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Image Captioning With Controllable and
Adaptive Length Levels

Ning Ding , Chaorui Deng , Mingkui Tan , Qing Du , Zhiwei Ge, and Qi Wu

Abstract—Image captioning is a core challenge in computer
vision, attracting significant attention. Traditional methods prior-
itize caption quality, often overlooking style control. Our research
enhances method controllability, enabling descriptions of vary-
ing detail. By integrating a length level embedding into current
models, they can produce detailed or concise captions, increasing
diversity. We introduce a length-level reranking transformer to
correlate image and text complexity, optimizing caption length for
informativeness without redundancy. Additionally, with caption
length increase, computational complexity grows due to the au-
toregressive (AR) design of existing methods. To address this, our
non-autoregressive (NAR) model maintains constant complexity
regardless of caption length. We’ve developed a training approach
that includes refinement sequence training and sequence-level
knowledge distillation to close the performance gap between NAR
and AR models. In testing, our models set new standards for caption
quality on the MS COCO dataset and offer enhanced controllability
and diversity. Our NAR model excels over AR models in these
aspects and shows greater efficiency with longer captions. With
advanced training techniques, our NAR’s caption quality rivals
that of leading AR models.

Index Terms—Length-controllable image captioning,
non-autoregressive image captioning, length level reranking,
refinement-enhanced sequence training.

I. INTRODUCTION

THE task of Image captioning is to automatically describe a
given image with a natural sentence, and has developed

rapidly thanks to the remarkable progress in deep learning
methods and open datasets. It is a challenging task as it requires
a comprehensive understanding of the image content as well
as a strong ability of natural language expression. It is also an

Manuscript received 30 June 2022; revised 20 September 2023; accepted 11
October 2023. Date of publication 6 November 2023; date of current version 8
January 2024. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 62072190, in part by the Key-Area
Research and Development Program of Guangdong Province under Grants
2018B010107001 and 2019B010155001, in part by the Ministry of Science and
Technology Foundation Project under Grant 2020AAA0106900, and in part by
the Program for Guangdong Introducing Innovative and Enterpreneurial Teams
under Grant 2017ZT07X183. Recommended for acceptance by L. Wang. (Ning
Ding and Chaorui Deng contributed equally to this paper.) (Corresponding
author: Mingkui Tan.)

Ning Ding and Zhiwei Ge are with JD.com, Beijing 101111, China (e-mail:
dingning36@jd.com; gezhiwei@jd.com).

Chaorui Deng and Qi Wu are with the School of Computer Science,
The University of Adelaide, Adelaide, SA 5005, Australia (e-mail: chaorui.
deng@adelaide.edu.au; qi.wu01@adelaide.edu.au).

Mingkui Tan and Qing Du are with the School of Software Engineering,
South China University of Technology, Guangzhou 510006, China (e-mail:
mingkuitan@scut.edu.cn; duqing@scut.edu.cn).

Digital Object Identifier 10.1109/TPAMI.2023.3328298

Fig. 1. (a) Illustration of image captions with different lengths. To the right of
the image are five human-annotated captions. At the bottom, we show the image
captions generated by an original VLP [6] model and our length-controllable
version of VLP. (b) Illustration of the semantic complexity correlation: semanti-
cally simple images can be described with short & brief captions; on the contrary,
long & detailed captions are required for more complex images.

important task in practice and has wide applications such as text-
to-image retrieval, multi-modal recommendation, and human-
computer interaction, etc. State-of-the-art (SOTA) methods in
image captioning prone to the Encoder-Decoder framework [1],
[2], [3], [4], [5], [6], where an encoder extracts features from
the input image, followed by a decoder that generates captions
based on the encoder features in a autoregressive manner, i.e.,
predicting one token at each step. Based on this framework,
remarkable performances have been achieved on the challenging
MS COCO dataset [7], and even surpass human performance on
some evaluation metrics.

Despite this, most of these SOTA methods lack the ability
to control the style of the generated image captions; more espe-
cially, choosing to caption the image at a specified level of detail.
As shown in Fig. 1(a), given an input image, although the caption
generated by VLP [6] (a current SOTA) correctly describes
the image, it fails to capture more informative visual concepts
such as “pitcher throws a pitch” and “wearing a uniform”,
which also leads to a limited diversity. This motivates us to
develop controllable image captioning models that can generate
as requested either rough or detailed image captions. We show
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in this paper that such an ability can be effectively acquired by
directly controlling the length of the generated image captions.

Length is an important property of natural language since it
roughly reflects the amount of information carried by a sentence.
In this work, we explicitly exploit this property and propose
a length-controllable image captioning approach that can be
applied to existing image captioning models seamlessly. See the
example in Fig. 1(a), the longest caption (Ours Lv4) generated
by our length-controllable VLP contains detailed descriptions
of the salient objects, leading to higher fidelity of the visual
information. While short captions (Ours Lv1/Lv2) briefly intro-
duce the scene but can be generated more efficiently. Besides,
we further design a reranking module that is able to find the
most suitable level of detail for each image according to its
semantic complexity. As shown in Fig. 1(b), when the image
is semantically simple, a short caption may properly describe
the image, while a long caption would be torturous. On the
contrary, for a complex image, a long caption can capture the
visual semantics more comprehensively, while a short one will
inevitably lose some important details.

At the core of our method is a concept termed “length level”
which refers to a specific length range of the image captions.
Specifically, during training, a length-level embedding is trained
for each level with only the training data inside the length range.
Thus, the model is enabled to capture the language patterns of the
captions on each level, e.g., longer captions tend to involve more
visual concepts. During inference, based on different length level
embeddings, the model is controlled to generate image captions
within different length ranges. In this way, an existing image
captioning model can be turned into a length-controllable one
by simply introducing an additional length level embedding to
the input. Afterward, a natural extension is to select a proper
length level when describing the image so that the image caption
is informative while also not redundant. We achieve this by
proposing a length-level reranking transformer (LLRT), which
takes as input the image as well as the generated captions at
all length levels and predicts the most suitable length level. A
special[LEVEL] token is appended to the input of LLRT, and its
final hidden state is fed into a scoring head to score the caption.

We show the effectiveness of our length-controllable and
length-level reranking approaches by applying them to several
popular image captioning models under both Teacher Forcing
training (AoANet [4] and VLP [6]) and Self-Critical Sequence
Training (SCST) [8] schemes (M2 Transformer [9] and X-
LAN [10]). In the experiments, our length-controllable models
successfully generate high-quality and length-controllable re-
sults. By further reranking the captions from all length levels,
we obtain top-1 performances that are significantly higher than
the original results of these baseline models. Nevertheless, a
new problem appears for these models: since they adopt an
autoregressive (AR) decoding strategy, which generates only
one token at each step, their decoding complexity increases
linearly as the length L of the caption grows (i.e., a Θ(L)
complexity). This hampers the model efficiency in scenarios
where longer captions are preferred, and also impedes the par-
allel generation of image captions with different length levels.

