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Abstract

Reading and writing research papers is one of the most privi-
leged abilities that a qualified researcher should master. How-
ever, it is difficult for new researchers (e.g., students) to fully
grasp this ability. It would be fascinating if we could train
an intelligent agent to help people read and summarize pa-
pers, and perhaps even discover and exploit the potential
knowledge clues to write novel papers. Although there have
been existing works focusing on summarizing (i.e., reading)
the knowledge in a given text or generating (i.e., writing) a
text based on the given knowledge, the ability of simultane-
ously reading and writing is still under development. Typi-
cally, this requires an agent to fully understand the knowledge
from the given text materials and generate correct and flu-
ent novel paragraphs, which is very challenging in practice.
In this paper, we propose a Deep ReAder-Writer (DRAW)
network, which consists of a Reader that can extract knowl-
edge graphs (KGs) from input paragraphs and discover poten-
tial knowledge, a graph-to-text Writer that generates a novel
paragraph, and a Reviewer that reviews the generated para-
graph from three different aspects. Extensive experiments
show that our DRAW network outperforms considered base-
lines and several state-of-the-art methods on AGENDA and
M-AGENDA datasets. Our code and supplementary are re-
leased at https://github.com/menggehe/DRAW.

1 Introduction
Currently, hundreds of papers are published online every day
even on small topics. However, a study (Wang et al. 2019)
shows that US scientists can only read 264 papers per year
on average. Thus, researchers are exhausted by following
the sharply increased numbers of papers, much less to under-
standing the research and coming up with new ideas to write
novel papers (Gopen and Ja 1990; Buenz 2019). In practice,
writing novel papers requires not only the abilities of reading
and reasoning but also the ability of creative thinking, which
is nontrivial for most fresh researchers (Xiao et al. 2020). It
would be fantastic if an agent could help people, especially
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Figure 1: An intuitive understanding of our DRAW network.
First, the DRAW network reads multiple related works and
discovers potential knowledge among them. And then, it
writes a new paragraph based on knowledge graph. Last, it
reviews the output and uses feedback rewards to improve the
quality of writing.

new researchers, to read and write. However, building such
an agent encounters several challenges.

First, to understand multiple related works, the agent needs
to capture complex logic in the related works, which is non-
trivial. Several knowledge extraction methods (Min et al.
2006; Gerber and Chai 2010; Yoshikawa et al. 2010) achieve
it by identifying entities in the texts, extracting the relation-
ships between these entities, and representing them as a
knowledge graph (KG). However, they have trouble in dis-
covering potential connections among these entities, which
hampers a comprehensive understanding of related works.

Second, after generating a KG, the agent is then required
to decode a fluent novel paragraph from the KG. In practice,
however, how to evaluate the quality of the generated texts
accurately is still an open problem. Existing methods (Koncel-
Kedziorski et al. 2019; Wang et al. 2019) adopt the teacher-
forcing scheme that aims to match the tokens in the generated
texts to the tokens in the target texts. However, these methods



only focus on token-level matching while ignoring sentence-
level and graph-level evaluation of the generated texts.

In this paper, we propose a method named Deep ReAder-
Writer (DRAW). Our DRAW network is able to read multiple
texts, discover potential knowledge, and then write a novel
paragraph. From Figure 1, the DRAW network consists of
three modules: i.e., Reader, Writer and Reviewer. Specifi-
cally, the Reader first extracts KGs from the research texts
and discovers potential knowledge to enrich the KGs. The
Reader considers the multi-hop neighborhood to predict new
links among conceptual nodes. Then, the Writer writes a
novel paragraph to describe the main idea of the enriched
KGs using a graph attention network, which aggregates the
global and local graph information. Inspired by the review
process of research papers, we further propose a Reviewer
module to evaluate the quality of the generated paragraphs
and return rewards as feedback signals to refine the Writer.
To be specific, given a generated paragraph, the Reviewer will
output three feedback signals, including (1) a quality reward,
which reflects the metric scores of the generated paragraph;
(2) an adversarial reward, which denotes the probability of
the generated paragraph passing the Turing test; and (3) an
alignment reward, which represents the matching score be-
tween the generated paragraphs and the enriched KGs. In this
way, the Writer is able to write better paragraphs that clearly
represent the key idea of the enriched KGs.

