding label Y
(if applicable), the feature numbers mg of the final subset
and the removed feature number m, at one step.

1: Initialize the feature index list s =[1 : m], and the removed
feature index list r =[]. Let length(s) be the length of the
vector s.

2: Construct the matrix B and L with X = X(: ,s).

3: For each feature, calculate its feature score according to the
feature score defined in (11).

4: Rank the feature score in ascending order and identify the
indices of the top m, features s,. Add the top m, features to
the removed feature index list by r =[s(1,s;),r] and remove
them from the top m, features from the feature list by
s(1,s) =

5: Stop if length(s) < my, else go to Step 2.

Output: The index of the selected features s.

Taking the computation cost into consideration, in the FS-RFE
method, although several feature scores can be adopted for
measuring the importance of the features, the 6-score will be a
better choice for its simplicity in computation. And 6s-score can
ensure good performance if we remove a small enough number of
features in each step. With the RFE method, we obtain a series of
nested feature subsets F{ cF; c --- CF.

One problem of the FS-RFE method is that if the dataset
contains linear features, the nonlinear structure will be totally
suppressed. In general, the scores of the linear features are larger
than the nonlinear features. Therefore, the selected mg, features
tend to be linear features. More importantly, the nonlinear
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features tend to be removed in the earlier steps. As discussed
previously, the linear feature scores are little affected by the
noises and usually much larger than the noises and the nonlinear
features. Hence, we can remove those features with large enough
SRV values (for example SRV > 1) in each step. Then the removed
linear features as well as the features in s formulate the final
feature subset. However, we should reorder the sub subset by a
new RFE procedure or the subset level score method.

In the second RFE method, we extend the subset level score
method for RFE feature selection. In the original subset level score
method, an optimal feature subset with predefined size is con-
firmed with several iterations. Then in the RFE method, we
iteratively redo the subset level score method with sequentially
decreased number of features. Then the noise features will be
recursively removed from the feature list. The subset level score
based recursive feature elimination (SL-RFE) method is shown in
Algorithm 3.

Algorithm 3. Subset level score based recursive feature elimination

0: Input: The training dataset X, the corresponding label Y
(if applicable), the feature numbers mg of the final subset
and the removed feature number m; at one step.

1: Initialize the feature index list s =[1 : m], and the removed
feature index list r =[]. Let length(s) be the length of the
vector s.

2: Construct the matrix B and L with X =X(: ,s).

3: Remove m, features by subset level score method and
identify the indices of the removed features s,. Add the top
m, features to the removed feature index list by
r =[s(1,s,),r] and remove them from the top m, features
from the feature list by s(1,s;) =].

4: If length(s) < m,+mg, m, = length(s)—m,.

5: Stop if length(s) < my, else go to Step 2.

Output The index of the selected features s.

Note that in the linear extension graph preserving criteria, we
need to search for a projection direction w that maximizes the
problem (5), obtaining a hyperplane y =w’X that best separates
the datasets under the graph embedding criteria. At the same time,
w can be seen as a weight vector to the attributes and the features
with small absolute weights or apparently are not important to the
hyperplane. We can remove the features with small w? recursively
as the SVM-RFE does [9]. In RFE methods, the number of the
removed features at each step is important to the performance.
A small m, always leads to good performance on identifying the
useful features but needs more computation costs. In the original
SVM-RFE method, the features are eliminated one by one. In our
experiments, we use a constant m,, which will be discussed in the
experiments.

3.4. Complexity analysis

In this section, we provide an analysis of the computational
complexity of the mentioned feature selection methods to the
number of samples and the number of features. Generally speak-
ing, the RFE method is more complex in computation than filter
method. Although the intrinsic graph and the penalty graph are
needed to be calculated in the graph embeddings, only one of
them is taken into consideration since they are equivalent to
each other.

In Og-score computation, for a given point X, computing the
distances needs O(nm) calculations and sorting to get its k-NNs
takes O(kn). Thus, for all n points, finding k-NNs is O(n2(m+k)).
The computation of f'Mf, where M is an n x n matrix, takes
On?m) for all features. Therefore, it takes O(n?(2m+k)) for

computation of Og-score for all features. If m >k, it will take
on*m).

In Os-score, the k-NN graph should be calculated for each
feature. Thus, for all n points and m features, finding k-NNs needs
O(n2m(1+k)). Besides, it will take O(n?m) for the computation of
f"Mf, where M is an n x n matrix. Therefore, the time complexity
of Os-score is O(n*m(2+k)). If m > k, it will take O(n®m).