To tackle this, we propose a non-autoregressive (NAR)
paradigm for length-controllable image captioning, denoted
by LaNAR (Length-aware Non-Autoregressive) Captioning.
Specifically, the proposed LaNAR paradigm decodes image
captions within a fixed number of refined steps regardless of
L, which is a length-irrelevant complexity. Moreover, LaNAR
is compatible with transformer-based architectures as they have
the potential to process the whole input sequence in parallel.
We verify LaNAR on two architectures, including the encoder-
decoder-based vanilla Transformer [11], and the pure encoder-
based BERT [12]-like architecture. From the experiments, the
proposed LaNAR paradigm significantly improves the decoding
efficiency for longer captions, while also achieving competitive
or even better performance compared with the AR baselines
on all length levels. We further devise a refinement-enhanced
sequence training (REST) scheme specially for our LaNAR
paradigm, which significantly improves its performance and
outperforms existing NAR image captioning models by a large
margin. After applying REST and Sequence-Level Knowledge
Distillation (SLKD) [13], our LaNAR captioning models out-
perform their AR counterparts while decoding much faster.

Our main contributions are summarized as follows:
1) We first introduce the design of “length level” as a control

signal to learn length-aware image captioning models,
which can be easily integrated into existing image cap-
tioning methods to make them capable of generating high-
quality, length-controllable and diverse image captions.

2) We devise LaNAR, a NAR paradigm for length-
controllable image captioning that makes the decoding of
long captions more efficient while also achieving higher
control precision and producing more diverse results than
the AR baselines.

3) We propose to learn a length level reranking transformer
to find out the most suitable length level when depicting a
given image.

4) We perform extensive experiments on various kinds of
image captioning models and settings to show the effec-
tiveness of our proposed methods.

A preliminary version of this work was published in
ECCV2020 [14]. This work is a systematic extension of our
previous paper in the following ways:

1) We devise a length-level reranking transformer that is able
to caption the image within a proper length level according
to its semantic complexity.

2) We devise the REST scheme and adopt the SLKD tech-
nique for training LaNAR captioning models, which
bridges the gap between the NAR model and AR model,
boosting the performance of LaNAR captioning models
by a large margin.

3) More experimental results are provided, including the per-
formance of the proposed length-controllable paradigm
on more baseline models, the results of LLRT on both
length-controllable AR and NAR models, the results of
the length-controllable AR models under SCST, and the
results of REST and SLKD on NAR models, as well as
more performance discussions.
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II. RELATED WORKS

A. AR-Based Image Captioning

Over the years, auto-regressive (AR) Image Captioning meth-
ods have developed rapidly based on the Encoder-Decoder
framework [1], [2]. In [15], the authors proposed to integrate
attention mechanisms [16] into RNN-based decoders, to encour-
age the model to focus on special parts of the image during each
decoding step. Then, Anderson et al. [17] devised a bottom-up at-
tention mechanism to enable feature aggregation at object-level,
instead of pixel-level as in [15]. This method achieved the best
results at that time and outperformed the second-best result by
a large margin. In [8], Rennie et al. developed a Reinforcement
Learning based training strategy that directly optimizes the
CIDEr [18] score of the predicted image captions through policy
gradient. The proposed method, called self-critical sequence
training (SCST), greatly alleviates the “exposure bias” problem
in sequence modeling and significantly boosts performance.
Some works, on the other hand, focus on leveraging additional
information, such as semantic attributes [19] and visual rela-
tions [20], [21], to improve the image caption quality. More re-
cently, after witnessing the effectiveness of Transformers [11] in
capturing long-range dependencies in sequence modeling, many
Transformer-based methods [4], [5], [6] have been proposed to
further advance the image captioning performance.

B. Diverse and Controllable Image Captioning

Despite existing AR image captioning models having
achieved remarkable performance, fewer efforts have been made
toward improving the diversity and controllability of image
captions. In [22], a Part-of-Speech (POS) predictor is trained
to generate a sequence of POS tags based on the input images,
which are then used to control the decoding of image captions.
Chen et al. [23] proposed to control the image captions through
the Abstract Scene Graph (ASG), which is a directed graph
consisting of three types of abstract nodes (object, attribute,
relationship) grounded in the image. However, these methods
rely on additional tools or annotations to provide supervision,
and their control signals are too abstract to be used conveniently
in practice. Some content-based methods [24], [25], [26] used
different image regions to generate region-specific image cap-
tions, but they lack the ability of fine-grained control. Besides,
Generative Adversarial Network (GAN) based methods have
also been proposed to generate image captions with diverse
styles [27], [28], [29]. These methods require additional training
data, such as an image caption dataset with additional style
annotations [30], [31], [32], which is scarce and expensive; or a
large corpus of stylized text without aligned images [33], [34],
which often leads to unsatisfied caption quality.

As discussed in Section I, length is an important property
for image captions. It is easy to acquire and is strongly as-
sociated with the semantic complexity of the image caption,
which is very useful in practice. Several methods in the Natural
Language Processing field have visited the length-controllable
text generation setting. In [35], Kikuchi et al. explored four
length-control strategies in Neural Sentence Summarization: 1)

omit the[EOS] token during decoding until the desired length is
reached; 2) set a length range and manually discard out-of-range
sequences; 3) use a remained length embedding to inform the
model of the remained length; 4) multiply the length with the
hidden state during parameter initialization. However, in the first
two strategies, the model is not aware of the desired length,
which may lead to low diversity. Also, these two strategies are
likely to produce uncompleted sentences. The last two strategies
seek to control the exact length of the output sentence, which is
hard in practice and restricts the flexibility of the results. [36]
also controls the exact length of the output in Convolutional
Seq2Seq models [37], which faces the similar problems.

Different from the above methods, we propose to use the
length level as a control signal to obtain diverse and controllable
image captions, which is more convenient compared with those
using abstract control signals like POS tags and ASG, cheaper
compared with those requiring additional annotations and tools,
and more applicable compared with those controlling the exact
length of the sentence.

