
Intelligent Home 3D: Automatic 3D-House Design

from Linguistic Descriptions Only

Qi Chen1,2∗ Qi Wu3∗ Rui Tang4 Yuhan Wang4 Shuai Wang4 Mingkui Tan1†

1South China University of Technology, 2Guangzhou Laboratory, Guangzhou, China
3Australian Centre for Robotic Vision, University of Adelaide, Australia, 4Kujiale, Inc.

sechenqi@mail.scut.edu.cn

{ati,daishu,luorui}@qunhemail.com

qi.wu01@adelaide.edu.au

mingkuitan@scut.edu.cn

Abstract

Home design is a complex task that normally requires ar-

chitects to finish with their professional skills and tools. It

will be fascinating that if one can produce a house plan in-

tuitively without knowing much knowledge about home de-

sign and experience of using complex designing tools, for

example, via natural language. In this paper, we formulate

it as a language conditioned visual content generation prob-

lem that is further divided into a floor plan generation and

an interior texture (such as floor and wall) synthesis task.

The only control signal of the generation process is the lin-

guistic expression given by users that describe the house

details. To this end, we propose a House Plan Generative

Model (HPGM) that first translates the language input to

a structural graph representation and then predicts the lay-

out of rooms with a Graph Conditioned Layout Prediction

Network (GC-LPN) and generates the interior texture with

a Language Conditioned Texture GAN (LCT-GAN). With

some post-processing, the final product of this task is a 3D

house model. To train and evaluate our model, we build

the first Text–to–3D House Model dataset, which will be re-

leased at: https://github.com/chenqi008/HPGM.

1. Introduction

Everyone wants a dream home, but not everyone can de-

sign home by themselves. Home design is a complex task

that is normally done by certificated architects, who have to

receive several years of training on designing, planning and

using special designing tools. To design a home, they typi-

cally start by collecting a list of requirements for a building

layout. Then, they use trial-and-error to generate layouts

with a combination of intuition and prior experience. This

∗Authors contributed equally.
†Corresponding author.

The building contains two bedrooms, one
washroom, one balcony, one living room,
and one kitchen. Bedroom2 is in southeast
with 10 square meters. Bedroom2 floor is
White Wood Veneer and wall is Blue Wall
Cloth... Livingroom1 is next to bedroom1.
Bedroom1 is adjacent to balcony1…

(a) User linguistic requirements (b) 3D-House design

Figure 1: An example of generated 3D house with descrip-

tion using HPGM on the Text–to–3D House Model dataset.

3D-house generation from requirement seeks to design a 3D

building automatically from given linguistic descriptions.

usually takes from a couple of days to several weeks and

has high requirements for professional knowledge.

It will be fantastic if we can design our own home by

ourselves. We may not have design knowledge and have

no idea how to use those complicated professional design-

ing tools, but we have strong linguistic ability to express

our interests and desire. Thus, for time-saving and allow-

ing people without expertise to participate in the design, we

propose to use linguistic expressions as the guidance to gen-

erate home design plans (Figure 1). Thanks to the fast de-

velopment of deep learning [6, 9, 11, 45, 46, 51, 52, 53, 55],

especially Generative Adversarial Network (GAN) [3, 4, 8,

10] and vision-language research [13, 29, 38, 47, 50], we

can turn this problem into a text-to-image generation prob-

lem, which has been studied in [22, 30, 32, 43, 44]. How-

ever, it is non-trivial to directly apply these methods on our

new task because there exist two new technical challenges:

1) A floor plan is a structured layout which pays more atten-

tion to the correctness of size, direction, and connection of

different blocks, while the conventional text-to-image task

focuses more on pixel-level generation accuracy. 2) The in-

terior texture such as floor and wall needs neater and more

stable pixel generation than general images and should be

12625

well aligned with the given descriptions.

To tackle the above issues, we propose a House Plan

Generative Model (HPGM) to generate home plans from

given linguistic descriptions. The HPGM first uses a Stan-

ford Scene Graph Parser [33] to parse the language to a

structural graph layout, where nodes represent room types

associated with size, room floor (wall) colour and material.

Edges between nodes indicate whether rooms are connected

or not. We then divide the house plan generation process

into two sub-tasks: building layout generation and texture

synthesis. Both of them are conditioned on the above ex-

tracted structural graph. Specifically, we design a Graph

Conditioned Layout Prediction Network (GC-LPN) which

applies a Graph Convolutional Network [20] to encode the

graph as a feature representation and predicts the room lay-

outs via bounding box regressions. The predicted room lay-

outs are sent to a floor plan post-processing step, which

outputs a featured floor plan with doors, windows, walls,

etc. To generate floor and wall textures, we design a Lan-

guage Conditioned Texture GAN (LCT-GAN) that takes the

encoded text representations as input and generates texture

images with three designed adversarial, material-aware, and

colour-aware losses. The generated floor plan and texture

images are sent to an auto 3D rendering system to produce

the final rendered 3D house plan.

For 3D house generation from linguistic description, we

build the first Text–to–3D House Model dataset that con-

tains a 2D floor plan and two texture (floor and wall) patches

for each room in the house. We evaluate the room lay-

out generation and texture generation ability of our model

separately. The room layout accuracy is evaluated based

on the IoU (Intersection over Union) between the pre-

dicted room bounding boxes and the ground-truth anno-

tation. The generated interior textures are evaluated with

popular image generation metrics such as Fréchet Inception

Distance (FID) [12] and Multi-scale Structural Similarity

(MS-SSIM) [39]. Our proposed GC-LPN and LCT-GAN

outperform the baseline methods in a large margin. Besides,

a generalisation ability evaluation of our LCT-GAN is car-

ried out. We also perform a human evaluation on our final

products – 3D house plans, which shows 39.41% pass it.

