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Abstract

Research on 3D Vision-Language Models (3D-VLMs) is
gaining increasing attention, which is crucial for develop-
ing embodied AI within 3D scenes, such as visual naviga-
tion and embodied question answering. Due to the high
density of visual features, especially in large 3D scenes,
accurately locating task-relevant visual information is chal-
lenging. Existing works attempt to segment all objects
and consider their features as scene representations. How-
ever, these task-agnostic object features include much redun-
dant information and missing details for the task-relevant
area. To tackle these problems, we propose LSceneLLM,
an adaptive framework that automatically identifies task-
relevant areas by leveraging LLM’s visual preference for
different tasks, followed by a plug-and-play scene magni-
fier module to capture fine-grained details in focused ar-
eas. Specifically, a dense token selector examines the at-
tention map of LLM to identify visual preferences for the
instruction input. It then magnifies fine-grained details
of the focusing area. An adaptive self-attention module
is leveraged to fuse the coarse-grained and selected fine-
grained visual information. To comprehensively evaluate
the large scene understanding ability of 3D-VLMs, we fur-
ther introduce a cross-room understanding benchmark, XR-
Scene, which contains a series of large scene understanding
tasks including XR-QA, XR-EmbodiedPlanning, and XR-
SceneCaption. Experiments show that our method surpasses
existing methods on both large scene understanding and ex-
isting scene understanding benchmarks. Plunging our scene
magnifier module into the existing 3D-VLMs also brings
significant improvement. Code and data are available at
https://github.com/Hoyyyaard/LSceneLLM

*Equal contribution. Email: hoyard1212@gmail.com
†Corresponding author. Email: mingkuitan@scut.edu.cn

(a)

(b)

(c)

Down
Sample

Dense Token
Selector

Black 
and 

White
Ours

coarse scene 
understand module

scene 
magnifier
module

Low Computation 

Visual
Preference

LLM

Task–related 
Details 

Chat3D-v2LSceneLLM Leo
OccLLaMA Chat-Scene LL3DA

3D-LLMLidar-LLM

Figure 1. We propose LSceneLLM, a novel framework for
adaptive large 3D scene understanding. (a) Existing methods
struggle to locate task-relevant visual information when facing
large scenes. (b) We are committed to precisely identifying fine-
grain task-related visual features through adaptive scene modeling.
(c) Our method outperforms existing approaches across various
benchmarks.

1. Introduction
3D scene understanding is essential for various tasks, in-

cluding robotic manipulation [19, 48], navigation [35], and
embodied long-horizon planning [7, 22]. With the rapid
development of large language models (LLMs) [3, 10], re-
searchers are increasingly focusing on leveraging LLMs’
impressive reasoning and summarization capabilities to en-
hance the understanding of 3D point clouds, building 3D
Vision-Language Models (3D-VLMs) [8, 15, 17, 18, 36, 44].

Most efforts on 3D-VLMs have concentrated on object-
level point cloud understanding [14, 36, 44], while scene-
level understanding remains underexplored due to the larger
and more intricate nature of 3D environments compared
to individual objects. To introduce the scene-level under-
standing ability to 3D-VLMs, existing works [8, 16–18, 41]
seek help from object detection [9] and instance segmen-
tation [32, 47] technique to delineate all objects within a
scene. All the object features extracted by an object-level 3D
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features extractor are considered to represent the scene-level
3D features, as illustrated in Fig. 1(a). Despite the advance-
ments, existing 3D-VLMs face two major limitations: 1)
When facing large scenes, the scale of task-related visual
information is significantly smaller than that of the entire
scene. This disparity poses a significant challenge for ex-
isting 3D-VLMs in accurately focusing on pertinent visual
information, as they require all segmented objects as input,
which is task agnostic. 2) To balance the computational
load, existing approaches utilize sparse object point clouds
as input to capture object features within an entire scene,
which leads to the loss of critical details related to small
objects. LL3DA [8] attempts to address the above issues by
employing a Qformer [23] to query the task-relevant scene
features. However, it fails to fully utilize the substantial
reasoning capabilities of LLMs to assist in selecting task-
relevant visual information and is hindered by the limitations
of low-resolution scene features. Moreover, Current 3D-
VLM are predominantly benchmarked on the datasets that
are annotated in ScanNet [11], 3RScan [40], etc., which
mainly consists of single-room [2, 6, 40]. The understand-
ing of large scenes such as multi-room scenarios remains
underexplored.