C. NAR Text Generation

A common problem in AR models is that the output tokens
must be generated sequentially, which prevents architectures like
the Transformer from fully realizing their training-time speedup
advantage during inference. To tackle this, some recent Neural
Machine Translation works have appealed to NAR decoding
algorithms [38], [39], [40], [41], [42], which attempts to predict
the entire sequence within one (or, a fixed number irrelevant to
the sequence length) forward pass of the decoder. Unlike AR
models where the decoding process terminates automatically
after encountering the [EOS] token, existing NAR models
usually need to determine the length of the output sequence
at the beginning of the decoding process. These methods either
learn a length predictor along with the decoder or adopt inser-
tion/deletion modules to automatically change the length of the
output. More recently, several NAR image captioning models
have been developed [43], [44], however, they usually suffer
from a large performance degradation compared with the SOTA
AR image captioning models.

In this paper, we devise a NAR approach for length-
controllable image captioning to reduce the decoding complex-
ity, especially for long captions. Thanks to the design of “length
level” and the explicit modeling of the length property, our
approach is able to automatically find a suitable end position
within the length level during decoding, without having to
learn an additional length predictor. Moreover, we propose a
refinement-enhanced sequence training scheme for our NAR
image captioning model, where we achieve competitive perfor-
mance with SOTA AR models.

III. METHOD

A. Preliminary

Given an image I , the target of image captioning is to generate
a natural sentence description S = {si}Li=1 for I . Here, si is a
token in S, L is the length of S. Existing methods are mostly
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autoregressive, where they factorize the distribution of S into
a chain of conditional probabilities with a left-to-right causal
structure: p(S|I) = ∏L

i=1 p(si|sj<i, I). Consequently, a token
si can only be generated when all preceding tokens sj<i are
available. Assume the target image caption to be S∗ = {s∗i}L

∗
i=1.

The training of AR models typically follows the “Teacher
Forcing” [45] scheme, which aims to minimize the negative
log-likelihood of the ground-truth token s∗i given all preceding
ground-truth tokens s∗j<i

min

L∗∑
i=1

− log p(s∗i |s∗j<i, I). (1)

Apart from Teacher Forcing, a sequence-level optimization
scheme SCST is proposed in [8], which seeks to maximize the
expected reward of the predicted sentences

maxES∼π[r(S̃)], (2)

where π indicates the output distribution modeled by the image
captioning model, and the reward function r(·) is defined as the
subtraction of the CIDEr score of the randomly sampled S̃ and
their greedy sampled counterpart Ŝ, i.e., a self-critical reward

r(S̃) = CIDEr(S̃)− CIDEr(Ŝ). (3)

In datasets like MS COCO, each training image usually has 5
paired ground-truth captions, and the CIDEr score of a generated
caption is calculated over all of them.

During inference, AR models start by taking a special [BOS]
token as input and predict the sentence one token after another,
until a special [EOS] token is reached.

B. Acquisition of Length Information in AR Image Captioning

To explicitly model the length property of an image captionS,
we assign S = {si}Li=1 into a specific length level k according
to its lengthL, which has a length range of [Llow

k , Lhigh
k ]. Each

length level is associated with a length level embedding el(k) ∈
Rd to differentiate image captions on different length levels.
Then, for each token si in S, we construct its input embedding
by

xsi = el(k) + ew(si) + ep(i), (4)

where ew(si) ∈ Rd is the word embedding of si and ep(i) ∈
Rd is an optional positional embedding for Transformer-based
decoder. With this length level embedding el(k), the length
information of S is explicitly incorporated into xsi . In this way,
existing image captioning models can be turned into length-
aware models by simply replacing their original token embed-
dings (e.g., word embeddings) with our length-aware tokens
embeddings, without any other modifications to their network
architectures.

The training of length-aware AR image captioning mod-
els can directly follow the Teacher Forcing or SCST scheme.
During training, the length level embedding for level k will
only be trained with captions within the particular length range
[Llow

k , Lhigh
k ]. For Teacher Forcing, the only difference is to

separate the training set according to the length levels; similarly,
for SCST, the CIDEr score of a generated caption will only be

calculated with the reference captions in the same length level.
In this way, the “trait” of image captions with different length
levels is separately modeled, e.g., long captions usually cover
more visual concepts in the image, which enables length-aware
vision-language modeling. Note that, each image is only trained
on the length levels that have at least one reference caption.
During inference, the desired length level embedding is fed into
the model as a control signal, through (4).

Due to the simplicity of the proposed length-controllable
approach, it can be easily implemented on existing AR image
captioning methods. To show its strong generalization ability, we
first consider two representative baseline models, i.e., an LSTM-
based AoANet [4] and a Transformer-based VLP [6], and train
these models using the Teacher Forcing scheme; moreover, we
further investigate another two models, i.e., M2 Transformer [9]
and X-LAN [10], under the self-critical training scheme. As an
example, we illustrate the length-controllable VLP in Fig. 2(a).
When setting the boundary [Llow

k , Lhigh
k ] of a length level we

follow two simple principles: 1) there should be enough training
data for each length level so as to train the length level embedding
sufficiently; 2) the range of a length level should not be too
narrow to ensure the flexibility of the generated captions. After
checking the length distribution of captions in the MS COCO
dataset (see Fig. 5), we explore two length-level division plans in
our experiments, which contain 4 or 5 length levels, respectively.
The 4-level plan divides the image captions into 4 chunks
with length inside the ranges [1,9], [10,14], [15,19],
and [20,25], respectively, from rough to detailed. While the
5-level plan provides more fine-grained divisions, which are
[1,9], [10,13], [14,17], [18,21] and [22,25].

C. Adaptive Length Level Reranking

So far, we have introduced our length-controllable image
captioning approach, which requires a “length level” control
signal to decide the length range of generated captions. However,
as shown in Fig. 1(b), for a semantically simple image, a short
sentence is usually enough to cover all the details and a long
sentence could be tedious and unnecessary, while for a complex
image, short sentences may only able to describe the image from
a coarse global view and fail to capture the distinct part of the
image. Thus, it is intuitive to capture the correlation between
the semantic complexities of the image modality and the text
modality, and adaptively select the most suitable length level
for an image. While there have been multiple reference-free
automatic image captioning metrics that can be used to rank the
image captions, such as CLIPScore [46], VIFIDEL [47], and
UMIC [48]. However, they focus on the semantic alignment
between the generated captions and the images, which may
fail to capture the subtle difference in terms of the semantic
complexities. More critically, the measurement of the semantic
complexity of an image is still an open problem.