We highlight our principal contributions as follows:

• We propose a novel architecture, called House Plan

Generative Model (HPGM), which is able to generate

3D house models with given linguistic expressions. To

reduce the difficulty, we divide the generation task into

two sub-tasks to generate floor plans and interior tex-

tures, separately.

• To achieve the goal of synthesising 3D building model

from the text, we collect a new dataset consisting of

the building layouts, texture images, and their corre-

sponding natural language expressions.

• Extensive experiments show the effectiveness of our

proposed method on both qualitative and quantitative

metrics. We also study the generalisation ability of the

proposed method by generating unseen data with the

given new texts.

2. Related Work

Building layout design. Several existing methods have

been proposed for generating building layouts automati-

cally [1, 5, 24, 28, 40]. However, most of these methods

generate the building layouts by merely adjusting the inte-

rior edges in a given building outline. Specifically, Mer-

rel et al. [24] generate residential building layouts using a

Bayesian network trained in architectural programs. Based

on an initial layout, Bao et al. [1] formulate a constrained

optimisation to characterise the local shape spaces and then

link them to a portal graph to obtain the objective layout.

Peng et al. [28] devise a framework to yield the floor plan

by tiling an arbitrarily shaped building outline with a set

of deformable templates. Wu et al. [40] develop a frame-

work that generates building interiors with high-level re-

quirements. More recently, Wu et al. [41] propose a data-

driven floor plan generating system by learning thousands

of samples. However, the above methods require either a

given building outline or a detailed structured representa-

tion as the input while we generate the room layouts with

human verbal commands.

Texture synthesis. Many existing works in terms of tex-

ture generation focus on transferring a given image into a

new texture style [16, 21, 36] or synthesising a new tex-

ture image based on the input texture [7, 35, 42]. Differ-

ent from that, we aim to solve the problem that generates

texture images with given linguistic expressions. The clos-

est alternative to our task is texture generation from ran-

dom noise [2, 15]. Specifically, Jetchev et al. [15] pro-

pose a texture synthesis method based on GANs, which can

learn a generating process from the given example images.

Recently, to obtain more impressive images, Bergmann et

al. [2] incorporate the periodical information into the gen-

erative model, which makes the model have the ability to

synthesise periodic texture seamlessly. Even if these meth-

ods have a strong ability to produce plausible images, they

have limited real-world applications due to the uncontrol-

lable and randomly generated results. We use natural lan-

guage as the control signal for texture generation.

Text to image generation. For generating an image from

text, many GAN-based methods [17, 23, 30, 32, 43, 44, 48,

49, 54] have been proposed in this area. Reed et al. [32]

transform the given sentence into text embedding and then

generate image conditioning on the extracted embedding.

Furthermore, to yield more realistic images, Zhang et

al. [49] propose a hierarchical network, called StackGAN,

which generates images with different sizes (from coarse to

12626

…

Input Text

Stanford Scene
Graph Parser

…

…

Layout
Features

Texture
Features

Adjacency
Matrix

… …

Pe
rc

ep
tro

n
La

ye
rs

… …

GC-LPN
Graph

GCN
Text

Representation

G
… …

LCT-GAN
Floor Plan

Post-processing

3D
 S

ce
ne

 G
en

er
at

io
n

Input Layer 1 Layer 2

Figure 2: The overview of HPGM. We use Stanford Scene Graph Parser to parse given textual input and obtain the structural

text representations X, V and A. Based on X and A, GC-LPN yields a rough building layout using a graph convolutional

network, followed by post-processing to refine the generated floor plan. LCT-GAN synthesises the corresponding textures

for each room according to V. Last, a 3D scene generation method is used to produce the objective 3D house plan.

fine). Meanwhile, they introduce a conditioning augmenta-

tion method to avoid the discontinuity in the latent manifold

of text embedding. Based on StackGAN, Xu et al. [43] de-

velop an attention mechanism, which ensures the alignment

between generated fine-grained images and the correspond-

ing word-level conditions. More recently, to preserve the

semantic consistency, Qiao et al. [30] consider both text-to-

image and image-to-text problems jointly.

3. Proposed Method

In this paper, we focus on 3D-house generation from re-

quirements, which seeks to design a 3D building automati-

cally conditioned on the given linguistic descriptions. Due

to the intrinsic complexity of 3D-house design, we divide

the generation process into two sub-tasks: building lay-

out generation and texture synthesis, which produce floor

plan and corresponding room features (i.e., textures of each

room), respectively.

To complete the above two tasks, we propose a House

Plan Generative Model (HPGM) to automatically gener-

ate a 3D home design conditioned on given descriptions.

As shown in Figure 2, the proposed HPGM consists of

five components: 1) text representation block, 2) graph

conditioned layout prediction network (GC-LPN), 3) floor

plan post-processing, 4) language conditioned texture GAN

(LCT-GAN), and 5) 3D scene generation and rendering.

In Figure 2, the text representation is to capture the struc-

tural text information from given texts using a Stanford

Scene Graph Parser [33]. Based on the text representations,

GC-LPN is devised to produce a coarse building layout.

To obtain a real-world 2D floor plan, we send the gener-

ated layout to a floor plan post-processing step to refine the

coarse building layout to yield a floor plan with windows

and doors. To synthesise the interior textures of each room,

we further devise a Language Conditioned Texture GAN

(LCT-GAN) to yield the controllable and neat images ac-

cording to the semantic text representations. Last, we feed

the generated floor plan with room features into a 3D ren-

dering system for 3D scene generation and rendering. The

details of each component are depicted below.