In summary, our main contributions are threefold:
• We propose a Deep ReAder-Writer (DRAW) network that

reads multiple research texts and then discovers potential
knowledge to write a novel paragraph covering the key
idea of the source inputs.

• We propose a feedback mechanism to review whether the
generated paragraph is consistent with the enriched KG,
and whether the generated paragraph is human written,
thereby greatly improving the quality of paragraph genera-
tion.

• Extensive experiments show that our Writer-Reviewer
leads to significant improvements in the KGs-to-text gen-
eration task and outperforms the state-of-the-art methods.

2 Related Work
Automatic writing. PaperRobot (Wang et al. 2019) per-
forms as an automatic research assistant to incrementally
write to chemical-related research datasets. It enriches KGs
by predicting links of input papers’ KGs. According to a
given title, it then selects several entities that are related to
the title in enriched KGs to generate texts. However, Paper-
Robot neglects to consider the multi-hop neighborhood to
predict links, which is very important for capturing potential
relationships. In addition, the generated texts do not closely
align with the KGs. To address this, we use a graph attention
network to consider the multi-hop neighborhood, capturing
the complex and hidden information that is inherently im-
plicit in the neighborhood. Moreover, we design a Reviewer
to measure the quality of the generated text from different di-
mensions to effectively align with the KGs. In particular, our
DRAW network is different from the multi-document sum-
mary (Ling and Hui 2013), which compresses the lengthy

document content into several relatively short paragraphs.
We not only extract important knowledge but also discover
potential knowledge from multiple paragraphs by predicting
links and writing a novel paragraph.

Link prediction. Some translation-based approaches (Bor-
des et al. 2013; Zhen et al. 2014; Lin et al. 2015) are widely
used in link prediction but result in poor representation ability.
Recently, CNN based models (Dettmers et al. 2018; Nguyen
et al. 2018) have been proposed for relation prediction. These
methods only focus on the entity and its neighborhood while
not considering the relationships among these nodes. Other
methods (Kipf and Welling 2017; Schlichtkrull et al. 2018)
take the relationships among the entities and their 1-hop
neighbors into consideration. However, they still omit the
information from multi-hop neighborhood. Instead, we pro-
pose a Reader module to capture semantic information of the
multi-hop neighborhood in the KG.

Graph-to-Text task. Graph-to-Text is an active research
area. Some works generate texts based on structured knowl-
edge (Trisedya et al. 2018; Xu et al. 2018a; Feng et al. 2018),
while several neural graph-to-text models use different en-
coders based on GNN (Ribeiro, Gardent, and Gurevych
2019; Zhijiang et al. 2019; Huang et al. 2020) and Trans-
former (Vaswani et al. 2017) architectures to learn graph
representations. Koncel-Kedziorski et al. proposes a novel
graph transformer encoder, which leverages the topological
structure of KGs to generate texts. However, it ignores the
global graph information, which is important for text genera-
tion. To solve this, Ribeiro et al. introduce a novel architecture
that aggregates both global and local graph information to
generate texts. However, such an encoder-decoder framework
presents some problems such as word repetition and lack
of diversity. To solve these issues, we propose a Reviewer
module to review the generated paragraphs and refine the
quality of paragraphs using feedback rewards. Our Reviewer
consists of three modules to review and evaluate whether
the generated paragraphs are real and to align with the given
KGs, in order to improve the text generation ability.