For the subset level score method, the most computational
part lies in the computing of all f;Bf;, which will take O(n?*m). It
will take O(n?(m+k)) for finding k-NNs graph. Therefore, it will
take O(n?*m) in all.

For FS-RFE method, suppose in FS-RFE method, a fixed number
of m, features will be filtered out in each filter step and the whole
algorithm will be terminated when the number of the remaining
features is less than m,. Then it will take at most k, steps to finish
the whole procedure, where k, =[m/m,]. Suppose m > k, then in
the ith iteration, it will take O(2n2(m—i x m;)). To sum it up, it will
take OQk,mn?—m;ky(k,—1)n?) in all for FS-RFE method. Let
m,=1, then k, =m and it will take O(m?n?+mn?) in total. That
is to say, the FS-RFE method at most takes O(m?n?+mn?). The
same complexity analysis can be applied in the SL-RFE method.
Typically, if we set m,=1. it will take at most O(n?m?2). Although
the graph based feature selection methods takes O(n?), the
computational cost can be much reduced by constructing an
approximate graph. Furthermore, because both B and L are sparse
matrix, the cost of matrix vector multiplication can be much
reduced. Finally, because the graph have relatively stable struc-
tures if we remove relatively large number of features, we can set
a large m, to speed up the feature selections.

For the SVM-RFE method, its computational complexity largely
depends on the number of feature eliminated in each step.
Assume that linear SVM training takes O(nm) time. Therefore, if
one feature is removed from the feature list in each elimination
step, the SVM-RFE will take O(nm?) time.

4. Experiments
4.1. Data preparation and performance evaluations

To evaluate the performance of the proposed methods, several
datasets including toy dataset and real-world dataset are adopted
to evaluate various methods mentioned in this paper. The toy
experiments will be described in next section. In the real-world
experiments, eight datasets are used for verification. A brief
description of these datasets is summarized in Table 1.

In the toy experiment, we just gradually increase the noises to
the dataset and test whether the feature selection method can
mine the predefined features. In the real-world experiments, the
classification accuracies with selected features on testing data
are measured. In this paper, we use two well known classifiers
as baseline classification methods. Different from the Fisher
score or SVM-RFE, the proposed method in this paper apparently
can identify the nonlinear informative features. So the linear

Table 1
General information of the real-world dataset.

Dataset Samples Features Classes
Australian [20] 690 14 2
German [20] 1000 20 2
Vehicle [20] 846 18 4
USPS [20] 7291 256 10
UMIST [21] 575 644 20
Yalefaces [22] 165 2500 15
Leukemia [20] 72 7129 2
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classifiers are not appropriate for classification. As to the non-
linear classifiers, there are usually some parameters to be tuned.
All things considered, in this paper, we adopt the SVM classifier
with Gaussian kernel and K-NN for two class problems. As to the
multi-class problem, only K-NN classifier is adopted for its
simplicity in use. For the purpose of facilitating the comparison,
for the former two datasets, we randomly select 60 samples per
class for training and the remaining samples for testing, as
suggested in [14]. The average accuracy rates versus selected
feature number are recorded over 20 random splits. For the other
datasets, except for specification, we use a leave-one-out cross-
validation scheme to do the experiments. And the average
prediction accuracy are recorded over each trial.

Model selection is a crucial problem in the pattern recognition
algorithms. In some situations, the learning performance may
drastically vary with different choices of the parameters [23]. In
this paper, we have referred several learning algorithms, such as
LDA, MFA, LSDF, SVM and K-NN classifiers. Among these methods,
LDA is non-parametric method. In the MFA method, there are two
parameters, i.e. the number of the inter-class nearest neighbor-
hood k; and the number point pairs k, of between classes with
the least distances. As suggest in [6], k; is usually set to 4. The
setting of the parameter k, is complicated. Because the data
points confirmed by the k;, pairs in MFA is a bit like the support
vectors in SVM, we can set k, according to the studies of SVM. As
commonly believed that the less the support vectors, the better
the generalization ability the SVM is [24]. In our experiments, we
set k, according to the following equation:

k, 1 |n(n-1) inc(ncfl)