3.1. Text Representation

The linguistic descriptions of the building include the de-

scription of the number of rooms and room types, followed

by the connections between rooms, and the designing pat-

terns of each room. Although it follows a weakly struc-

tural format, directly using the template-based language

parser is impractical due to the diversity of the linguis-

tic descriptions. Instead, we employ the Stanford Scene

Graph Parser [33] with some post-processing and merging

to parse the linguistic descriptions to a structural graph for-

mat. For such a constructed graph, each node is a room with

some properties (e.g., the room type, size, interior textures).

The edge between nodes indicates the connectivity of two

rooms. More details of the scene graph parser can be found

in the supplementary materials.

We use different representation as inputs in building lay-

out generation and texture synthesis, since these two tasks

require different semantic information. In building layout

generation, we define input vectors as X ∈ R
N×D, where

N refers to the number of nodes (i.e., rooms) in each layout

and D denotes the feature dimension. Each node feature

xi = {αi,βi,γi} ∈ R
D is a triplet, where αi is the type of

room (e.g., bedroom), βi is the size (e.g., 20 squares) and

γi is the position (e.g., southwest). All features are encoded

as one-hot vectors except the size is a real value. Moreover,

to exploit the topological information elaborately, follow-

ing [20], we convert the input features X to an undirected

graph G via introducing an adjacency matrix A ∈ R
N×N .

In the texture synthesis task, for a given text, we trans-

12627

(a) (b)

(c) (d) (e)

Figure 3: The procedures of floor plan post-processing.

form the linguistic expression to a collection of vectors

V ∈ R
2N×M , where 2N refers to the number of textures in

each layout and M denotes the dimension of each feature

vector. For vi ∈ R
M , we design vi = {pi,qi}, where pi

indicates the material (e.g., log, mosaic or stone brick) and

qi refers to the colour. We pre-build a material and colour

word vocabulary from training data so that we can classify

the parsed attributes into the material or colour set.

3.2. Graph Conditioned Layout Prediction Network

To generate the building layouts satisfying the require-

ments, we propose a Graph Conditioned Layout Prediction

Network (GC-LPN). We incorporate the adjacent informa-

tion into the extracted features via a GCN, which facilitates

the performance when generating the objective layouts.

Graph convolutional network. In order to process the

aforementioned graphs in an end-to-end manner, we use a

graph convolutional network composed of two graph con-

volutional layers. Specifically, we take the feature matrix

X ∈ R
N×D as inputs and produce a new feature matrix,

where each output vector is an aggregation of a local neigh-

bourhood of its corresponding input vector. In this way,

we obtain a new feature matrix, which introduces the in-

formation across local neighbourhoods of the inputs. Note

that, since we only focus on generating the layouts of res-

ident building, the order and size of corresponding graph

are small. Therefore, it is sufficient to leverage a two-layer

GCN model (as shown in Figure 2) when introducing the

information of adjacent rooms. Mathematically, we have

Y = g(X,A) = Softmax (AReLU (AXW0)W1) ,
(1)

where W0 ∈ R
D×D and W1 ∈ R

D×D are the weights

of two graph convolutional layers. Note that the adjacency

matrix A only contains 1 and 0, which indicates whether

pairs of nodes (rooms) are adjacent or not. Y ∈ R
N×D is

the structured feature. Then, we add the extracted feature

Y with the input feature X to get the feature S ∈ R
N×D

S = X⊕Y, (2)

where “⊕” is the element-wise addition.

Bounding box regression. After reasoning on the graph

with GCNs, we gain a set of embedding vectors, where

each vector aggregates the information across the adjacent

rooms. In order to produce the building layout, we must

transform these vectors from the graph domain to the image

domain. Thus, we define each room as a coarse 2D bound-

ing box, which can be represented as bi = (x0, y0, x1, y1).
In this way, we cast the problem to that bounding box gen-

eration from given room embedding vectors.

In practice, we first feed the well-designed feature S

into a two-layer perceptron network h(·) and predict the

corresponding bounding box of each node b̂i = h(Si) =
(x̂0, ŷ0, x̂1, ŷ1). Then, we integrate all the predicted boxes

and obtain the corresponding building layout. For training

the proposed model, we minimise the objective function

LB =
1

N

N∑

i=1

‖b̂i − bi‖
2

2, (3)

where bi is the ground-truth bounding box for ith node (i.e.,

the bounding box that covers the room).

3.3. Floor Plan Post-processing

To transform the bounding box layout to a real-world 2D

floor plan, we propose a floor plan post-processing (shown

in Figure 3), which consists of five steps, i.e., (a)∼(e). To

be specific, in Step (a), we first extract boundary lines of all

generated bounding boxes and then merge the adjacent seg-

ments together in Step (b). In Step (c), we further align the

line segments with each other to obtain the closed polygon.

In Step (d), we judge the belonging of each closed polygon

based on a weight function:

Wij =

∫∫

1

wihi

exp

(

−(
xj − cxi

wi

)2 − (
yj − cyi

hi

)2
)

dxjdyj ,

(4)

where i = 1, 2, . . . , n is the ith original box (room) while

j = 1, 2, . . . ,m is the jth aligned polygon. Wij denotes

the weight of jth polygon belonging to room i. cxi
and cyi

indicate the central position while wi and hi are the half

width and height of the ith bounding box. xj and yj are

the coordinates in the aligned polygon. We assign the jth

polygon with the room type, according to the corresponding

original bounding box, which has maximum weight W .