3 Proposed Method
In this paper, we focus on generating novel paragraphs via
reading multiple AI-related paragraphs. To this end, we pro-
pose a Deep ReAder-Writer (DRAW) network that consists
of three modules, namely Reader, Writer, and Reviewer as
shown in Figure 2. To understand and sort out the textual
logic of given paragraphs, the Reader first ‘reads’ and extracts
knowledge graphs (KGs) from them. And then, considering
the multi-hop neighborhood, the Reader predicts new links
between conceptual nodes, namely potential knowledge, to
enrich the KGs. The Writer adopts a graph encoder to encode
the rich semantic information in KGs, and delivers it to a
text encoder to generate a novel paragraph. Inspired by the
adversarial learning (Cao et al. 2019; Wang et al. 2018; Cao
et al. 2020; Chen et al. 2020), we also devise a Reviewer to
evaluate the quality of the generated paragraph, which serves
as a feedback signal to refine the Writer. We relate the details
of these modules in the following sections.
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Figure 2: An overview of our Deep ReAder-Writer (DRAW) Network. The DRAW network consists of three modules, namely
Reader, Writer and Reviewer. Given multiple related works, the Reader first extracts knowledge to construct initial knowledge
graphs (KGs) and performs link prediction to enrich KGs. Based on the enriched KGs, the Writer captures global and local
topology information using a graph encoder and generates a novel paragraph with a text decoder. In particular, the Reviewer
employs three feedback modules to measure the quality of the generated paragraph.

3.1 Reader: Text-to-Graph
To extract the textual logic from the given related paragraphs,
we use the standard SciIE (Luan et al. 2018), a science
domain information extraction system to constrcu knowl-
edge graphs Specifically, the output of the SciIE system is
a list of triplets, where each triplet consists of two entities
and the corresponding relation. The knowledge graph de-
noted as GI = {V,R}, where V = {v̄i}Ni=1 is the node set,
R = {r̄ij}Ni,j=1 is the edge set and N represents the number
of nodes. V and R represent the extracted entities and the
relations, respectively. However, the initial knowledge graph
GI does not exploit potential knowledge. To address this,
we perform a link prediction to predict new links between
entities based on the initial KGs.

Link prediction. Given KGs GI , we obtain the entity em-
bedding v̄i ∈ Rd and relation embedding r̄ij ∈ Rd with two
separated embedding layers, where d is the feature dimen-
sion. Formally, given entity embedding v̄i, v̄j and relation
embedding r̄ij between them, the triplet is represented by
(v̄i, r̄ij , v̄j). To aggregate more information, we introduce
auxiliary edges between one entity and its n-hop neighbor-
hood. For the entity and its n-hop neighborhood, we sum the
embeddings of all the relations in the path between them as
the auxiliary relation embedding. We apply a linear transfor-
mation to update the entity representation ṽi ∈ Rd by:

ṽi = W1[v̄i, r̄ij , v̄j ], (1)

where W1 is a trainable parameter and [·, ·] denotes the con-
catenation operation. A particular entity vi may be involved
in multiple triplets and its neighborhood can be denoted as
{ṽki }, where ṽki denotes the k-th neighborhood of the i-th
entity. To learn the importance of each triplet for the entity,
we apply a self-attention to calculate attention weights as

follows:

âk =
exp

(
ṽki
)∑

k exp
(
ṽki
) , (2)

With the help of the attention weights, we update feature
vi ∈ Rd by fusing the information from its neighborhood,
i.e.,

vi = W2 ṽi + σ
(∑

k
âk ṽki

)
, (3)

where W2 is a trainable parameter and σ is the Sigmoid
function.

Based on the original relation feature r̄ij , we apply a lin-
ear transformation to obtain the updated relation embedding
rij ∈ Rd. After updating the node and relation embeddings,
we need to determine whether there is a relationship between
two given entities. An intuitive way is to calculate the prob-
ability for each triple. Following ConvKB (Nguyen et al.
2018), we train a scoring function to perform the relation
prediction as follows:

sm = FC([vi, rm,vj ] ∗Ω), (4)

where ∗ denotes a convolution operation, Ω ∈ R1×3 is a set
of convolution filters, and FC(·) is a linear transformation
layer. Following (Nathani et al. 2019), we assign a score
sm to the triplet (vi, rm,vj) in Eqn.(4), which indicates the
probability that the triplet holds. For each entity, we first
traverse all entities and relationships to construct triples, and
then we select the triplet with the highest score as the new
link. In this way, the Reader can capture potential relations
between different nodes and derive a new graph GP . Finally,
we denote the enriched knowledge graph as G = GI ∪ GP .