To tackle this, we take inspiration from [49], which shows
that the complexity of a thing is correlated to how hard it is for
a human to describe it. Therefore, the most suitable length level
of an image can be determined by ranking the corresponding
captions according to a reference-based evaluation metric with
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Fig. 2. (a) Overview of length-controllable VLP. The caption tokens are represented by the sum of the word embeddings, positional embeddings, and the proposed
length-level embeddings.hr andhs are the output hidden states of image tokens and caption tokens. (b) Overview of the length level reranking transformer (LLRT).
The generated captions from all length levels are fed into LLRT simultaneously, and a length level distribution is predicted from their [LEVEL] token embeddings
through a scoring head πθ .

human-provided references. To this end, we learn a Length-level
Reranking Transformer (LLRT) module with CIDEr optimiza-
tion. As shown in Fig. 2(b), LLRT adopts a joint vision-language
transformer architecture, which takes as input the image I ,
the generated caption of length level k (denoted by Sk), as
well as a special [LEVEL] token. Based on the final hidden
state of the [LEVEL] token, denoted by hl(k) ∈ Rd, we then
predict a confidence score between Sk and I from hk through
a scoring head, and choose the Sk with the largest score as the
final prediction for I . Note that, since the original VLP model
is already a joint vision-language transformer, we can directly
reuse the backbone of VLP and attach the scoring head on top
of it.

Specifically, we formulate the optimal length level selection
as a reinforcement learning problem. Given the generated image
captions from all length levels {Sk}Kk=1 (K is the number of
length levels), we first obtain their [LEVEL] representations
H l = {hl(k)}Kk=1 through the LLRT backbone, and compute
the CIDEr scores between each Sk and the human-provided
reference captions, denoted by CIDEr(Sk). Taking CIDEr(Sk)
as reward, our learning objective is to minimize the negative
expected reward

Lr = −Ek∼πθ(Hl)[CIDEr(Sk)], (5)

where πθ(·) is a two-layer Multi-Layer Perceptron with param-
eter θ that takes H l as input and output a confidence score
between Sk and I for k = 1, . . .,K. Afterward, a Softmax
function is adopted to compute the categorical length level
distribution based on the confidence scores of all length levels.
The model can be optimized through policy gradient [50] as
follows:

∇θLr = −CIDEr(Sk)∇ log πθ(H l). (6)

When training LLRT, we can initialize it from a trained
length-controllable VLP model, and fine-tune it with (5) while
keeping the original parameters in length-controllable VLP fixed
and only training the scoring MLP head. The token embed-
dings are also fixed during fine-tuning except for the newly

Fig. 3. Overview of LaNAR-VLP. The network architecture is similar to the
length-controllable VLP, but the input is randomly masked and the final hidden
state of [MASK] tokens are fed into a token classifier to predict their original
tokens.

added [LEVEL] token. The [LEVEL] token embedding is
initialized from the original [CLS] token embedding in length-
controllable VLP. During inference, the reranking process re-
quires only one forward pass of the LLRT model, which is very
efficient compared with the caption decoding process.

D. NAR Length-Controllable Image Captioning

AR image captioning models suffer from a linearly-increased
decoding complexity which usually leads to inefficiency, es-
pecially for long caption generation. To aid this, we propose
a NAR length-controllable image captioning paradigm named
LaNAR for transformer-based image caption models. Take the
BERT [12] model as an example, the architecture of the LaNAR-
BERT is shown in Fig. 3. Following [6], [17], the input image
I is first pre-processed by a pre-trained object detector into
M object proposals R = {ri}Mi=1. These proposals are repre-
sented by their region features F e = {fe(i)}Mi=1, classification
probabilities F c = {f c(i)}Mi=1, and localization features F p =
{fp(i)}Mi=1. Similar as in [6], the final input representation of
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ri is constructed by

xri = W T
e fe(i) +W T

p [LN(f c(i)),LN(fp(i))] + eimg.
(7)

[·, ·] indicates the concatenate operation, and LN represents
Layer Normalization [51]. W e and W p are two learnable
projection matrices that project the corresponding features into
d-D visual embeddings and location embeddings, respectively.
eimg ∈ Rd is a learnable embedding that differentiates the im-
age regions from the text tokens, which plays a similar role as
the segment embeddings in BERT. We also apply the LaNAR
paradigm to the vanilla Transformer [11]. It is an encoder-
decoder-based architecture, where the encoder is used to process
the image features with a similar process as in (7) (except eimg

is removed), and similar modifications as in (4) is applied to the
decoder part. We denote this model as LaNAR-Transformer.

Training. The training of LaNAR captioning models follows
the basic idea of Conditional Masked Language Modeling [39],
but we make modifications to take advantage of our length
level design and get rid of the commonly used length predic-
tor. Given the target image caption S∗ inside the length level
[Llow, Lhigh], we first pad it with [EOS] tokens to the longest
lengthLhigh. Then, we randomly choosem ∈[1,Lhigh] posi-
tions in the sequence and replace them with the [MASK] token.
Denoting the obtained sequence as Sm, the LaNAR captioning
model attempts to predict the original tokens at all masked
positions conditioned only on the image region representations
(obtained by (7)) and the unmasked length-aware tokens embed-
dings in Sm (obtained by (4)). Hence, the predicted conditional
probabilities are independent of each other, allowing them to
be calculated in parallel at inference time. We train the LaNAR
captioning model by minimizing the cross-entropy loss over all
masked positions

Lc =

Lhigh∑
i=1

−1(si) · Ω(s∗i ) · log p(si = s∗i ). (8)

Here, 1(·) is an indicator function that outputs 1 if si = [MASK]
and 0 otherwise. To facilitate the model to produce longer cap-
tions, we adopt a term Ω(s∗i ) in (8) that outputs ω (ω < 1) when
s∗i is [EOS] and 1 otherwise, so that the gradient contributed
by [EOS] tokens is down-scaled, making the model less likely
to predict the [EOS] token.

By padding S∗ to Lhigh with [EOS] tokens, the proposed
LaNAR paradigm is trained to automatically find a suitable
end position within [Llow, Lhigh], since all training samples
for this length level only contain the [EOS] tokens inside
[Llow, Lhigh]. Owing to this design, a LaNAR captioning
model does not need a length predictor to determine the length of
the output at the start of decoding as most NAR text generation
methods do, but also shows clearly better controllability com-
pared with our length-controllable AR baselines (Section IV-H).