Finally, in Step (e), we apply a simple rule-based method

to add doors and windows in rooms. Specifically, a door or

open wall is added between the living room and any other

room. We set the window on the longest wall of each room

and set the entrance on the wall of the biggest living room.

We find these rules work in most cases and good enough to

set reasonable positions, but a learning-based method may

improve this process and we leave it as the future work.

3.4. Language Conditioned Texture GAN

For better controlling the details of textures, we consider

the texture images in terms of two fields, i.e., material and

12628

G D

D

Figure 4: Architecture of LCT-GAN. Generator G trans-

forms a conditional noise Z into an RGB image G(Z) with

fully convolutional layers. Discriminator D, which is used

to distinguish fake data from real ones, is fed either fake im-

age G(Z) or real image R. Two classifiers (φ and ϕ) have

been added on top of D, which are used to impose the image

into the right material and colour categories, respectively.

colour. In this way, we design a Language Conditioned Tex-

ture GAN (LCT-GAN) (in Figure 4), which can generate

texture images that align with the given expressions.

Texture generator. We first obtain the input noise Z
′ ∈

R
w×h×d1 from Gaussian distribution N (0, I). After that,

to incorporate the conditional information, we extend the

aforementioned material and colour vectors p ∈ R
1×1×d2

and q ∈ R
1×1×d3 as the same size with the noise Z

′

and

then concatenate them together to obtain the objective input

Z ∈ R
w×h×(d1+d2+d3).

Conditioning on the input tensor Z, we generate the cor-

responding texture image by G(Z) ∈ R
W×H×3, where W

and H denote the width and height of the generated image,

respectively. Note that, in order to generate arbitrary size

of texture, we design the generator G with a fully convo-

lutional network (FCN), which allows input Z with vari-

ous sizes when inferring. In practice, we establish our FCN

model with only five blocks, where each block consists of a

2× upsampling interpolation, a convolutional layer, a batch

normalisation [14] and an activation function.

On the other hand, to generate texture from an expres-

sion, the generator G must: 1) ensure the generated im-

ages are natural and realistic ; and 2) preserve the seman-

tic alignment between given texts and texture images. To

satisfy the above requirements, we propose an optimisation

mechanism consisting of three losses LAdv , LM and LC ,

which indicate the adversarial loss, material-aware loss and

colour-aware loss, respectively. Overall, the final objective

function of the texture generator G is

LG = LAdv + λ1LM + λ2LC , (5)

where λ1 and λ2 are trade-off parameters. In experiments,

we set λ1 and λ2 to 1 by default. We will elaborate on the

modules that lead to these losses in the following sections.

Adversarial loss. To synthesise the natural images, we

follow the traditional GAN [8], where the generator G and

discriminator D compete in a two-player minimax game.

Specifically, the generator G tries to fool the discriminator

D while D tries to distinguish whether the given image is

real or fake/generated. Based on that, for our task, when

optimising the discriminator D, we minimise the loss

LDAdv
= −ER∼Pr

[logD(R)]−E
Z

′
∼Pz

[log(1−D(G(Z)))],
(6)

where Pr and Pz denote the distributions of real samples

and noise, respectively. Z refers to the input of G, as men-

tioned before, consisting of noise Z
′

and conditions p and

q. On the other hand, when optimising network G, we use

LAdv = −E
Z

′
∼Pz

[logD(G(Z))]. (7)

Material-aware loss. To preserve the semantic alignment

between generated textures and given texts, we propose a

material-aware loss, which is sensitive to fine-grained mate-

rial categories. To be specific, as mentioned in Section 3.1,

we transform the linguistic descriptions to a structural for-

mat, which includes a label for each node to indicate its

floor/wall material categories. We then add a material clas-

sifier on top of D, called φ, which imposes the generated

texture into the right category. In this way, we obtain the

posterior probability φ(cm|·) of each entry image, where

cm refers to the category of material. Thus, we minimise

the training loss of G and D as

LM = −ER∼Pr
[log φ(cm|R)]−E

Z
′
∼Pz

[log φ(cm|G(Z))].
(8)

Colour-aware loss. Similar to the above material-aware

loss, instead of focusing on materials, colour-aware loss

pays more attention to colour categories. Based on the given

expressions of texture colour, we cast the colour alignment

as a classification problem. Specifically, we reuse the dis-

criminator D as the feature extractor and replace the last

layer to be a colour classifier ϕ. Then, in both G and D, we

try to minimise the loss

LC = −ER∼Pr
[logϕ(cc|R)]− E

Z
′
∼Pz

[logϕ(cc|G(Z))],
(9)

where ϕ(cc|R) is the posterior probability conditioning on

the given texture image R.

3.5. 3D Scene Generation and Rendering

For the better visualisation of the generated floor plan

with textures, we introduce a 3D scene generator followed

with a photo-realistic rendering process. Given generated

floor plan and textures as shown in Figure 5, we generate

walls from boundaries of rooms with fixed height and thick-

ness. We set the height of walls to 2.85m and the thickness

of interior walls to 120mm. The thickness of the exterior

12629

Bedroom1

Kitchen1

Washroom1

Bedroom2

Bedroom3
Balcony1

Livingroom1 Livingroom1

Floor Wall

Kitchen1

Balcony1

… … …

Floor Plan Textures 3D House Plan
Figure 5: 3D house plan generation and rendering.

wall is set to 240mm while the length of the door is 900mm

and the height is 2000mm. We simply set the length of the

window to thirty percent of the length of the wall it be-

longs to. Besides, we develop a photo-realistic rendering

based on Intel Embree [37], an open-source collection of

high-performance ray tracing kernels for x86 CPUs. Photo-

realistic renderer is implemented with Monte Carlo path

tracing. By following the render equation [18], the path

tracer simulates real-world effects such as realistic material

appearance, soft shadows, indirect lighting, ambient occlu-

sion and global illumination. In order to visualise the syn-

thetic scenes, we deploy a virtual camera on the front top of

each scene and capture a top-view render image.