When faced with complex visual input, humans selec-
tively focus on certain regions first, then search for informa-
tion within those relevant areas [31, 38, 43]. Mimicking the
mechanisms humans use to process complex visual input, we
posit that a model can first obtain visual preference within
sparse scene representation, followed by a fine-grained anal-
ysis of focus areas. It’s similar to how people, when reading
a bulletin board, first focus on a specific topic before paying
closer attention to particular details.

Inspired by the above motivation, we propose
LSceneLLM, a 3D-VLM framework that contains a coarse
scene understanding module and a scene magnifier module
for adaptive modeling of large scenes. As shown in Fig. 1(b),
to obtain a preliminary understanding of the various areas of
the scene, we utilize a scene encoder to encode the downsam-
pled point cloud. Additionally, the scene magnifier module
is proposed to identify the visual preference of LLM while
extracting and fusing selected detailed visual information.
Specifically, a dense token selector leverages the attention
map of LLM to identify the visual preferences relevant to
the instruction and then collects dense visual features from
the areas of interest, which is then fused with coarse-grained
scene information through the adaptive self-attention mod-
ule, enabling large-scale scene understanding with limited
point cloud input. The scene magnifier module can be easily
inserted into existing 3D-VLMs by replacing the correspond-
ing self-attention module in the LLM.

To provide a comprehensive evaluation for large scene
understanding, we additionally propose a cross-room un-
derstanding benchmark XR-Scene, which includes XR-QA,

XR-EmbodiedPlanning, and XR-SceneCaption. It has an
average scene area size of 132 m2, which is significantly
larger than the 29 m2 in ScanQA [2]. Our experimental re-
sults demonstrate that LSceneLLM achieves state-of-the-art
performance on a wide range of 3D tasks and benchmarks,
including single-room scene benchmarks and large scene
benchmarks, as shown in Fig. 1(c). Our contributions are
summarized as follows:

• We present LSceneLLM, a 3D-VLM framework that
automatically identifies and magnifies detailed infor-
mation in task-relevant areas. This helps the model
accurately localize the important information within
the large 3D scene.

• To comprehensively benchmark 3D-VLMs in large
scene understanding, we present the XR-Scene, a col-
lection of cross-room understanding tasks that includes
question-answering, embodied planning, and scene cap-
tion, with an average scene area approximately four
times larger than that of ScanQA, which offers a more
challenging evaluation environment.

• Our approach consistently demonstrates superior per-
formance in both indoor and outdoor large-scene under-
standing benchmarks. Integrating our scene magnifier
module with existing 3D-VLMs also brings significant
improvement.

2. Related Work
2.1. 3D Vision Language Models

3D-VLMs have recently developed rapidly, thanks to the
emergence of excellent work in LLMs. Researchers initially
focused on understanding 3D object point clouds [14,36,44].
PointLLM [44] first leverages the pretraining and instruction
tuning paradigm to empower LLM to understand object point
clouds. MiniGPT-3D [36] introduced an efficient 3D-VLM
that aligns 3D point clouds with LLMs by leveraging 2D pri-
ors from 2D-LLMs, capitalizing on the similarities between
2D and 3D visual information. Point-Bind [14] constructs
a joint embedding space that integrates 3D and multimodal
data, projecting 3D semantic features into LLMs to enhance
their capacity for 3D object-level question answering. Scene-
level point clouds are inherently more complex than object-
level point clouds due to the high density of visual features.
This complexity poses a greater challenge for LLMs to un-
derstand scene-level point clouds effectively. Object-centric
works [16–18, 41] first leverage instance segmentation or
object detection to extract all objects within the scene and
model the spatial relationship between objects through a
relation module. When facing large scenes, the scale of
task-related visual information is significantly smaller than
that of the objects features within the scene, as it involves
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LSceneLLM: Adaptive Framework For Large Scene Understanding
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On the left side of 
the fireplace.
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relation to the 

fireplace ?

