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Abstract. Biomedical image segmentation plays an important role in
automatic disease diagnosis. However, some particular biomedical images
have blurred object boundaries, and may contain noises due to the lim-
ited performance of imaging device. This issue will highly affects seg-
mentation performance, and will become even severer when images have
to be resized to lower resolution on a machine with limited memory.
To address this, we propose a guide-based model, called G-MNet, which
seeks to exploit edge information from guided map to guide the cor-
responding lower resolution outputs. The guided map is generated from
multi-scale input to provide a better guidance. In these ways, the segmen-
tation model will be more robust to noises and blurred object boundaries.
Extensive experiments on two biomedical image datasets demonstrate
the effectiveness of the proposed method.

1 Introduction

Biomedical image segmentation plays important role in automatic disease diag-
nosis. In particular, in glaucoma screening, correct optic disc (OD) and optic
cup (OC) segmentation will help obtain an accurate vertical cup-to-disc ratio
(CDR), which is commonly used for glaucoma diagnosis. Moreover, in cataract
grading, lens structure segmentation helps to calculate the density of different
lens parts, and the density quantification is a kind of cataract grading metric
[11].

In recent years, Convolutional neural networks (CNNs) have shown strong
power in biomedical image segmentation with remarkable accuracy. For exam-
ple, [9] proposes a U-shape convolutional network (U-Net) to segment images
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with precise boundaries by constructing skip connections to restore the infor-
mation loss caused by pooling layers. [5] proposes an M-shape convolutional
network, which combines multi-scale inputs and constructs local outputs to link
the loss and early layers. In practice, however, some high-resolution biomedical
images have noises and blurred boundaries, like the anterior segment optical
coherence tomography (AS-OCT) images, which may hamper the segmentation
performance, as shown in Fig. 1. Furthermore, suffering from the limitation of
memory, existing methods usually receive down-sampled images as input and
then up-sample the results back to the original resolution, which, however, may
lead even worse segmented boundaries.

Fig. 1. (a): An AS-OCT image sample with weak nucleus and cortex boundaries. (b):
corresponding histogram equalized image with a lot of noise. (c): segmentation results
of M-Net with low-resolution input. (d): segmentation results of G-MNet.

To address the above issues and hence improve the segmentation perfor-
mance, we seek to exploit guided filter to extract edge information from high-
resolution images. In this way, high-quality segmentation results can be gener-
ated from low-resolution poorly segmented results. Moreover, precise segmented
boundaries can be maintained after up-sampling. Guided filter [6] is an edge-
preserving image filter and has been incorporated into deep learning on several
tasks. For example, [12] formulates it into an end-to-end trainable module, [7]
combines it with superpixels to decrease computational cost. Different from exist-
ing works which use guided filter as post-processing, we incorporate the guided
filter into CNNs to learn better features for segmentation.

Unfortunately, the performance of the guided filter will be affected by noises
and blurred boundaries in images. Therefore, better guidance rather than the
original image is required. In this sense, we design a guided block to produce
an informative guided map, which helps to alleviate the influence of noises and
blurred boundaries. Besides, multi-scale features and multi-scale inputs are also
combined to make model more robust to noise. Thorough experiments on two
benchmark datasets, namely CASIA-2000 and ORIGA datasets, demonstrate
the effectiveness of our method. Our method also achieves the best performance
on CASIA-2000 dataset and outperforms the state-of-the-art OC and/or OD
segmentation methods on ORIGA dataset.



Guided M-Net for High-Resolution Biomedical Image Segmentation 45

2 Methodology

In this section, we provide an overview of our guide-based model, named G-
MNet, in Fig. 2. Then introduce its three components: an M-shape convolutional
network (M-Net) to learn hierarchical representations, a guided block for better
guidance, and a multi-guided filtering layer to filter multi-scale low-resolution
outputs. Our G-MNet firstly generates multi-scale side-outputs by M-Net, then
these side-outputs are filtered to high-resolution through the multi-guided fil-
tering layer. The guided block is exploited to provide better guidance for the
multi-guided filtering layer. After that, an average layer is employed to com-
bine all the high-resolution outputs. At last, the multi-guided filter receives the
combined outputs and produces the final segmentation result.

Fig. 2. Overview of the proposed deep architecture. Firstly, multi-scale side-outputs
are generated by M-Net. Then the multi-guided filtering layer filters these side-output
to high-resolution with the guidance from the guided map. At last, an average layer
is employed to combine all the outputs, and the result is then guided to produce the
final segmented output.