3.2 Writer: Graph-to-Text
Based on the enriched graph G with N entities, we propose
a Writer to generate novel paragraphs, which consists of a



graph encoder and a text decoder. Specifically, the Writer
first uses the graph encoder to extract the knowledge rep-
resentations and then writes a new paragraph with the text
decoder (Vaswani et al. 2017).

Graph encoder. A comprehensive understanding of a KG
G is the first step to generate the desired paragraph. However,
it is difficult to directly capture rich semantic information in
the knowledge graph G. To address this, we extract the knowl-
edge representations within two sub-encoders, i.e., global-
graph encoder and local-graph encoder. Following CGE-LW
(Ribeiro et al. 2020), we integrate global context information
and local topology information to generate new paragraphs.

To aggregate global context information, we first concate-
nate all of the node features v and feed them into the global-
graph encoder Ψ as follows:

[v̂1, . . . , v̂N ] = Ψ([v1, . . . ,vN ]), (5)

where Ψ is a standard Transformer encoder (Vaswani et al.
2017), which contains multi-head self-attention layers and
feed-forward networks. In the global-graph encoder, we treat
the knowledge graphs G as a fully connected graph without
labeled edges. Based on the self-attention mechanism, the
global-graph encoder is suitable for discovering the global
correlation between nodes. Each node v̂i ∈ Rd has the ability
to capture all nodes’ information.

To better represent the interaction between nodes, we need
to build local relations between each node and its neighbor-
hood. However, the global-graph encoder does not explicitly
consider such graph topology information. To address this,
we use the local-graph encoder to model the local relations.
For each node, we first calculate attention weights for its
adjacent nodes since the different types of relationships have
considerable discrepancies in impact when fusing informa-
tion. Based on the attention weights, we obtain the hidden
node features ĥ by

ĥi =
∑
j∈Ni

aij rij v̂j , where

r̂ij = ReLU(rij W3 [v̂i, v̂j ]),

aij =
exp(r̂ij)∑
j∈Ni

exp(r̂ij)
.

(6)

Here, W3 denotes the model parameters and ĥi denotes the
hidden features which encode the local interaction between
the i-th node and its neighborhood. Ni denotes the neigh-
bourhood of the i-th node. We also perform the multi-head
attention operation to learn structural information from dif-
ferent perspectives. we employ a GRU (Cho et al. 2014) to
merge local information between different layers as follows:

hi = GRU(v̂i, ĥi), (7)

where the final node representation hi ∈ Rd.

Text decoder. Based on the node representations H =
{hi}Ni=1, we use the standard Transformer decoder (Vaswani
et al. 2017) to generate a novel paragraph τ with T words in
an auto-regression manner. At each step t, the text decoder

consumes the previously generated tokens as additional input
and outputs a probability pt over candidate vocabularies. We
train the Writer with supervised learning as follows:

LSL = −
T∑
t=1

yt log(pt), (8)

where yt is the ground-truth one-hot vector at step t and
generates words by selecting the element with the highest
score at this step. In practice, the text decoder also can use
other sequence generation models, such as LSTM (Hochreiter
and Schmidhuber 1997) and so on.

3.3 Reviewer: Feedback Rewards
The encoder-decoder framework has made great progress
in many sequence generation tasks, including text summa-
rization and image captioning. Nevertheless, it suffers from
some problems. For each training sample, such a framework
tends to use only one word as ground-truth at each generation
step, even if other candidate words are also reasonable. This
leads to a lack of diversity in the generated text. Moreover,
the language is so complex that it requires us to evaluate the
quality of the generated paragraph from different dimensions,
such as grammatical correctness, topic relevance, language
and logic coherence, etc. Inspired by the review process of a
research paper, we propose a Reviewer module to review the
generated paragraph from different dimensions. The output
of Reviewer can be used as an auxiliary training signal to
optimize the Writer, which is similar to researchers further
polishing the paper based on reviews.