4. Experiments

4.1. Experimental Settings

Dataset. To generate 3D building models from natural lan-

guage descriptions, we collect a new dataset, which con-

tains 2, 000 houses, 13, 478 rooms and 8731 texture images

with corresponding natural language descriptions. These

descriptions are firstly generated from some pre-defined

templates and then refined by human workers. The average

length of the description is 173.73 and there are 193 unique

words. In our experiments, we use 1, 600 pairs for training

while 400 for testing in the building layout generation. For

texture synthesis, we use 503 data for training and 370 data

for testing. We put more dataset analysis in supplementary.

Evaluation metrics. We quantitatively evaluate our model

and compare it with other models in threefold: layout gen-

eration accuracy, texture synthesis performance, and final

3D house floor plans. We measure the precision of the gen-

erated layout by Intersection-over-Union (IoU), which in-

dicates the overlap between the generated box and ground-

truth one, where the value is from 0 to 1. For the evaluation

of textures, we use Fréchet Inception Distance (FID) [12].

In general, the smaller this value is, the better performance

the method will have. Besides, to test the pair-wise simi-

larity of generated images and identify mode collapses re-

liably [26], we use Multi-scale Structural Similarity (MS-

1Some rooms have same textures so this number is smaller than the

total number of rooms.

SSIM) [39] for further validation. A lower score indicates

a higher diversity of generated images (i.e., fewer model

collapses). Note that, following the settings in [48], for a

fair comparison, we resize all the images to 64 × 64 be-

fore computing FID and MS-SSIM. For the 3D house floor

plans, which are our final products, we run a human study

to evaluate them.

Implementation details. In practice, we set input Z ∈
R

w×h×(d1+d2+d3) of LCT-GAN with h = 5, w = 5,

d1 = 100, d2 = 19 and d3 = 12. All the weights of mod-

els (GC-LPN and LCT-GAN) are initialised from a normal

distribution with zero-mean and standard deviation of 0.02.

In training, we use Adam [19] with β1 = 0.5 to update

the model parameters of both GC-LPN and LCT-GAN. We

optimise our LCT-GAN to generate texture images of size

160×160 with mini-batch size 24 and learning rate 0.0002.

4.2. Building Layout Generation Results

Compared methods. We evaluate the generated layout

and compare the results with baseline methods. However,

there is no existing work on our proposed text-guided lay-

out generation task, which focuses on generating building

layouts directly from given linguistic descriptions. There-

fore, our comparisons are mainly to ablated versions of our

proposed network. The compared methods are:

MLG: In “Manually Layout Generation” (MLG), we

draw the building layouts directly using a program with

the predefined rules, according to the given input attributes,

such as type, position and size of the rooms. Specifically,

we first roughly locate the central coordinates of each room

conditioning on the positions. After that, we randomly pick

the aspect ratio ρ ∈ (23 ,
3
2) for different rooms, and then

get the exact height and width by considering the size of

each room. Finally, we draw the building layouts with such

centre, height, width and type of each room.

C-LPN: In “Conditional Layout Prediction Network”

(C-LPN), we simply remove the GCN in our proposed

model. That means, when generating building layouts, the

simplified model can only consider the input descriptions

and ignore the information from neighbourhood nodes.

RC-LPN: In “Recurrent Conditional Layout Prediction

Network” (RC-LPN), we yield the outline box of rooms se-

quentially like [34]. To be specific, we replace GCN with

an LSTM and predict the building layout by tracking the

history of what has been generated so far.

Quantitative evaluation. We evaluate the performance of

our proposed GC-LPN by calculating the average IoU value

of the generated building layouts. From Table 1, compared

with the baseline methods, GC-LPN obtains higher value

in IoU, which implies that the GC-LPN has the capacity to

locate the outline of layout more precisely than other ap-

proaches. Models without our graph-based representation,

12630

MLG C-LPN RC-LPN GC-LPN (ours)

IoU 0.7208 0.8037 0.7918 0.8348

Table 1: IoU results on Text-to-3D House Model dataset.

Text2

Text1

GTGC-LPN (ours)C-LPN RC-LPNMLG

Figure 6: Visual comparisons between GC-LPN and base-

lines. “Text1” and “Text2” are the input descriptions, where

“Text1” is relatively simple while “Text2” is more complex.

Text2Text1

GTOurs GTOurs

Figure 7: Examples of generated 2d floor plans and ground-

truth counterparts with “Text1” and “Text2”, respectively.

such as C-LPN and RC-LPN, have lower performance.

Qualitative evaluation. Moreover, we investigate the per-

formance of our GC-LPN by visual comparison. From

Figure 6, we provide two layout samples corresponding

to “Text12” and “Text23” respectively. The results show

that compared with the baseline methods, GC-LPN obtains

more accurate layouts, whether simple or complex. We also

present the generated 2D floor plans after post-processing,

and the corresponding ground-truths in Figure 7.

4.3. Texture Synthesis Results

Compared methods. For the conditional texture gener-

ation task, we compare the performance of our proposed

method with several baselines, including ACGAN [26],

StackGAN-v2 [48] and PSGAN [2]. Note that PSGAN can

only generate image from random noise. Thus, to generate

images in a controlled way, we design a variant of PSGAN,

which introduces the conditional information when synthe-

sising the objective texture like [25].