Question

Silver.

LSceneLLM

What color is the 
faucet?

Question

Figure 2. An Overview of LSceneLLM. LSceneLLM first perceives the scene through sparse vision tokens at the coarse level and then
enhances regions of interest using dense vision tokens. Our method can effectively handle various visual language tasks in large scenes.

querying a single object among hundreds of others. This
challenges the task-agnostic visual feature construction pro-
cess, making it difficult for the model to locate task-relevant
information accurately. A recent work, LL3DA [8], pro-
posed using QFormer [23] to extract visual features related
to task instructions. It employs a set of learnable queries to
summarize the object features in the scene that are relevant to
the task. However, this process occurs outside the LLM and
is a shallow task-related information extraction process that
demands a substantial amount of training data [46]. We pro-
pose to leverage the LLM’s powerful reasoning capabilities
to select visual preferences based on different instructions.

2.2. 3D Understanding Benchmarks

Early datasets for 3D understanding, such as NYUv2 [33]
and SUN RGB-D [34], comprise short RGBD sequences
with low resolution and limited annotations. ScanNet [11]
is the first dataset that provides 3D reconstructions and an-
notations at scale, including 1,201 and 312 different and
complex indoor 3D scenes. Most existing indoor scene un-
derstanding benchmarks [1, 2, 6] are built from ScanNet. In
addition, benchmarks [18] based on scenes like 3RScan [40]
and ARKitScenes [5] are also widely discussed. Despite the
above advancements, existing 3D understanding benchmarks
are largely limited to small scenes, such as single-room sce-
narios, and benchmarks for large scene understanding in
cross-room and outdoor environments [29] remain under-
explored. HM3D [30] is the largest-ever dataset of 3D in-
door spaces, consisting of 1,000 high-resolution 3D scans
of building-scale residential, commercial, and civic spaces
generated from real-world environments. We construct a

large scene understanding benchmark based on HM3D for
cross-room scenarios.

3. LSceneLLM: Adaptive Framework For
Large Scene Understanding

When facing large scenes, to precisely identify task-
relevant visual information within high-density visual con-
texts, we introduce LSceneLLM, which automatically iden-
tifies task-relevant areas by leveraging LLM’s visual pref-
erence and then searching for the desired information within
the focus areas. The adaptive framework consists of a coarse
scene understanding module and a scene magnifier mod-
ule, allowing for the comprehension of scenes from coarse-
grained overviews to fine-grained details of significant re-
gions. The scene magnifier module can be seamlessly inte-
grated into most 3D-VLMs by simply replacing their corre-
sponding self-attention modules in LLM.

3.1. Overall Architecture

As shown in Fig. 2, given the dense point cloud of a 3D
scene, we first obtain dense point cloud features through a
scene encoder [27]. These features are then down-sampled
to sparse point cloud features. Through a coarse scene under-
standing module modified from SA module [28] that random
sample points and groups a wide range of nearby features
for each sample point, the sparse point cloud features are
converted into sparse vision tokens, representing a coarse
scene depiction. For fine-grain feature construction, we
identify the center points of a preferred region and extract
a specific number of point cloud features from the dense
point cloud features in its vicinity. These local region point
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Figure 3. Illustration of Adaptive Self-attention Module and Dense Vision Token Selector. We first obtain the focused regions by
analyzing the attention map of LLM. Then we extract dense point cloud features from the region of interest and parse dense vision tokens
through sampling and grouping operations.