2.1 M-Shape Convolutional Network

We choose the M-Net [5] as the main body of our method, as shown by the red
dashed box in Fig. 2. The M-Net includes a U-Net used to learn a rich hierarchical
representation. Besides, multi-scale input and side-output are combined to better
leverage multi-scale information.
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2.2 Guided Block

In order to provide better guidance and reduce the impact of noise, we design
a guided block to produce guided maps. The guided maps contain the main
structure information extracted from the original images and also remove the
noisy components. Figure 3 shows the architecture of the guided block. The
guided block contains two convolution layers, between which are an adaptive
normalization layer and a leaky ReLU layer. After the second convolution layer,
an adaptive normalization layer [3] is added. The guided block is jointly trained
with the entire network, thus the produced guided maps cooperate better with
the rest of the model compared with the original image.

Fig. 3. Structure of the guided block. The guided block converts three-channel images
to single-channel guided maps which reduce noise interference and provide better guid-
ance.

2.3 Multi-guided Filtering Layer

The Multi-Guided Filtering Layer, take the advantages of guided filter, aims to
transform the structure information contained in guided map and produce high-
resolution filtered output (Oh). The inputs includes low-resolution output (Ol)
the guided maps from the low (Il) and high-resolution (Ih) input image.

Concretely, the guided filter is subjected to an assumption that the low-
resolution filtered output Ô is a linear transform of guided map I in a square
window wk, which is centered at the position k with the radius being r. Oh is
up-sampled from Ô. The definition of Ô with respect to wk is given as:

Ôki = akIli + bk,∀i ∈ wk, (1)

where (ak, bk) are some linear coefficients assumed to be constant in wk and the
radius of window is r.

ak, bk can be obtained by minizing the loss function:

E(ak, bk) =
∑

i∈wk

((akIli + bk − Oli)
2 + εa2

k), (2)

where ε is a regularization parameter penalizing large ak.
Considering that each position i is involved in multiple windows {wk} with

different coeffecients {ak, bk}, we average all the values of Ôki from different
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windows to generate Ôi, which is equal to average the coefficients (ak, bk) of all
the windows overlapping i, i.e.,

Ôi =
1

Nk

∑

k∈Ωi

akIli +
1

Nk

∑

k∈Ωi

bk = Ali ∗ Ili + Bli , (3)

where Ωi is the set of all the windows including the position i, and ∗ is the
element-wise multiplication. After upsampling Al and Bl to obtain Ah and Bh,
respectively, the final output is calcuted as (Fig. 4):

Oh = Ah ∗ Ih + Bh. (4)

Fig. 4. Illustrations of multi-guided filtering layer. With low-resolution input Il, Ol

and hyperparameters r, ε, low-resolution Al, Bl are calculated. By bilinear upsampling
Al, Bl, high-resolution Ah, Bh are generated which are then used to produce the final
high-resolution output Oh with high-resolution guided map Ih.

3 Experiments

3.1 Datasets

(1) CASIA-2000: We collect high-resolution AS-OCT images with weak
boundaries and noise from CASIA-2000 produced by Tomey Co. Ltd. The
dataset contains 2298 images, including 1711 training images and 587 testing
images. All the images are annotated by experienced ophthalmologists.

(2) ORIGA: It contains 650 fundus images with 168 glaucomatous eyes and
482 normal eyes. The 650 images are divided into 325 training images (including
73 glaucoma cases) and 325 testing images (including 95 glaucomas).

3.2 Training Details

We train our G-MNet from scratch for 80 epochs using Adam optimiser with
the learning rate being 0.001. For the experiments on CASIA-2000 dataset, we
set ε = 0.01 and r = 5. The original image size is 2130 × 1864. We crop the
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lens area, which is about 1024 × 1024 pixels, and resize it into 1024 × 1024 and
256 × 256 for high- and low-resolution inputs. For the experiments on ORIGA
dataset, we set ε = 0.9 and r = 2. The original image size is 3072 × 2048. We
train a LinkNet [1] on training set to crop the OD area, and then resize it into
256 × 256 for low-resolution inputs.

3.3 Results on CASIA-2000 Dataset

Segmentation on CASIA-2000 aims to evaluate capsule, cortex and nucleus seg-
mentation performance. Following the previous work in AS-OCT image segmen-
tation [15], we employ the normalized mean squared error (NMSE) between a
predicted shape Sp = {x̂i, ŷi} and the ground truth shape Sg = {xi, yi}, where
the shapes are represented by the coordinates of pixels. NMSE is defined as

NMSE =
1
ng

ng∑

i=1

√
(x̂i − xi)2 + (ŷi − yi)2, (5)

where ng is the number of annotation points. A lower NMSE indicates the net-
work is performing better.