Quantitative evaluation. In this part, we compare the per-

formance of different methods on our proposed dataset in

terms of FID and MS-SSIM. In Table 2, our LCT-GAN

achieves the best performance in FID, which implies that

our method is able to yield more photo-realistic images than

2The building contains one washroom, one bedroom, one livingroom,

and one kitchen. Specifically, washroom1 has 5 squares in northeast. bed-

room1 has 14 square meters in east. Besides, livingroom1 covers 25 square

meters located in center. kitchen1 has 12 squares in west. bedroom1,

kitchen1, washroom1 and livingroom1 are connected. bedroom1 is next

to washroom1.
3Due to page limit, we put the content of “Text2” in the supplementary.

Methods
Train Set Test Set

FID MS-SSIM FID MS-SSIM

ACGAN [26] 198.07 0.4584 220.18 0.4601

StackGAN-v2 [48] 182.96 0.6356 188.15 0.6225

PSGAN [2] 195.29 0.4162 217.12 0.4187

LCT-GAN (ours) 119.33 0.3944 145.16 0.3859

Table 2: FID and MS-SSIM results of generated textures.

Wood Veneer
Black

Marble
Yellow

Stone Brick
Gray

LCT-GANACGAN StackGAN-v2 PSGAN Ground Truth

Figure 8: Visual results of LCT-GAN and baselines.

others. Moreover, for MS-SSIM, our LCT-GAN obtains the

competitive result compared with PSGAN, which is also de-

signed specifically for texture generation. It suggests that

our method has the ability to ensure the diversity of synthe-

sised images when preserving realism.

Qualitative evaluation. For further evaluating the per-

formance of LCT-GAN, we provide several visual results

of the generated textures. From Figure 8, compared with

the baselines, our synthesised images contain more details

while preserving the semantic alignment with the condi-

tional descriptions. The results demonstrate LCT-GAN has

the ability to semantically align the given texts and capture

more detailed information than other approaches.

Ablation studies. To test the effect of each proposed loss,

we conduct an ablation study to compare the generated re-

sults by removing some losses and show the quantitative

results in Table 3. Note that the model only using adversar-

ial loss LAdv can not yield controllable images. Thus, we

combine LAdv with the other two losses (i.e., LM and LC)

to investigate the performance. The results show that based

on LAdv , LM and LC are able to improve the performance

very well. When using all the three losses into our model,

we obtain the best results on both FID and MS-SSIM.

Generalisation ability. In this section, we conduct two

experiments to verify the generalisation ability of our pro-

posed method. We first investigate the landscape of the la-

tent space. Following the setting in [31], we conduct the lin-

ear interpolations between two input embeddings and feed

them into the generator G. As shown in Figure 9, the gen-

erated textures change smoothly when the input semantics

(i.e., material or colour) vary. On the other hand, to fur-

ther evaluate the generalisation ability of our LCT-GAN,

we feed some novel descriptions, which are not likely to

be seen in the real world, into the generator G. From Fig-

12631

LAdv LM LC
Train Set Test Set

FID MS-SSIM FID MS-SSIM

LCT-GAN

√ √
134.06 0.4189 157.01 0.4191√ √
134.61 0.4310 158.20 0.4263√ √ √
119.33 0.3944 145.16 0.3859

Table 3: Impact of losses in conditional texture generation.

Black

W
oo

d
Ve

ne
er

W
ood Veneer

Wood Colour

Gr
an

ite

Black Wood Colour

Granite

Figure 9: Interpolation results of generated texture images.

Wood Veneer, White Granite, PinkLog, Green Wood Grain, Orange

Figure 10: Generated textures with novel material-colour

scenarios, which are impossible existing in the real world.

ure 10, even with such challenging semantic setting, our

proposed method is still able to generate meaningful texture

images. Both the two experiments suggest that LCT-GAN

generalises well to novel/unseen images rather than simply

remembering the existing data in the training set.

4.4. 3D House Design

Qualitative results. For quality evaluation, we show the

3D house plans (in Figure 11) generated by our HPGM and

the ground-truth counterparts with conditional text4, where

the floor plan and corresponding room textures are drawn by

architects. Our method has ability to produce competitive

visual results, even compared with the human-made plans.

Human study. Since the automatic metrics can not fully

evaluate the performance of our method, we perform a hu-

man study on the house plans. Inspired by [23, 27], we con-

duct a pairwise comparison between HPGM and human be-

ings, using 100 house plans pairs with their corresponding

4Building layout contains one washroom, one study, one livingroom,

and one bedroom. To be specific, washroom1 has Blue Marble floor, and

wall is Wall Cloth and White. washroom1 is in southeast with 11 square

meters. Additionally, study1 has Wood color Log floor as well as has Yel-

low Wall Cloth wall. study1 has 8 squares in west. livingroom1 is in center

with 21 square meters. livingroom1 wall is Earth color Wall Cloth while

uses Black Log for floor. Besides, bedroom1 covers 10 square meters lo-

cated in northwest. bedroom1 floor is Wood color Log, and has Orange

Pure Color Wood wall. livingroom1 is adjacent to washroom1, bedroom1,

study1. bedroom1 is next to study1.

HPGM (ours) Human Tie

Choice (%) 39.41 47.94 12.65

Table 4: Results of HPGM v.s. human. “Tie” refers to the

confusing results, which can not be clearly distinguished.

Ground-truthOursOurs Ground truth

Figure 11: Comparison of our generated 3D house plans

with ground-truth (human-made) counterparts.

descriptions. Then, we ask 20 human subjects (university

students) to distinguish which is designed by human beings.