Inference. We perform parallel image caption decoding based
on the idea of iterative refinement [39], [43], whereat each step t,
a masked image caption Sm

t−1 (obtained from the previous step)
is fed into the model to predict the tokens in the masked positions.
Specifically, the LaNAR captioning model predicts the token

distribution for all positions in Sm
t−1, denoted by pt. Then, we

update all masked positions in Sm
t−1 with the greedy-sampled

predicted tokens

si ← argmax
s

pt(si = s), ∀i ∈ {i|si = [MASK]}. (9)

Denote the updated caption as St. To encourage the model to
predict longer captions, before the greedy sampling, we expo-
nentially decay the probability of the [EOS] token by a factor
γ for positions after Llow

pt(si = [EOS])← γLhigh−ipt(si = [EOS]),

∀i ∈ [Llow, Lhigh]. (10)

Meanwhile, based on pt, we also obtain a confidence score ct,i
for each token si

ct,i ←
{
maxs pt(si = s), i is a masked position.
(1− α) ∗ ct−1,i + α ∗maxs pt(si = s), otherwise.

(11)
We then find the tokens with the lowest n confidence scores and
mask the corresponding positions, resulting in Sm

t , which will
be fed into the LaNAR captioning model again for next-step
refinement. Here, α is a hyper-parameter that controls the pro-
gressing speed of the confidence scores in unmasked positions.
Let T be the overall refine steps, n = T−t

T Lhigh is the number
of masked positions and will decay linearly to 0 as t increases.
The initial image caption Sm

0 is set as {si = [MASK]}Lhigh

i=1 .
An illustration of the iterative refinement process is in Fig. 4.

Through iterative refinement, the decoding complexity is
decreased from Θ(Lhigh) in AR methods to Θ(T ) in LaNAR
models. Also, the mistakes made at early steps in LaNAR models
are possible to be revised in future steps, which is infeasible for
AR methods. Note that the update rule in (11) is different from
the update rule in [39], which only updates the confidence scores
of the masked positions. In practice, we found ours (denoted as
the global update rule) performs much better in terms of caption
quality. Moreover, our LaNAR paradigm also allows dynamic
length changes during the refinement process, while not using
any additional insertion/deletion modules like in [40].

E. Self-Critical Training for Iterative Refinement

Sequence-level optimization like SCST has been shown to
greatly improve the performance of AR models. However, it
is non-trivial to apply SCST directly to the LaNAR paradigm
for its non-autoregressive decoding behavior. To aid this, we
design a Refinement-Enhanced Sequence Training scheme for
LaNAR, denoted by REST. Specifically, at each refine step T ,
given the masked caption obtained at the previous step Sm

t−1,
we obtain two new captions by one forward pass of the LaNAR
captioning model, i.e., S̃t, where the updated token for each
masked position in Sm

t−1 is randomly sampled from pt, and Ŝt,
where the tokens are greedy-sampled. Then, we follow SCST to
maximize the expected reward of the updated sentence as in (2),
where the reward function is defined as

r(S̃t) = (CIDEr(S̃t)− CIDEr(Ŝt))

+ (CIDEr(S̃t)− CIDEr(Ŝt−1)). (12)
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Fig. 4. Illustration of the iterative refinement process of our LaNAR paradigm. The red tokens indicate those with lower confidence scores. At each step, all red
tokens are masked and re-predicted in parallel, conditioned on other tokens in the sequence and visual information from the image.

The first term is inherited from the original SCST, where we
compute the advantage of the randomly sampled S̃t over its
greedy sampled counterpart Ŝt; and the second term is our
refinement-enhanced reward, where the advantage of S̃t over
the caption generated at the previous step is considered. This
encourages the model to produce better captions after each refine
step.

During the REST procedure, a LaNAR captioning model
takes as input an image, and the length level index k of a
randomly sampled reference caption of the image. Based on
k, a masked sequence of length Lhigh

k is initialized as S0, and
the CIDEr score is only computed with the reference captions
within the same length level, similar as in the self-critical training
of length-controllable AR models. We refine each sentence 10
times during REST, where each step recovers 10% of the masked
tokens. Since S0 is a sequence of [MASK] tokens, the proposed
REST is not used for the first refine step.

F. Sequence-Level Knowledge Distillation

NAR text generation models usually suffer from performance
degradation compared with AR models, since the tokens are
generated (semi-)independently and thus their sequential de-
pendencies are not as well-captured as in AR models. The key
reason for this problem is the “multi-modality” of the training
data, i.e., a source image can be captioned in various ways. As
shown in [38], [52], Sequence-Level Knowledge Distillation
(SLKD) [13] is an effective strategy to reduce the modes of
the training corpus and alleviate the multi-modality problem.
Essentially, these methods use the predicted sentences from the
AR teacher model to construct a new dataset to supervise the
training process of the NAR student model. The new dataset
provides less noisy and more deterministic image captions which
make the NAR student model easier to learn.

In the case of our length-controllable NAR image captioning,
the simplest way to apply SLKD is to use an existing AR
image captioning model as the teacher and generate a new and
mode-reduced training set. However, the captions on each length
level usually have specific modes, while existing AR models
can only produce data with modes concentrated on the dominant
length level (see Fig. 8(b)), which is inappropriate for our setting.
Therefore, we propose to use a length-controllable AR model,
i.e., a length-controllable VLP as the teacher. Specifically, we
adopt the teacher model to generate multiple captions with
different length levels for each training image, and randomly

Fig. 5. Length distribution of image captions in MS COCO train set. Accord-
ing to the division of the four length level plan in Section III-B, most (88%)
image captions are concentrated in the shorter length level 1 and 2, while the
longest level 4 only accounts for 1.3%.

subsample the generated captions following the length distri-
bution of the original training set. We show in the experiments
(Table IV) that it is important to maintain the length distribution
of the original training set for a good performance. Moreover,
since the subsampling process largely reduces the amount of
the new training data, we merge the subsampled data with the
original training set as the new training set, which is different
from [38], [52] where they merely use the newly generated data
for SLKD.

IV. EXPERIMENTS

A. Dataset and Metrics

To evaluate the effectiveness of our method, we conduct ex-
periments on the popular MS COCO dataset [53], which contains
123,287 images with at least 5 ground-truth captions for each
image. We follow the data split setting as in [54], where 113,287,
5,000, and 5,000 images are used for training, validation, and
testing, respectively. We further analyze the length distribution
of the image captions in the MS COCO training set, as shown
in Fig. 5. The data was collected with a minimal caption length
of 8, resulting in non-uniform length distribution.

To evaluate the quality of the generated captions, we use
standard metrics, including BLEU [55], ROUGE [56], ME-
TEOR [57], CIDEr [18], and SPICE [58]. All these metrics
except SPICE calculate the similarity between the reference and
candidate image captions by considering their n-grams similar-
ity. On the other hand, SPICE is based on scene-graph synonym
matching which considers a scene-graph representation of an
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TABLE I
PERFORMANCE OF THE LENGTH-CONTROLLABLE AOANET AND VLP ON MS COCO KARPATHY’S test SPLIT

image by encoding objects, attributes, and relations. According
to [58], [59], SPICE and METEOR correlate best with human
judgments in terms of caption quality among all these metrics.
Moreover, since most ground-truth image captions in the test
splits are short, the performance of n-gram-based metrics can
be negatively affected when evaluating long candidate captions
(e.g., CIDEr contains a length penalty term). Fortunately, SPICE
is robust to the length of candidate captions, thus it should be
the prior metric for the evaluation of long captions.