cloud features go through the SA module [28] to obtain the
dense vision tokens. After receiving the visual features, we
modify the LLM with our proposed scene magnifier mod-
ule to achieve a fine-grained scene perception. Given an
LLM with N layers of self-attention, we replace the last
NMA layers’ self-attention modules with our scene magni-
fier module, while keeping the first NSA layers unchanged
because the first few layers of attention tend to focus on the
global information of the vision input. To reduce compu-
tational complexity, we input only the sparse vision tokens
and text tokens into the first NSA layers. For the last NMA

layers which utilize the scene magnifier module, we addi-
tionally incorporate selected dense vision tokens to enhance
the model’s understanding of regions of interest in greater de-
tail. Specifically, the scene magnifier module comprises two
sub-modules: a dense vision token selector and an adaptive
self-attention mechanism. The dense vision token selector
dynamically identifies and selects dense vision tokens for
regions of interest guided by the attention map from the self-
attention mechanism, rather than inputting all dense vision
tokens. The adaptive self-attention mechanism integrates
the information from the selected dense vision tokens into
the original hidden states, thereby enriching the model’s
contextual understanding.

3.2. Dense Vision Tokens Selector

In an auto-regressive model, the prediction of the next
token is contingent upon the hidden state of the last token
processed. As shown in Fig. 3(b), by analyzing the activation
values of the attention map for the last token to the sparse
vision tokens, we can identify specific visual information
that the model focuses on when making predictions. Al-
though sparse vision tokens provide limited information, we
enhance the model’s understanding by retrieving dense point
cloud features in focused areas. We first extract the attention

weights of the last text token to all sparse vision tokens and
normalize them to a range of 0 to 255. Next, we select 10%
to 20% sparse vision tokens whose weights exceed a spec-
ified threshold. For each selected sparse vision token, we
identify the corresponding region in the scene and sample
dense vision tokens from that region to provide richer visual
information, thereby enhancing the model’s understanding
of the scene.

3.3. Adaptive Self-attention Module

The adaptive Self-attention Module is a crucial mecha-
nism that integrates dense vision tokens D with the hidden
state H containing text tokens and sparse vision tokens. As
shown in Fig. 3(a), this module takes dense vision tokens
and the hidden state as input and outputs the fused hidden
state. Unlike standard self-attention, our attention map cap-
tures interactions between the hidden state and dense vision
tokens. We eliminate the attention map for this interaction
component, and the remaining attention map is used to select
dense visual tokens in the subsequent layer. It is important
to note that each text token interacts solely with the selected
dense vision tokens, which we achieve through the use of an
attention mask. The calculation of the adaptive self-attention
is summarized as follows:

Q = HWQ

Kall = Concat(HWK ,DW′
K)

Vall = Concat(HWV ,DW′
V )

Adaptive Self-attention(H,D) = softmax
(
QKT

all√
dk

)
Vall

where WQ,WK ,WV ,W
′
K ,W ′

V ∈ RD×d are learnable lin-
ear projection matrices. Kall and Vall are the key and value
matrices that aggregate information from dense point cloud
features.
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Question: I want to set up a cozy reading corner. 
what should i do?

Answers:  1. go to the room with the single lamp 2. 
place a chair near the lamp 3. add a table next to 

the chair 4. place a few books on the table 5. 
switch on the lamp to create a warm ambiance

Question: Describe the scene.
Answers: The multi-room scene includes a living 

room, a bedroom, a utility/storage room, a 
minimalistic room with a lamp, and a bathroom. 
The living room …… The …… The utility/storage 

room contains two vents ……

Question: Describe the living room.
Answers: The living room is well-equipped with 

various furniture including cabinets, chairs, pillows, 
a TV, tables, and stools. Additional objects include 

smoke detectors, lamps ……

XR-EmbodiedPlanning

XR-SceneCaption

(b) Area Size Comparison

Question: What is the color of the dishwasher?
Answer: Silver.

XR-QA

XR-QA

Question: Where is the black-framed window?
Answer: On the wall above the cluttered pile.

Figure 4. Examples of dataset XR-Scene. XR-Scene contains three cross-room scene benchmarks that comprehensively evaluate different
understanding abilities.