10| 2 2 ’ a7

where c¢ is the number of classes, n. denotes the number of
samples in class c. Eq. (17) indicates that only 1/10 of the between
class pairs with least distances are connected in the penalty
graph. In LSDF, the number of the inter-class nearest neighbor-
hood k; is also set to 4. As to SVM, there are two parameters. The
variance of Gaussian kernel is set to 0.5, and the cost of the
constrain violation C is set to 100. In K-NN classifier, we set K=1
for all the databsets. In addition, the RFE method proposed in this
paper contains an additional parameter m,. We empirically set
m,=10 in all RFE methods. In SL method, SL-RFE, and FS-RFE, the
intrinsic graph and penalty graph are constructed using the MFA
graph definitions. The SVM classifier in SVM-RFE is implemented
via the liblinear solver.! We build the k-NN graph via a public
available package? and the Matlab implementation of our meth-
ods can be downloaded from http://c2inet.sce.ntu.edu.sg/Min
gkui/spectral-feature.htm. All the experiments are performed on
AMD Athlon (tm) 64 X2 Dual Core Processor 4400+ 2.31 GHz 2GB
RAM PC.

4.2. Toy experiments

In the toy data experiments, we collect eight toy features as
the informative features. Feature 1&2 are linear features, and
features 3&4, 5&6, 7&8 are nonlinear features. In this experiment,
we gradually increase the noise to the dataset and test whether
the considered methods can identify the eight informative fea-
tures or not. Note that the eight features are all pair features and a
single feature can not completely represent the structure of the
dataset. Therefore, the features are identified if both two features
in the same feature pair are identified. When adding the noises to
the dataset, we gradually add 20 noise features to the dataset

! http://www.csie.ntu.edu.tw/ ~ cjlin/liblinear/
2 http://www.zjucadcg.cn/dengcai/Data/DimensionReduction.html

each time, among which half of them are uniform noises and the
other half are norm noises. The maximum number of noise
features is set to 800 and the largest number of noise features
at which the informative feature pairs are recorded for each
algorithm, as shown in Table 2.

From Table 2, we can see that all the algorithms listed in the
table can correctly identify the linear features. However, for the
nonlinear features, the performance varies. Using the 60s-LDA
score, the nonlinear feature cannot be identified at all. The reason
is that the 0;-LDA score does not consider the nonlinear structure
of the dataset. Different from the 0;-LDA score, the 0;-LSDF score
and 0g-MFA score show improved performance on the nonlinear
feature identification. That is to say, with the sub-manifold
structure considered, the nonlinear score can be identified. How-
ever, both methods show great sensitivity to the noises. For
example, the second feature pair cannot be identified if number
of noises is greater than 100 for the 6;-LSDF and 120 for the
0c-MFA score. The detailed reasons have been discussed in the
previous section. As to the SVM-RFE method with linear kernel, it
shows great performance on linear feature selection, but failed to
identify the nonlinear features. Compared with the 0s-score, the
SL method shows better performance on selecting the nonlinear
features. However, as previously mentioned, the performance of
the SL method will decline when the noises increase. For the
SL-RFE and FS-RFE method, they can identify the linear and
nonlinear features when there are large number of noise features.

In this paper, we will further discuss the CPU time to the sample
size and the feature size respectively. First, we fix the sample
number to 1000 and increase the features. The time needed for
each feature size is shown in Fig. 5. Note that except for SVM-RFE,
all other methods are implemented in Matlab. Hence the training
time is only for reference. From Fig. 5, with features increasing, the

Table 2
Experiments on toy datasets.

Method Feature 1&2  Feature 3&4  Feature 5&6  Feature 7&8
6-LDA score 800 0 0 0
0Oc-LSDF score 800 100 240 320
6c-MFA score 800 120 260 320
SVM-RFE 800 0 0 0
SL 800 200 300 420
SL-RFE 800 800 800 800
FS-RFE 800 800 800 800
T - T T T T )
—k— 6g score
——SL
—B— SL-RFE
102 }| = SVM-RFE 1
) —O—FS-RFE
8
17}
o
o
£
(0]
=

500 1000 1500 2000
number of features

2500 3000

Fig. 5. The training time of various methods with different numbers of features
(with number of samples n=1000).
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Fig. 6. The training time of various methods with different numbers of samples
(with number of features m=1000).
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time needed by the FS-RFE method shows the greatest rise. The
O¢-score, SL method, SL-RFE and SVM-RFE methods show slower
increase regarding to the dimensionality. Second, we just fix the
feature number to 1000 and gradually increase the sample size.
The time regarding to the number of sample size is recorded in
Fig. 6. From Fig. 6, we can see that the FS-RFE method shows the
fast growth rate in time regarding to the sample size. However, the
O¢-score, SL method, SL-RFE and SVM-RFE method show lower
time growth rates regarding to the increase of the sample size.
Hence generally speaking, the SL-RFE method shows better per-
formance while maintaining a lower time complexity.