Specifically, we design three feedback rewards in the Re-
viewer. First, we use the metric scores of the generated para-
graph as a reward to meet the rules of these metrics. Second,
we train a Turing-Test discriminator to determine whether
the paragraph is generated by an agent or written by a human,
which draws on the idea of adversarial training and requires
the paragraph to conform to the natural language specifi-
cation. Third, we design an alignment module to align the
generated paragraphs and the corresponding enriched knowl-
edge graphs, which ensures the correctness and completeness
of the generated texts. Different from teacher-forcing meth-
ods, the Reviewer focuses on sentence-level and graph-level
alignment. Given a generated paragraph, however, the above
evaluation processes are non-differentiable. As discussed in
SeqGAN (Yu et al. 2017), the discrete signals are limited in
passing the gradient update from the Reviewer to the Writer.
To address this, we denote the outputs of Reviewer as rewards
R and maximize expectation rewards E[·] via reinforcement
learning. Formally, the goal of Reviewer can be represented
by max EP (τ ;θ)[R(τ)], where θ denotes the trainable pa-
rameters of our model, and τ is the paragraph generated by
the Writer based on the generation probability P w.r.t. θ.
Specifically, the reward function is denoted as

R(τ) = R1 + λAR R2 + λMR R3, (9)

where R1, R2, and R3 correspond to the three modules of
the Reviewer. λAR and λMR control the contribution of
the corresponding reward. Following policy gradient meth-
ods (Williams 1992; Schulman et al. 2017), we can solve the



above problem in batch training as follows:

LRL = −EP (τ ;θ)[R(τ) logP (τ ; θ)],

≈ − 1

B

B∑
b=1

R(τ (b)) logP
(
τ (b); θ

)
,

(10)

where B is the training batch size. Now, we introduce these
reward modules in detail.

Quality reward. Given a generated paragraph τ , we
can calculate some quantitative metrics for it, such as
BLEU(Papineni et al. 2002), METEOR (Denkowski and
Lavie 2014), CIDEr (Vedantam, Zitnick, and Parikh 2015),
etc. Directly using these metrics as the training reward can
boost the sentence generation quality. In this paper, we simply
adopt the BLEU score R1 = BLEU(τ) as the reward since
the BLEU score is one of the most popular automated and
inexpensive metrics. In practice, the BLEU can be replaced
with any metric that needs to be optimized.

Adversarial reward. Based on a paragraph τ , this mod-
ule acts as a discriminator to determine whether τ is manual
annotation (Real) or generated by the machine (Fake). Follow-
ing (Yu et al. 2017), we use Convolutional Neural Network
(CNN) to extract text features since it can capture sequence
information and has shown exhibited high performance in
the complicated sequence classification task (Zhang and Le-
Cun 2015). Specifically, given a generated paragraph τ , we
first concatenate the token embedding as the text representa-
tion. We then use different numbers of kernels with different
window sizes to extract different features over the text repre-
sentation and produce a new feature map. After applying a
max-pooling operation, we perform a fully connected layer
with Sigmoid activation to output a probability, which de-
notes the probability that the input text is real. The calculation
can be formulated as R2 = CNN(τ). Inspired by adversarial
training (Cao et al. 2018), this module aims to minimize the
performance gap between humans and the Writer.

Alignment reward. A paragraph τ is supposed to align its
enriched KG G since τ is generated by Writer according to
the G. In this sense, we propose to compute the similarity
between τ and G based on the attention mechanism. Given
an abstract τ with T words, we first use Long Short-Term
Memory (LSTM) to extract text representation C = {ct},
where ct ∈ Rd, t ∈ {1, . . . , T}. Following AttnGAN (Xu
et al. 2018b), we obtain the hidden representation as follows:

qt = Softmax

(
(WQct)(WKH)>√

d

)
WV H, (11)

where WQ, WK , and WV are trainable parameters,
√
d is

a scaling factor and H ∈ Rd×N are node features obtained
from the Writer. With the help of the self-attention mecha-
nism (Vaswani et al. 2017), the hidden feature qt ∈ Rd not
only fuses the text representations but also merges graph in-
formation. Then, we calculate the cosine similarity as match-
ing score R3 as follows:

R3 =

T∑
t=1

q>t ct
‖qt‖ ‖ct‖

. (12)

Thus far, we can obtain the rewards R1, R2, and R3 from
above the Reviewer modules. Finally, to train our DRAW
network, we define the overall training loss as follows:

L = LSL + λRL LRL, (13)

where λRL is a trade-off parameter. LSL trains the DRAW
network within supervised learning while LRL allows the
DRAW network to explore diverse generation via reinforce-
ment learning and evaluate the generation from multiple ori-
entations.