To evaluate the diversity of the generated captions, we sample
the same number of image captions for each model, and use Div-
1, Div-2, and Self-CIDEr [60] for evaluation. Div-1/2 computes
the ratio of distinct uni/bi-grams in generated captions to the total
number of words in the caption set, respectively. Self-CIDEr [60]
is a recently proposed metric that focuses on semantic diversity.
The higher these values the more diverse the captions are.

B. Implementation Details

For AoANet, VLP, M2 Transformer, X-LAN, and their length-
controllable variants, we adopt their official codes and settings
for training, inference, and evaluation. For LaNAR models, we
consider two variants: 1) LaNAR-BERT, which is a BERT-like
model with 12 layers, 12 attention heads, and a hidden size
of 768. We initialize it from a pre-trained BERT-base [12]
model. 2) LaNAR-Transformer, which is an encoder-decoder-
based transformer model, with a 6-layer encoder and 3-layer
decoder. The hidden size and attention heads are set to 512 and
8, respectively. We represent each input image as 100 object
proposals extracted by a Faster RCNN [61] pre-trained on the
Visual Genome [62] dataset. We take the intermediate results
at the fc6 layer (2048-D) of the Faster RCNN as the region
featuresF e. The classification labelsF c containing 1,600 object
categories are obtained from the final softmax layer. The
localization feature of each proposal is a 5-tuple containing the
normalized coordinates of the top-left and bottom-right corners
of the proposal and its relative area to the whole image.

We train all LaNAR models for 40 epochs with a batch size
of 256, using the AdamW [63] optimizer with a weight decay
of 1e-2. The learning rate is linearly warmed up from 0 to 5e-5
during the first 1,000 iterations and is then cosine decayed to 0

for the remained iterations. We use a label smoothing of 0.1, and
a gradient clipping threshold of 1.0. When applying the REST
scheme on LaNAR models, we initialize the models from the
cross-entropy trained models and further finetune them for 25
epochs with a batch size of 64 and a learning rate of 2e-5. When
using SLKD for LaNAR models, we obtain the generated data
using a pre-trained 4-Level VLP model as the teacher, which
generates 5 captions on each length level through beam search,
resulting in 20 generated captions for each image. Then, we
subsample a generated dataset with the same number of training
samples as the original dataset and with the identical length-level
distribution for each training sample. We merge the generated
data with the original data with a 1:1 ratio.

C. Performance on Auto-Regressive Models

We show the performance of our length-controllable auto-
regressive models in Tables I and II. From Table I, in the length
range [10,14]where the reference captions in MS COCO are
mostly distributed, our 4-Level and 5-Level versions of length-
controllable VLP [6] and AoANet [4] both achieve competitive
or better performance than the original results. Our 4-Level VLP
even outperforms the original VLP by 1.8% in terms of the
CIDEr score. This indicates that our length-controllable models
can maintain or even boost the performance of the original
models on a normal length range. On longer length ranges, we
find n-gram-based metrics like CIDEr drops severely. However,
as we discussed in Section IV-A, this does not mean the captions
generated on these levels are poor in quality. From the example
in Fig. 1, the 4-Level VLP generates high-quality image captions
on all length levels. Specifically, on the shortest level, the image
is concisely described from a global perspective, ignoring many
important details, while on the longest level, 4-Level VLP covers
all the fine-grained visual concepts in the image, such as “pitcher
throws a pitch”, “batter up to plate ” and “catcher ready to catch
the ball”, some are even missed in the reference captions. This
is also supported by more visualization results in Fig. 9. More-
over, our models generally achieve remarkable SPICE scores on
longer length levels, i.e., the 5-Level AoANet achieves 23.0 and
22.9 SPICE scores on levels 4 and 5, respectively, which are
more than 1.6% higher than the original result.
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TABLE II
PERFORMANCE OF THE LENGTH-CONTROLLABLE AR MODELS WITH CIDER OPTIMIZATION ON MSCOCO KARPATHY’S test SPLIT

TABLE III
PERFORMANCE OF LANAR MODELS ON MS COCO KARPATHY’S test SPLIT

In Table II, we investigate three length-controllable AR
models for SCST optimization, including the vanilla Trans-
former [11], M2 Transformer [9], and X-LAN [10]. From the
table, we obtain similar observations as above, where the length-
controllable models achieve SOTA performance on the mostly-
distributed length level, and significantly improve the SPICE
score on long length levels. These results demonstrate the re-
markable performance and generalization ability of the proposed
length level embedding in existing AR image captioning models,
whether using an LSTM-based decoder or Transformer-based
decoder, and whether using the Teacher Forcing scheme or SCST
scheme.

D. Performance of LaNAR Models

Here, we evaluate the performance of our proposed LaNAR
captioning paradigm. The number of refine steps for 4-level
models is set to 10, 15, 20, and 25, for levels 1-4, respectively, so
that we can compare the LaNAR models with the autoregressive
models under roughly the same decoding complexity. From the
table, our LaNAR models outperform previous NAR captioning
models like MIR [43] and CMAL [44]. We also implement a
single-level version of LaNAR models, where the length range
is set to [1,25] and the number of decoding steps is set to 25.
The results are shown in Table III. Compared with single-level
LaNAR models, 4-Level LaNAR models achieve clearly better
performance on all metrics on level 2, and yield significantly
higher SPICE scores on level 3 and level 4, which coincides
with the observations in Section IV-C. Moreover, when adopting

SLKD and the proposed REST scheme during training, the
LaNAR models achieve competitive performance to the AR
baselines in Table II. These results demonstrate the effectiveness
of our length-controllable approach in the non-autoregressive
image caption model.