4.3. Two-class real-data experiments

To further verify the performance of the proposed methods,
some real-world benchmark datasets are adopted to test their
performance. The first experiment is conducted on three datasets,
namely Australian, German and Leukemia. In each dataset, the
results of testing accuracy versus selected feature number are
shown in Fig. 7. The left figures in Fig. 7 are the results obtained
by the SVM classifier and the right figures are obtained by the
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Fig. 7. The prediction accuracy versus dimension. (a) Australian (SVM). (b) Australian (K-NN). (c) German (SVM). (d) German (K-NN). (e) Leukemia (SVM). (f) Leukemia (K-NN).
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K-NN classifier. Generally speaking, the predicting accuracies by
the SVM are higher than the K-NN classifier. Obviously, our
proposed FS-RFE method shows competitive performance com-
pared with other methods. However, the LDA score, MFA score
and LSDF score have also shown good enough performance.
That is to say, in the problem with small features, the 0s-score
can be very effective. Two possible reasons account for this
fact. On the one hand, the small features have little influence on
the data structure. On the other hand, the informative features
of these datasets are possibly with linear relationship. The
Leukemia dataset contains 7129 features with 72 samples. In
the experiment, we use the default 38 samples for training and
the left 34 samples for testing [9]. The prediction accuracy
obtained by SVM and K-NN with respect to the number of
selected features are recorded in Fig. 7(e) and (f), respectively.
From Fig. 7(e) and (f), the FS-RFE obtains the best performance
among the methods.

4.4. Multi-class real-data experiments

In this experiment, several multi-class problems are adopted to
test the various methods. Except for the vehicle dataset, there are
three image datasets, i.e. UMIST, USPS and Yalefaces. All image
datasets are with high dimensions. Furthermore, as commonly
acknowledged, the pixels in nature images are nonlinear and
highly correlated. The prediction accuracy regarding to the num-
ber of selected features are shown in Fig. 8. Considering that the
SVM-REE is hard to be applied for multi-class problems, we do not
consider this method in multi-class problems. From the results
presented in Fig. 8, the proposed FS-RFE method obtains the best
results on the four benchmark datasets, which demonstrate the
effectiveness and high performance of our method.
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4.5. Multi-class real-data with noises

The major concentration of this paper is to avoid the negative
influence brought by the noise features on the graph. In this
experiment, we will test the performance of proposed methods
over increasing number of noise features on UMIST, USPS and
Yalefaces datasets, which have more complex structures. To
implement the experiment, we gradually increase the number
of noise features to those datasets and fix the number of selected
features to 50. Other experimental settings are the same as the
above experiment. The testing accuracy regarding the number of
noise features are shown in Fig. 9. From the results presented in
Fig. 9, we can observe the following facts. At first, on all the three
datasets, when increasing the noise features, the proposed SL-RFE
and FS-RFE can always obtain much better performance over the
benchmark algorithms, which further verified the validity of these
two methods. Secondly, on Yalefaces, the prediction accuracy of
the benchmark shows apparent decline with the increasing noise
features while SL-RFE and FS-RFE show much stable performance,
which verify the importance of the proposed two methods.
However, on USPS and UNIST, the performance of the benchmark
algorithms shows very little decline in prediction accuracy. Two
reasons account for this. At first, the structure of these two
dataset may be simple and we can still obtain relatively stable
graph on these two datasets even with a lot of noise features. This
fact further indicates that even with large number of noises, we
can possibly obtain a relatively stable graph and hence we can
remove the most non-informative features regarding this graph.
The second reason is due to the way of construction. Specifically
in this experiment, both MFA graph and LSDF graph highlight the
importance of labels, which makes the graph have stable perfor-
mance over noises. While for LDA, the graph is defined by the
labels and will not be affected by the noise features.
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Fig. 8. Prediction accuracy with selected features on real dataset. (a) Vehicle. (b) USPS. (c) UMIST. (d) Yalefaces.
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5. Conclusion

In this paper, we developed two new feature selection
methods based on the recently developed graph embedding idea.
Firstly, we show that the recently developed feature scores can be
seen as a direct extension of the graph preserving criterion.
Further more, we apply the recursive feature elimination scheme
to identify the optimal feature subset to reduce the negative
influence brought by the noise features. The experimental results
both on toy datasets and real-world datasets verify that the
proposed RFE methods can achieve the state-of-art performance.
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