4 Experiments
4.1 Datasets
AGENDA dataset. AGENDA is one of the most popular
KGs-to-text datasets, which concludes 40,000 pair samples
collected from the proceedings of 12 top AI conferences.
Each sample consists of a title, an abstract, and the corre-
sponding KG, which is extracted by the SciIE system. The
KG is composed of recognized scientific terms and their rela-
tionships. In particular, the types of scientific terms include
Task, Metric, Method, Material, and Other. The types of rela-
tionships include Used-for, Conjunction, Feature-of, Part-of,
Compare, Evaluate-for, and Hyponym-of.

M-AGENDA dataset. To further demonstrate the effec-
tiveness of our DRAW network, we create a new dataset,
called M-AGENDA. Specifically, we first calculate the co-
sine similarity between each abstract and the others in the
AGENDA dataset. We select two most-related instances for
each one and combine these three as a new data example in
the M-AGENDA dataset.

4.2 Experimental Settings
Implementation details. Our DRAW network consists of
three well-design modules, i.e., Reader, Writer and Reviewer.
We first train our Reader, Writer and Reviewer on AGENDA
dataset. Then, we use the trained Reader and Writer model
on the M-AGENDA to generate novel paragraphs. To speed
up convergence early in training, we adopt different pretrain-
ing strategies for each module. For the Reader, we first use
TransE (Bordes et al. 2013) to train entity and relation embed-
dings. We then aggregate information passed from a 2-hop
neighborhood to update the embedding of each node. Follow-
ing (Nathani et al. 2019), we use Adam optimization with an
initial learning rate of 0.1. For the Writer, we pre-train for 30
epochs with early stopping. Following (Ribeiro et al. 2020),
we use Adam optimization with an initial learning rate of
0.5. To ensure the generation effect, we set the maximum
generation length to 430. For the Reviewer, we pre-train the
adversarial module with SGD optimization and initialize a
learning rate of 0.001. When pre-training the graph encoder
of the alignment module, we use the same model and pa-
rameters of writer. In addition, we systematically adjust the
values of λAR and λMR to conduct several ablation studies.
We find that the experimental results of different coefficient
combinations fluctuate only around 0.1, causing little effect
on the results. Writer-Reviewer obtains the best results with
λAR = λMR = 2. We set the trade-off parameter λRL = 1.
We implement our method with PyTorch.



Model BLEU METEOR CIDEr
GraphWriter 14.44 18.80 28.30
GraphWriter+RBS 15.17 19.59 -
Graformer 17.33 21.43 -
CGE-LW 18.01 22.34 33.06
Writer-Reviewer (Ours) 19.60 24.03 45.21

Table 1: Quantitative evaluations of generation systems on
the AGENDA dataset (higher is better).

Paragraph Turing Test Results
Human Machine

Written by Human 68% 32%
Written by DRAW 48% 52%

Table 2: Quantitative results of Turing test.

Evaluation metrics. To demonstrate the quality of the gen-
erated paragraphs, we report both quantitative results and
human study results. We divide our evaluation into two parts:
KGs-to-text evaluation and overall performance evaluation.

For KGs-to-text evaluations, we adopt three general quan-
titative evaluation metrics, i.e., BLEU (Papineni et al. 2002),
METEOR (Denkowski and Lavie 2014) and CIDEr (Vedan-
tam, Zitnick, and Parikh 2015) to evaluate our Writer-
Reviewer. In addition, to demonstrate the realness of the
paragraphs generated by our model, we also set up a Tur-
ing test. Specifically, we randomly select 100 abstracts and
shuffle them to find an evaluation set, where half of the ab-
stracts are written by authors and the rest are generated by our
Writer-Reviewer. After that, we test the turkers on Amazon
Mechanical Turk (AMT) to determine whether the paragraphs
in the evaluation set are written by humans.