We further evaluate the speed advantage of the LaNAR mod-
els, where we vary the number of refine steps T from 10 to 25
for caption generation on the fourth level of the LaNAR-BERT
model. As shown in Fig. 6, our LaNAR-BERT can use a smaller
T = 20 to achieve comparable results with 4-Level VLP. We can
acquire further speedup (2.1×) by setting T = 12, with a small
sacrifice on SPICE (0.3%). We also evaluate the runtime speed of
LaNAR-BERT. On one NVIDIA RTX 3090 GPU, one forward
pass of LaNAR-BERT takes 2.9 ms. When using 10 refinement
steps for all length levels, LaNAR-BERT requires 32 ms, 36 ms,
41 ms, and 43 ms, for generating one caption on length-level 1 to
4, respectively. On the other hand, the 4-Level VLP model, which
has a similar network architecture as LaNAR-BERT, requires
77 ms to generate a caption with 25 tokens, which is 1.8× longer
than LaNAR-BERT. Nevertheless, the performance obtained by
LaNAR-BERT with 10 refine steps is still competitive with the
performance of the 4-Level VLP, which verifies the capability
of LaNAR-BERT for efficient image captioning decoding.

E. Performance Analysis of LaNAR Models

1) Ablation Studies on REST: In Table IV , we provide the
results of some ablation studies on the proposed REST scheme.
From the results, the REST scheme significantly improves the
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Fig. 6. Performance of LaNAR-BERT on the fourth length level with different
numbers of decoding steps.

TABLE IV
PERFORMANCE ANALYSIS FOR 4-LEVEL LANAR-BERT ON MS COCO

KARPATHY’S test SPLIT

performance of LaNAR-BERT, making it comparable to SOTA
methods under the CIDEr optimization setting. We also show the
importance of the different components in the reward function
of REST, i.e., the self-critical (SC) term, and the refinement-
enhanced (RE) term. See the results in Table IV. From the table,
after removing the SC term or RE term in (12), the CIDEr
score of LaNAR-BERT w/ REST drops by 2.7% and 4.0%,
respectively, indicating that both two terms play a critical role
in our REST scheme.

2) Discussions on SLKD: To analyze the effect of the ratio
of the generated data in the merged dataset during SLKD, we
gradually increase the proportion of generated data from 0.0 to
1.0 in the merged dataset. We train our LaNAR-BERT model on
the new dataset and present the results in Fig. 7. From the figure,
the performance of LaNAR-BERT generally increases along
with the proportion of the generated data. Saturation may be ob-
served when the proportion is higher than 0.5. Setting the default
ratio of the generated data to 0.5, we evaluate the importance of
our modifications to the sequence-level knowledge distillation

TABLE V
PERFORMANCE OF THE ORACLE RERANKING AND THE ADAPTIVE LENGTH

LEVEL RERANKING FOR LENGTH-CONTROLLABLE AR MODELS AND

LANAR-BERT ON MS COCO KARPATHY’S test SPLIT

(SLKD) on LaNAR-BERT. The results are presented in Table IV.
From the results, we find that the original SLKD degrades the
performance of LaNAR-BERT. By subsampling the generated
caption data to have the same length-level distribution as the
original dataset and merging the original and generated data
together for training, we obtain a clear performance boost on
LaNAR-BERT, where the CIDEr score on level 2 is improved by
3.0%. Moreover, compared with the results in Table I, LaNAR-
BERT with SLKD also outperforms the autoregressive models
(4-Level AoANet and 4-Level VLP) on all metrics on level 2.
These results have verified the effectiveness of our modifications
to the SLKD training scheme.

3) Hyper-Parameter Analysis: We analyze the effect of sev-
eral key hyper-parameters in LaNAR-BERT, including the
[EOS] decay factor γ in (10), the balance weight ω in (8),
and the global update factor α in (11). By default, we set
α = 0.8, γ = 0.8, and ω = 0.5, where LaNAR-BERT achieves
the best performance under a normal training setting (w/o SLKD
& REST). Then, we change the value of one of these hyper-
parameters while keeping the other two fixed. As shown in
Table IV, after turning off the global update rule, i.e., α = 0,
the CIDEr score of LaNAR-BERT on the second level drops by
1.8%. Removing the [EOS] decay (γ = 1) also decrease the
performance by 2.4%. Besides, choosing a proper value of the
balance weight ω is also important, where we obtain a gain of
0.6% when decreasing it from 1.0 to 0.5.

F. Performance of LLRT

In this section, we evaluate the performance of the proposed
length level reranking transformer (LLRT) on 4-Level VLP,
4-Level AoANet, and 4-Level LaNAR-BERT. Specifically, we
first obtain their oracle reranking performance, where for each
image we compute the evaluation score for the generated caption
on each length level and adopt the highest score for calculating
the whole-dataset performance. As shown in Table V, all our
length-controllable models achieve strong performance under
the oracle evaluations, showing the good complementarity of the
captions generated on different length levels. Moreover, we show
the performance of the length-controllable models reranked by
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Fig. 7. Performance w.r.t. the proportion of generated data in SLKD.

the proposed LLRT. Compared with the results in Tables I and
III, the adaptive reranking performance of 4-Level VLP, 4-Level
AoANet, and 4-Level LaNAR-BERT outperforms their results
before adaptive reranking on all levels and metrics by a large
margin, and also significantly outperforms the results of the
original VLP and AoANet. This demonstrates the effectiveness
of the proposed LLRT. Nevertheless, there still exists a large
gap between the adaptive reranking and the oracle reranking
performances.

Further, we show the performance of several other design
choices for the LLRT model, including 1) using the most fre-
quent length level in the reference captions of an image as its
ground-truth length level, and training a transformer model to
directly predict the length level from the image feature through
the cross-entropy loss; 2) similar to the first option, but adopt the
average length of the reference captions of an image to determine
its ground-truth length level; 3) train the LLRT model to directly
regress the CIDEr score of the captions; 4) randomly initial-
ize the LLRT model, instead of using the pre-trained weights
of length-controllable VLP or LaNAR-BERT; and 5) using
a reference-free metric, i.e., CLIPScore [46], for length-level
reranking.

From the table, directly predicting the most suitable length
level from the image as in the first two options leads to inferior
performances. This may be due to two reasons. First, the most
frequent or average length level could be a bad indicator of
the most suitable length level of an image. Second, the implicit
relationship between the semantic complexity of the image and
the caption cannot be simply inferred from the image. Besides,
CIDEr regression also clearly degrades the performance of
LLRT, we hypothesize that it is difficult to precisely estimate
the CIDEr score of the generated captions independently. On
the other hand, the proposed LLRT estimates the relative quality
of the captions for all length levels jointly through a scoring
head, leading to better performance. Moreover, LLRT applies
a Softmax function on the scores of all length levels, which
introduces competition into the learning process, and thus may
be beneficial for ranking purposes. We also find that the weight
initialization is beneficial to the training of LLRT, where training
LLRT from scratch drops the performance slightly. Lastly, using
CLIPScore leads to much lower performance than using the
proposed LLRT. This result shows that the proposed LLRT is
able to mimic human judgments on the semantic complexities
of the images thanks to the use of reference-based optimization

TABLE VI
PERFORMANCE ON MSCOCO KARPATHY’S test SPLIT

during training. Reference-free metrics (such as CLIPScore [46],
UMIC [48], and VIFIDEL [47]), however, may not be able to
provide this guidance and thus may fail to find the proper length
level for an image.