Table 1. 3D large scene understanding results. All use Ll3da and XR-Scene data for training. ∗ means do not identify the question-related
objects for the model. # means requiring images and point clouds as input.

Methods XR-QA XR-SceneCaption XR-EmbodiedPlanning

CIDEr METEOR ROUGE CIDEr METEOR ROUGE CIDEr METEOR ROUGE

Zero-Shot
Chat-Scene# [16] 69.55 26.63 10.06 0.01 5.94 1.52 32.64 20.71 10.26
Leo∗ [18] 55.40 22.71 6.96 0.02 1.92 2.92 9.74 16.84 6.88
Ll3da [8] 24.78 12.66 5.31 0.12 8.71 5.14 7.02 15.21 7.17

Finetuning
Chat-Scene# [16] 114.10 35.93 14.32 3.58 17.49 11.59 46.18 22.34 36.71
Leo∗ [18] 112.09 35.47 14.02 2.42 15.96 10.25 39.45 18.99 33.31
Ll3da [8] 112.80 36.94 18.68 3.22 20.95 13.49 35.96 15.74 31.50
LSceneLLM(Ours) 117.21 38.18 19.30 4.59 23.43 16.16 63.08 22.97 36.96

4. XR-Scene: Cross-Room Scene Understand-
ing Benchmark

Current benchmarks for 3D-VLMs primarily benchmark
on the datasets that are annotated in ScanNet [11], etc., which
mainly consists of single-room scenes, such as ScanQA [2]
and ScanRefer [6]. Benchmarking in cross-room scenes
remains underexplored. Cross-room scenes exhibit higher
spatial complexity and object diversity, posing a challenge
for 3D-VLMs to comprehend complex scenes with lim-
ited scene point cloud inputs. To conduct a comprehen-

sive evaluation of large scene understanding, we propose
a cross-room understanding benchmark XR-Scene, which
includes three tasks, XR-QA, XR-EmbodiedPlanning, and
XR-SceneCaption, as shown in Fig. 4(d).

We generate cross-room scenes from HM3D [30] using
ground-truth room positions, selecting the nearest N rooms
to form each scene. Object annotations from SceneVerse [20]
are used to assist in the generation of different types of QA
pairs. We prompt GPT-4o with annotations from each room
and a top-down view of the whole scene to generate XR-
Scene. XR-QA necessitates that 3D-VLM initially iden-



Table 2. 3D question answering results on the ScanQA [2] valida-
tion dataset. ∗ means do not identify the question-related objects
for the model.

Method LLM Training Data ROUGE METEOR CIDEr

3D-VLP [21] - - 34.51 13.53 66.97
ScanQA [2] - - 33.33 13.14 64.86
Chat3D [41] Vicuna-7b - 28.5 11.9 53.2
Chat3D-v2 [17] Vicuna-7b 204k 40.1 16.1 77.1
3D-LLM [15] BLIP2-flanT5 675k 35.7 14.5 69.4
SceneLLM [12] Llama2-7b 690k 35.9 15.8 80.00
Chat-Scene [16] Vicuna-7b 145k 37.79 15.94 77.75
Leo∗ [18] Vicuna-7b 1034k+145k 40.24 16.68 80.20
Ll3da [8] Opt-1.3b 145k 37.02 15.37 75.67
Ll3da [8] Llama2-7b 145k 38.31 15.91 79.08
LSceneLLM(Ours) Llama2-7b 145k 40.82 17.95 88.24

tifies the specific region within a vast scene to which the
object associated with the query pertains. Furthermore, it
must comprehend the relationships between this object and
its surrounding entities to deliver precise responses. XR-
EmbodiedPlanning requires 3D-VLM to comprehend com-
plex inter-object and room relationships to produce subtasks
based on high-level goals. Meanwhile, XR-SceneCaption
challenges 3D-VLM to generate comprehensive scene de-
scriptions and captions for specific rooms while inferring
attributes based on present objects. Overall, these tasks de-
mand advanced spatial reasoning and contextual awareness
to navigate the intricacies of cross-room environments effec-
tively. For more detailed information on dataset generation,
please refer to Appendix A.