Finally, we calculate the ratio of choice and obtain the final

metrics. From Table 4, 39.41% generated samples pass the

exam, which implies that compared with the manually de-

signed samples, the machine-generated ones are exquisite

enough to confuse the evaluators.

5. Conclusion

3D house generation from linguistic descriptions is non-

trivial due to the intrinsic complexity. In this paper, we pro-

pose a novel House Plan Generative Model (HPGM), divid-

ing the generation process into two sub-task: building lay-

out generation and texture synthesis. To tackle these prob-

lems, we propose two modules (i.e., GC-LPN and LCT-

GAN), which focus on producing floor plan and corre-

sponding interior textures from given descriptions. To ver-

ify the effectiveness of our method, we conduct a series of

experiments, including quantitative and qualitative evalua-

tions, ablation study, human study, etc. The results show

that our method performs better than the competitors, which

indicates the value of our approach. We believe this will be

a practical application with further polish.

Acknowledgments

This work was partially supported by Guangdong

Provincial Scientific and Technological Funds under Grant

2018B010107001 and Grant 2019B010155002, National

Natural Science Foundation of China (NSFC) 61836003

(key project), Fundamental Research Funds for the Central

Universities under Grant D2191240, Program for Guang-

dong Introducing Innovative and Enterpreneurial Teams un-

der Grant 2017ZT07X183, Tencent AI Lab Rhino-Bird Fo-

cused Research Program under Grant JR201902, Guang-

dong Special Branch Plans Young Talent with Scientific

and Technological Innovation under Grant 2016TQ03X445,

Guangzhou Science and Technology Planning Project un-

der Grant 201904010197, Natural Science Foundation of

Guangdong Province under Grant 2016A030313437.

12632

References

[1] Fan Bao, Dong-Ming Yan, Niloy J Mitra, and Peter Wonka.

Generating and exploring good building layouts. ACM

Transactions on Graphics (TOG), 32(4):122, 2013. 2

[2] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learn-

ing texture manifolds with the periodic spatial gan. In Proc.

Int. Conf. Mach. Learn., pages 469–477, 2017. 2, 7

[3] Jiezhang Cao, Yong Guo, Qingyao Wu, Chunhua Shen, Jun-

zhou Huang, and Mingkui Tan. Adversarial learning with

local coordinate coding. In Proc. Int. Conf. Mach. Learn.,

2018. 1

[4] Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua

Shen, and Mingkui Tan. Multi-marginal wasserstein gan. In

Proc. Advances in Neural Inf. Process. Syst., pages 1774–

1784, 2019. 1

[5] Stanislas Chaillou. Archigan: a generative stack for apart-

ment building design. 2019. 2

[6] Peihao Chen, Chuang Gan, Guangyao Shen, Wenbing

Huang, Runhao Zeng, and Mingkui Tan. Relation attention

for temporal action localization. IEEE Trans. Multimedia,

2019. 1

[7] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-

ture synthesis using convolutional neural networks. In Proc.

Advances in Neural Inf. Process. Syst., pages 262–270, 2015.

2

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Proc. Ad-

vances in Neural Inf. Process. Syst., pages 2672–2680, 2014.

1, 5

[9] Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang

Cao, Zeshuai Deng, Yanwu Xu, and Mingkui Tan. Closed-

loop matters: Dual regression networks for single image

super-resolution. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2020. 1

[10] Yong Guo, Qi Chen, Jian Chen, Qingyao Wu, Qinfeng Shi,

and Mingkui Tan. Auto-embedding generative adversarial

networks for high resolution image synthesis. IEEE Trans.

Multimedia, 2019. 1

[11] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen,

Peilin Zhao, and Junzhou Huang. Nat: Neural architecture

transformer for accurate and compact architectures. In Proc.

Advances in Neural Inf. Process. Syst., pages 735–747, 2019.

1

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Proc. Advances in Neural Inf. Process. Syst., pages

6626–6637, 2017. 2, 6

[13] Deng Huang, Peihao Chen, Runhao Zeng, Qing Du, Mingkui

Tan, and Chuang Gan. Location-aware graph convolutional

networks for video question answering. In Proc. Conf. AAAI,

2020. 1

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. Proc. Int. Conf. Mach. Learn., 2015. 5

[15] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Tex-

ture synthesis with spatial generative adversarial networks.

arXiv preprint arXiv:1611.08207, 2016. 2

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Proc. Eur. Conf. Comp. Vis., pages 694–711. Springer, 2016.

2

[17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-

tion from scene graphs. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 1219–1228, 2018. 2

[18] James T Kajiya. The rendering equation. In ACM SIG-

GRAPH computer graphics, volume 20, pages 143–150.

ACM, 1986. 6

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. Proc. Int. Conf. Learn. Representa-

tions, 2015. 6

[20] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. Proc. Int. Conf.

Learn. Representations, 2017. 2, 3

[21] Chuan Li and Michael Wand. Precomputed real-time texture

synthesis with markovian generative adversarial networks. In

Proc. Eur. Conf. Comp. Vis., pages 702–716. Springer, 2016.

2

[22] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang,

Xiaodong He, Siwei Lyu, and Jianfeng Gao. Object-driven

text-to-image synthesis via adversarial training. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., pages 12174–12182,

2019. 1

[23] Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng,

Yuexin Wu, Lawrence Carin, David Carlson, and Jianfeng

Gao. Storygan: A sequential conditional gan for story vi-

sualization. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

pages 6329–6338, 2019. 2, 8

[24] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-

generated residential building layouts. In ACM Transactions

on Graphics (TOG), volume 29, page 181. ACM, 2010. 2

[25] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 7

[26] Augustus Odena, Christopher Olah, and Jonathon Shlens.