For overall performance evaluation, we set up a human
study to rate the abstracts generated by DRAW network,
CGE-LW and PaperRobot. For each model, we randomly
select 50 generated paragraphs and score them in terms of
‘grammar’, ‘informativeness’, and ‘coherence’ on Amazon
Mechanical Turk (AMT). Specifically, the metric ‘grammar’
measures the paragraphs written in well-formed English. The
metric ‘informativeness’ denotes whether the paragraphs
make use of appropriate scientific terms. The metric ‘co-
herence’ denotes that the generated text conforms to general
specifications. For example, a complete abstract should in-
clude a brief introduction to a task, describe the solution,
analyze and discuss the results, and so on. Each metric de-
scribed above, contains 10 levels, with rankings from 1 to 10
(from bad to good).

Following the relation prediction task (Nathani et al. 2019),
we evaluate our link prediction method of Reader on the
proportion of correct entities in the top N ranks (Hits@N) for
N=1,3, and 10.

4.3 KGs-to-text Evaluation on AGENDA Dataset
To verify our model on KGs-to-text task, we compare our
Writer-Reviewer against several state-of-the-art models in-
cluding GraphWriter (Koncel-Kedziorski et al. 2019), Graph-
Writer+RBS (An 2019), Graformer (Schmitt et al. 2020) and

Model BLEU METEOR CIDEr
Writer 18.01 22.34 33.06
Writer+Adversarial 19.37 23.87 39.30
Writer+Alignment 19.33 24.00 43.49
Writer+Quality 19.50 24.03 44.40
Writer-Reviewer (Ours) 19.60 24.03 45.21

Table 3: Ablation study for modules used in the Reviewer on
the AGENDA dataset.

Model Grammar Coherence Informativeness
PaperRobot 5.11 4.95 5.01
CGE-LW 6.77 6.29 6.57
DRAW (Ours) 7.63 6.83 7.10

Table 4: Automatic evaluations results (higher is better).

CGE-LW (Ribeiro et al. 2020) on the AGENDA dataset.

Results. We report the results of our method and other
compared models with respect to three quantitative evaluation
metrics in Table 1. As shown in Table 1, our Writer-Reviewer
achieves better performance than all the compared models in
three quantitative evaluation metrics. Specifically, our Writer-
Reviewer outperforms the state-of-the-art method CGE-LW
by 1.6 points in BLEU, 1.7 points in METEOR and 12.2
points in CIDEr. These results demonstrate the superiority of
our Writer-Reviewer in the KGs-to-text task.

In addition, we carry out a human evaluation to demon-
strate the effectiveness of our Writer-Reviewer. To be specific,
for each paragraph in the evaluation set, we ask the human
to choose whether these paragraphs are written by human-
authors. From these results in Table 2, nearly half of the
paragraphs generated by our Writer-Reviewer are reviewed
as written by humans. More critically, 32% of the paragraphs
written by humans are chosen as written by the AI system.
These results demonstrate that our Writer-Reviewer can gen-
erate realistic paragraphs similar to those written by humans.

Ablation studies in Reviewer. To investigate the effect of
different modules in Reviewer, we conduct an ablation study.
As shown in Table 3, Writer combined with one of the mod-
ules in Reviewer arbitrarily obtains better performance than
Writer, which demonstrates the effectiveness of the modules
in Reviewer. Writer combined with all the modules in Re-
viewer, namely Writer-Reviewer, achieves best performance.

4.4 Evaluation on M-AGENDA Dataset
To show the effectiveness of our DRAW network, we con-
duct experiments on the M-AGENDA dataset. Since the M-
AGENDA dataset does not provide ground-truth, we conduct
human study instead of quantitative evaluations. Specifically,
for each metric in the human study, we average the scores of
the paragraphs rated by the humans as the final score.

Results of DRAW. We report the experimental results of
our DRAW network and other compared methods in Table 4.
From these results, our DRAW network achieves the best
performance in terms of ‘grammar’, ‘coherence’, and ‘in-
formativeness’. Specifically, PaperRobot (Wang et al. 2019)



Initial KGs 41 entities, 18 relations: (global scene-level contextual information, PART-OF, spatial context recurrent
convnet model) ; (wikipedia, USED-FOR, multilingual ner systems) ; (local image de-scriptors, CONJUNC-
TION, spatial configurations) . . .