4.1. Analysis of XR-Scene

XR-Scene consists of more than 1000 unique scenes,
with an average area of 132m2, significantly larger than the
average scene area of 29m2 in ScanQA [2], as mentioned in
Fig. 4(b). Moreover, the number of inquiries about objects
in the scene of XR-QA is relatively balanced, whereas for
ScanQA [2], there is a heavy focus on asking numerous
questions about chairs, and tables, resulting in a lack of
diversity, as shown in Fig. 4(c). Furthermore, due to the
visual density in large scenes, which often require down-
sampling and can result in the loss of scene details, we
selected a subset from XR-QA based on the bounding box
sizes of the question-specific objects. This subset, XR-QA-
S, has a bounding box size threshold of 0.05 m2, equivalent
to the size of a keyboard. This subset assesses the model’s
ability to comprehend fine-grained information in various
environments.

5. Experiment
5.1. Datasets, Metrics and Implementation Details

Datasets. In this paper, we conduct experiments using
3D data from ScanNet [11] and HM3D [30]. The anno-
tated training data is sourced from ScanRefer [6], Nr3D [1],
ScanQA [2], the ScanNet subset of 3D-LLM [15] and our

XR-Scene. The annotations cover various 3D tasks such as
object captions, scene descriptions, scene question answer-
ing, and task planning. We also conduct experiments on the
outdoor large scenes QA benchmark, Nuscenes-QA [29], to
validate whether our method effectively handles sparse and
wide-ranging point clouds. Due to the huge gap between
indoor and outdoor scenes, we tested with additional models,
trained with Nuscenes-QA data.

Metrics. Here, we adopt CiDEr [39], METEOR [4],
Rouge [24] and accuracy to evaluate the quality of the gener-
ated textual responses.

Implementation Details. Following previous works on
3D vision language tasks [8], we randomly sample 40k point
clouds from each 3D scene as the 3D visual input. We use
the LLama2-7b [37] as our causal LLM backbone, which is
fully fine-tuned to enable the model to attend to the areas
of interest accurately. We adopt the AdamW [26] optimizer
with a weight decay of 0.1 and a learning rate decaying from
10−5 to 10−6 with a cosine annealing scheduler. In XR-
Scene, We select Leo [18], Chat-Scene [16] and Ll3da [8]
as the typical methods. We train all baselines with the same
data in order to conduct a fair comparison.

5.2. Comparison with SoTA Specialists

5.2.1 Indoor Scene Understanding

We benchmark existing methods on XR-Scene to evaluate
the model’s understanding of large scenes, as shown in Tab. 1.
We first evaluate existing methods in a zero-shot manner, and
experiment results indicate that those models perform poorly
without having undergone a learning process on large scene
data. For question-answering task XR-QA, when facing
high-density vision input, the performance of the Ll3da [8] is
poor due to the suboptimal process of extracting task-related
visual information and detail loss in feature compressing
process. Object-centric methods like Leo [18] and Chat-
Scene [16] also perform poorly due to the overwhelming
number of objects in the scene, which hinder the model’s
ability to focus on the relevant objects precisely. For XR-
SceneCaption and XR-EmbodiedPlanning, which require
a deep understanding of the relationships between regions
(rooms) and objects to generate captions for specific areas or
to complete high-level planning tasks within a region, exist-
ing methods yielded unsatisfactory results. This is because
they modeled the scene only at the object level, neglecting
the dependency information between regions and objects
within the broader context of the scene. On the contrary, our
proposed method, LSceneLLM, can identify task-relevant
regions and facilitate a fine-grained understanding within
focus areas. As a result, our approach outperforms existing
methods across all three tasks by a large margin.

We also evaluate our method on ScanQA [2], as shown
in Tab. 2. The experimental results indicate when facing



Table 3. 3D question answering results on outdoor scene benchmark NuscenesQA [29]. * means downstream specialist model.