Conditional image synthesis with auxiliary classifier gans.

In Proc. Int. Conf. Mach. Learn., pages 2642–2651, 2017. 6,

7

[27] Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li, and Tao

Mei. To create what you tell: Generating videos from cap-

tions. In Proceedings of the 25th ACM international confer-

ence on Multimedia, pages 1789–1798. ACM, 2017. 8

[28] Chi-Han Peng, Yong-Liang Yang, and Peter Wonka. Com-

puting layouts with deformable templates. ACM Transac-

tions on Graphics (TOG), 33(4):99, 2014. 2

[29] Yuankai Qi, Qi Wu, Peter Anderson, Marco Liu, Chunhua

Shen, and Anton van den Hengel. Rerere: remote embodied

referring expressions in real indoor environments. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2020. 1

[30] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao.

Mirrorgan: Learning text-to-image generation by redescrip-

tion. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages

1505–1514, 2019. 1, 2, 3

12633

[31] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. Proc. Int. Conf. Learn. Represen-

tations, 2016. 7

[32] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. Proc. Int. Conf. Mach.

Learn., 2016. 1, 2

[33] Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-

Fei, and Christopher D Manning. Generating semantically

precise scene graphs from textual descriptions for improved

image retrieval. In Proceedings of the fourth workshop on

vision and language, pages 70–80, 2015. 2, 3

[34] Fuwen Tan, Song Feng, and Vicente Ordonez. Text2scene:

Generating compositional scenes from textual descriptions.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 6710–

6719, 2019. 6

[35] Matthew Tesfaldet, Marcus A Brubaker, and Konstantinos G

Derpanis. Two-stream convolutional networks for dynamic

texture synthesis. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 6703–6712, 2018. 2

[36] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-

proved texture networks: Maximizing quality and diversity

in feed-forward stylization and texture synthesis. In Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., pages 6924–6932,

2017. 2

[37] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S John-

son, and Manfred Ernst. Embree: a kernel framework for

efficient cpu ray tracing. ACM Transactions on Graphics

(TOG), 33(4):143, 2014. 6

[38] Peng Wang, Qi Wu, Jiewei Cao, Chunhua Shen, Lianli Gao,

and Anton van den Hengel. Neighbourhood watch: Refer-

ring expression comprehension via language-guided graph

attention networks. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 1960–1968, 2019. 1

[39] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003, volume 2, pages 1398–1402. Ieee,

2003. 2, 6

[40] Wenming Wu, Lubin Fan, Ligang Liu, and Peter Wonka.

Miqp-based layout design for building interiors. In Com-

puter Graphics Forum, volume 37, pages 511–521. Wiley

Online Library, 2018. 2

[41] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-

Hao Qi, and Ligang Liu. Data-driven interior plan genera-

tion for residential buildings. ACM Transactions on Graph-

ics (SIGGRAPH Asia), 38(6), 2019. 2

[42] Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj,

Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Tex-

turegan: Controlling deep image synthesis with texture

patches. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages

8456–8465, 2018. 2

[43] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,

Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-

grained text to image generation with attentional generative

adversarial networks. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2018. 1, 2, 3

[44] Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang

Wang, and Jing Shao. Semantics disentangling for text-to-

image generation. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 2327–2336, 2019. 1, 2

[45] Runhao Zeng, Chuang Gan, Peihao Chen, Wenbing Huang,

Qingyao Wu, and Mingkui Tan. Breaking winner-takes-

all: Iterative-winners-out networks for weakly supervised

temporal action localization. IEEE Trans. Image Process.,

28(12):5797–5808, 2019. 1

[46] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,

Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-

volutional networks for temporal action localization. In Proc.

IEEE Int. Conf. Comp. Vis., Oct 2019. 1

[47] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen,

Mingkui Tan, and Chuang Gan. Dense regression network

for video grounding. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., June 2020. 1

[48] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi-

aogang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-

gan++: Realistic image synthesis with stacked generative ad-

versarial networks. IEEE Trans. Pattern Anal. Mach. Intell.,

2018. 2, 6, 7

[49] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-

gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-

gan: Text to photo-realistic image synthesis with stacked

generative adversarial networks. In Proc. IEEE Int. Conf.

Comp. Vis., 2017. 2

[50] Junjie Zhang, Qi Wu, Jian Zhang, Chunhua Shen, and Jian-

feng Lu. Mind your neighbours: Image annotation with

metadata neighbourhood graph co-attention networks. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 2956–

2964, 2019. 1

[51] Yifan Zhang, Hanbo Chen, Ying Wei, Peilin Zhao, Jiezhang

Cao, et al. From whole slide imaging to microscopy: Deep

microscopy adaptation network for histopathology cancer

image classification. In International Conference on Med-

ical Image Computing and Computer-Assisted Intervention,

pages 360–368. Springer, 2019. 1

[52] Yifan Zhang, Ying Wei, Peilin Zhao, Shuaicheng Niu,

Qingyao Wu, Mingkui Tan, and Junzhou Huang. Collab-

orative unsupervised domain adaptation for medical image

diagnosis. In Medical Imaging meets NeurIPS, 2019. 1

[53] Yifan Zhang, Peilin Zhao, Qingyao Wu, Bing Li, Junzhou

Huang, and Mingkui Tan. Cost-sensitive portfolio selection

via deep reinforcement learning. IEEE Trans. Knowl. Data

Eng., 2020. 1

[54] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan:

Dynamic memory generative adversarial networks for text-

to-image synthesis. In Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., pages 5802–5810, 2019. 2

[55] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Proc. Advances in Neural Inf. Process. Syst., pages

875–886, 2018. 1

12634