PaperRobot In this paper we propose a novel approach for multilingual named entity recognition tasks . The proposed
method is based on semantic similarity measure that can be used to improve word retrieval performance by
using wikipedia type of words from text documents and then build an efficient query language model which
allows users with similar information between entities as clusters across different domains : part-of-speech
tags are generated through each user ’s document representation ; our knowledge base system was evaluated
over state-of-the-art approaches trained object . . . [covering 6 entities.]

CGE-LW in this paper ,. . . we propose a spatial context recurrent convnet model to incorporate global scene-level
contextual information into a spatial context recurrent convnet model for object retrieval .. . . , and the
contextual information from candidate boxes is used for object retrieval. a positional language model that
captures contextual information from candidate boxes for object retrieval. the proposed system is evaluated
on the tac-kbp 2010 data,and the experimental results show that the proposed system can significantly
improve the entity linking performance. . . [covering 21 entities.]

DRAW in this paper , we propose a novel approach to entity linking1 based on statistical language model-based
information retrieval1 , which exploits both local contexts and global world knowledge2 to improve the
entity linking2 performance.. . . , we propose a spatial context recurrent convnet model to integrate global
context features with local image de-scriptors3 ,spatial configurations , and global scene-level contextual
information3 into a spatial context recurrent convnet model. . . , and a recurrent network with local and global
information to guide the search for candidate boxes for object retrieval. . . [covering 26 entities.]

Table 5: Example outputs of various models. To better visualize the generated text, we omit information irrelevant to the
comparisons. Repetitive words are represented in red and entities included in KGs are represented in orange. The potential
knowledge is represented in blue with the corresponding superscript.

Method Hits@N
@1 @3 @10

PaperRobot 11.9 19.5 42.4
Our 36.8 46.0 56.1

Table 6: Accuracy of the link prediction on the M-AGENDA
dataset. Hits@N values are in percentage.

obtains poor performance due to the neglect of the topo-
logical structure between entities. CGE-LW (Ribeiro et al.
2020) takes advantage of the graph information effectively
and achieves 6.77, 6.29, and 6.57 points in terms of three
metrics, but it also ignores the fact that the generated para-
graphs are supposed to match the KGs. Different from the
methods above, our DRAW network not only performs link
prediction with multi-hop information in the Reader but also
matches the graphs and the generated paragraphs, and thus
achieves the best performance. More ablation experiments
about Reader can be found in the supplementary material.

Results of Reader. As shown in Table 6, we report the ex-
perimental results of the link prediction method of our Reader
and PaperRobot. Our method achieves the Hits@1, Hits@3,
Hits@10 scores of 36.8, 46.0, and 56.1, outperforming the
PaperRobot by 24.5, 26.5, and 13.9 points, respectively. It
demonstrates the effectiveness of our link prediction method.

Visualization analysis. As shown in Table 5, we visualize
a generated paragraph of our DRAW network. More visual-
ization results can be found in the supplementary material.
We see that our DRAW network has the ability to cover more
entities (represented in orange), while PaperRobot mentions
less entities in the given KG. In addition, CGE-LW tends to
repeat unrelated entities/sentences (represented in red). With
the help of Reviewer, the generated text of DRAW network is
fluent and grammatically correct. Moreover, our DRAW net-
work is able to discover the potential relationships between
entities (represented in blue superscript.)

5 Conclusions and Future Work
In this paper, we propose a Deep ReAder-Writer (DRAW) net-
work that reads multiple AI-related abstracts and then writes
a new paragraph to represent enriched knowledge combining
the potential knowledge covering the topics mentioned in the
source abstracts. Inspired by the review process, we propose a
Reviewer to rate the quality of the generated texts from differ-
ent dimensions, which serve as feedback signals to refine our
DRAW network. Ablation experiments demonstrate the effec-
tiveness of our method. Moreover, Writer-Reviewer achieves
state-of-the-art results on KGs-to-text generation task. In
terms of human study, some generations of our DRAW net-
work successfully pass the Turing test and confuse the turkers.
In future study, we will extend the DRAW network to write a
complete paper in an iterative manner and develop more tech-
niques to discover novel ideas, such as creating new entities.
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