G. Comparisons With State-of-the-Arts

Recent SOTA image captioning models have achieved re-
markable performance on the MSCOCO dataset with the help
of large-scale vision-language pre-training or strong vision
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Fig. 8. Analysis of controllability and diversity on test split. (a) Control precision of our 4-level version of AoANet, VLP, and LaNAR-BERT. (b) Length
distributions of image captions generated by our 4-level length-aware models and their counterparts.

TABLE VII
PERFORMANCE OF LANAR-BERT ON CONCEPTUAL CAPTIONS

VALIDATION SET

backbones like Swin Transformer [78] pre-trained on Ima-
geNet22k [79]. To better demonstrate the effectiveness of our
method, in Table VI, we provide a more detailed comparison
under different settings.

We first show the performance of LaNAR-BERT with strong
vision backbones, i.e., Swin-Transformer Large (Swin-L), and
CLIP Vision Transformer Large (CLIP-ViT-Large). From the
table, LaNAR-BERT achieves competitive performance to the
SOTA baselines with the same backbones, while enjoying
length-controllable and non-autoregressive decoding. More-
over, in the standard setting, i.e., without using large-scale
vision-language pre-training or strong vision backbones, the
LaNAR-BERT w/ REST & SLKD & LLRT model achieves su-
perior performance than existing state-of-the-art models, which
demonstrates the effectiveness of our proposed methods.

We also perform experiments on Conceptual Captions [80], a
large-scale and more challenging dataset with extremely diverse
semantics and a large variance in caption length. We divide the
captions in Conceptual Captions into 6 levels according to the
length distribution: [1,8], [9,12], [13,16], [17,20],
[21,28], and [29,44]. Then, we train a length-controllable
LaNAR-BERT with this new division strategy following the
training and evaluation settings in VLP [6] on Conceptual
Captions, the results are shown in Table VII. From the table,
LaNAR-BERT trained on Conceptual Captions successfully
controls the length of the captions on all 6 levels. Moreover,
on short levels (Level-1 to Level-3), LaNAR-BERT achieves

TABLE VIII
DIVERSITY ANALYSIS. BS DENOTES BEAM SEARCH

competitive performance with VLP in terms of CIDEr, SPICE,
and METEOR; while on longer length levels, LaNAR-BERT is
superior in terms of SPICE. These results are aligned with our
observations on the MSCOCO dataset, showing that our LaNAR
paradigm can be applied to more challenging datasets.

H. Controllability and Diversity Analysis

In this section, we further analyze the “control precision” of
the length level embedding, i.e., given a length level embedding,
the probability of generating image captions within the desired
length range. We calculate the control precision for the 4-level
version of AoANet, VLP, and LaNAR-BERT, and present the
results in Fig. 8(a). As shown in the figure, all methods accu-
rately control the length of the generated image captions, and
our non-autoregressive model, LaNAR-BERT, yields the best
control precision (more than 95%) among all levels. This result
verifies the effectiveness of the proposed length-level embedding
in generating length-controllable image captions. Besides, the
control precision drops on longer levels, which may be due to
the lack of long captions in the MS COCO dataset.

We also perform diversity analysis for the image captions gen-
erated by different models, as shown in Fig. 8(b) and Table VIII.
From Fig. 8(b), the length of the image captions generated by
our length-aware models are uniformly distributed among all
length levels. On the contrary, the results of the original AoANet,
VLP, and the single-level LaNAR-BERT distribute mainly in
the shortest two levels. We further evaluate the diversity of
the image captions on n-gram diversity metrics like Div-1 and
Div-2, as well as the recently proposed SelfCIDEr [60] score
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Fig. 9. Examples of length-controllable image captioning from Karpathy’s test split. “Ori” denotes the original results of AoANet or VLP. “Lv n” denotes
results on the n th length level.

Fig. 10. Sampled results of length level reranking on LaNAR-BERT from MS COCO Karpathy’s test split. Similar to the example in Fig. 1(b), short and
precise captions are preferred for semantically simple images (first row), while long and informative captions are selected when describing more complex images
(second row).

that focuses on semantic diversity. From Table VIII, our 4-level
models perform clearly better on all metrics, which means we
can obtain diverse captions for an image with our length-aware
image captioning models. Interestingly, our non-autoregressive
model LaNAR-BERT significantly outperforms all compared
autoregressive methods on all three diversity metrics.

V. QUALITATIVE RESULTS

In this section, we show some examples of the image cap-
tions generated by our length-controllable models. As shown
in Fig. 9, in general, our length-controllable models are able to
correctly describe the image, while also controlling the length

of the generated captions within the desired length range. More
specifically, the long captions (level 3 and level 4) tend to contain
more visual concepts, while the short captions (level 1 and level
2) describe the image briefly.

Moreover, In Fig. 10, we present some examples of the
length level reranking results on 4-Level LaNAR-BERT. From
the figure, for pictures with simple backgrounds and a few
foreground objects, the model chooses to produce short captions,
as shown in the first row. On the contrary, for pictures with
complex scenes, the model generates long sentences to describe
the visual information in detail, as shown in the second row. This
demonstrates that our model has the ability to find out a suitable
caption length when depicting a given image.
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VI. CONCLUSION

In this paper, we propose to use a length-level embedding
for length-controllable image captioning. By simply adding our
length level embedding on the word embeddings of input tokens,
we endow existing image captioning methods with the ability
to control the length of their predictions. Besides, to automati-
cally determine the most suitable length level for an image, we
propose to learn a length level reranking transformer through
reinforcement learning, so as to capture the implicit relationship
between the semantic complexity of the image and the language
description. Furthermore, to improve the decoding efficiency
of long captions, we propose a non-autoregressive image cap-
tioning paradigm, LaNAR, that generates image captions in a
length-irrelevant complexity. We further develop a sequence-
level knowledge distillation strategy as well as a refinement-
enhanced sequence training scheme for LaNAR to boost its
performance. In the experiments, our length-aware models gen-
erate high-quality and length-controllable image captions, and
our length-level reranking transformer consistently improves
the final performance. Moreover, our LaNAR models not only
achieve comparable performance with the SOTA autoregressive
methods in a much smaller computational complexity, but also
perform better than the autoregressive baselines in terms of
controllability and output diversity.
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