We compare our G-MNet with several state-of-the-art networks. To verify
the efficacy of the guided map, we replace it by the original image in G-MNet,
and named this model G-MNet-Image. To test the performance of guiding in
multi-scale, we construct a special G-MNet, named G-MNet-Single, which only
filters the final averaged result without filtering multi-scale side-outputs. Table 1
shows the performance of different methods. We have the following observations:
Firstly, G-MNet-Single performs better than M-Net, which indicates that guided
filter is able to improve the accuracy of segmentation. Secondly, G-MNet out-
performs G-MNet-Single by 0.16, 0.20 and 0.17 in capsule, cortex and nucleus
boudary, respectively. This demonstrates the effectiveness of the learning strat-
egy in multi-scale. Lastly, G-MNet performs much better than G-MNet-Image,
which is disturbed by noises. This verifies that guided maps are able to provide
better guidance for reducing noises.

Table 1. Segmentation results on CASIA-2000.

Method Capsule Cortex Nucleus

FCN-VGG16 [8] 3.08 ± 4.84 3.34 ± 3.14 11.03 ± 4.08

DeepLabV2-Res101 [2] 3.97 ± 4.08 6.18 ± 4.31 10.88 ± 8.04

PSPNet-Res34 [16] 1.37 ± 0.96 1.73 ± 0.75 8.20 ± 3.97

M-Net [5] 1.37 ± 2.62 1.60 ± 0.93 7.93 ± 3.65

G-MNet-Image (ours) 3.23 ± 1.46 4.39 ± 1.34 9.44 ± 2.75

G-MNet-Single (ours) 0.73 ± 0.72 1.17 ± 0.91 7.62 ± 3.29

G-MNet (ours) 0.57± 0.29 0.97± 0.60 7.45± 3.24
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3.4 Results on ORIGA Dataset

Following the previous work [5], we evaluate the OD and/or OC segmentation
performance and employ the following overlapping error (OE) as the evaluation
metric:

OE = 1 − AGT

⋂
ASR

AGT

⋃
ASR

, (6)

where AGT and ASR denote the areas of the ground truth and segmented mask,
respectively.

We compare our G-MNet to the state-of-the-art methods in OD and/or OC
segmentation, including ASM [14], SP [4], SW [13], U-Net [9], M-Net [5], M-Net
with polar transformation (M-Net + PT) and Sun’s [10].

Following the setting in [5], we firstly localize the disc center, and then crop
640 × 640 pixels to obtain the input images. Inspired by M-Net+PT, Inspired
by M-Net+PT [5], we provide the results of G-MNet with polar transformation,
called G-MNet+PT. Besides, to reduce the impacts of changes in the size of OD,
we construct a method G-MNet+PT+50, which enlarges 50 pixels of bounding-
boxes in up, down, right and left, where the bounding boxes are obtained from
our pretrained LinkNet.

Table 2. Segmentation results on ORIGA.

Method OEdisc OEcup

ASM [14] 0.148 0.313

SP [4] 0.102 0.264

SW [13] − 0.284

Sun’s [10] 0.069 0.213

U-Net [9] 0.115 0.287

M-Net [5] 0.083 0.256

M-Net+PT [5] 0.071 0.230

G-MNet (ours) 0.075 0.229

G-MNet+PT (ours) 0.069 0.213

G-MNet+PT+50 (ours) 0.062 0.211

Table 2 shows the segmentation results, the overlapping errors of other
approaches come directly from the published results. Our method outperforms
all the state-of-the-art OD and/or OC segmentation algorithms in terms of the
aforementioned two evaluation criteria, which demonstrates the effectiveness of
our model. Besides, Our G-Mnet outperforms M-Net by 0.008 and 0.027 in
OEdisc and OEcup, respectively. Simultaneously, Our G-Mnet+PT also performs
better than M-Net+PT. These results indicate that our modification to M-Net
has a great help to the performance.
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4 Conclusions

In this paper, we propose a guide-based M-shape convolutional network, G-
MNet, to segment biomedical images with weak boundaries, noise and high-
resolution. Our G-MNet products high-quality segmentation results by incor-
porating guided filter into CNNs to learn better features for segmentation. It
also benefit from the informative guided maps which provide better guidance
and reduce the influence of noise by extracting the main feature from the orig-
inal images. We further filter multi-scale side-outputs to construct the guided
block more robust to noise and scaling. Thorough epxeriment on two benchmark
datasets demonstrate the effectiveness of our method.
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