Method Exist Count Object Status Comparison Acc
H0 H1 All H0 H1 All H0 H1 All H0 H1 All H0 H1 All

NuscenesQA* [29] 87.7 81.1 84.1 21.9 20.7 21.3 70.2 45.6 49.2 62.8 52.4 55.9 81.6 68.0 69.2 58.1

LLaVA-Adaptaer-v2 [13] 34.2 6.3 19.3 5.0 0.1 2.7 23.7 4.6 7.6 9.8 11.3 10.8 2.6 1.5 1.6 9.6
LLaVA [25] 38.9 51.9 45.8 7.7 7.6 7.7 10.5 7.4 7.8 7.0 9.9 9.0 64.5 50.8 52.1 26.2
LidarLLM [45] 79.1 70.6 74.5 15.3 14.7 15.0 59.6 34.1 37.8 53.4 42.0 45.9 67.0 57.0 57.8 48.6
OccLLaMA [42] 80.6 79.3 79.9 18.6 19.1 18.9 64.9 39.0 42.8 48.0 49.6 49.1 80.6 63.7 65.2 53.4
LSceneLLM(Ours) 86.4 81.3 83.6 19.4 19.8 19.6 64.4 41.3 44.8 58.8 51.2 53.8 81.0 67.5 68.7 56.4

Table 4. More results on the XR-QA validation dataset and challenge subset XR-QA-S. # We re-implement Leo [18] and Ll3da [8] keeping
all other settings the same as ours to conduct a fair and further comparison.

Method Scene Magnifier Module XR-QA XR-QA-S

ROUGE METEOR CIDEr ROUGE METEOR CIDEr

Leo# [18] ✗ 36.56 18.61 110.33 36.10 18.06 103.16
Leo# [18] ✓ 37.53(+0.97) 19.00(+0.39) 113.46(+3.13) 36.88(+0.77) 18.47(+0.41) 107.56(+5.29)

Ll3da# [8] ✗ 37.19 18.51 111.35 36.04 17.61 95.65
Ll3da# [8] ✓ 37.85(+0.65) 19.15(+0.56) 115.79(+4.44) 37.23(+1.19) 18.60(+0.99) 106.73(+11.09)

LSceneLLM ✗ 36.58 18.65 109.92 35.47 17.91 97.57
LSceneLLM(Ours) ✓ 38.18(+1.60) 19.30(+0.65) 117.21(+7.29) 38.15(+2.68) 18.69(+0.78) 109.42(+11.85)

Table 5. Ablation studies. ATR: the activate token ratio of sparse
vision tokens. #: do not use the scene magnifier module.

Parameter ROUGE METEOR CIDEr

Threshold
96(AT: 10%-20%) 38.18 19.30 117.21
127(AT: 3%-5%) 37.89 19.26 115.92
64(AT: 40%-50%) 37.68 19.07 114.69

Dense Token Num
2 37.91 19.14 115.32
4 38.18 19.30 117.21
6 37.54 19.03 115.14

Select Strategy Attention Map 38.18 19.30 117.21
Random 37.64 19.18 115.66

Vision Token Num
512 37.27 18.80 112.19
128 36.58 18.65 109.92

128# 38.18 19.30 117.21

small-scale scenes, our method can also achieve optimal
performance with limited training data, further validating
the effectiveness of the hierarchical scene understanding
approach we proposed. More ScanNet understanding results
can be found in Appendix C.

5.2.2 Outdoor Scene Understanding

Outdoor scenes are larger in scale compared to indoor scenes,
and the visual information is more sparse, which poses
greater challenges for 3D-VLMs in understanding outdoor
sparse point clouds. We also conducted experiments on the
NuscenesQA [29] benchmark to assess the model’s capabil-
ity in handling large outdoor scenes. Results in Tab. 3 show
that our LSceneLLM achieves state-of-the-art performance
across all generative methods without requiring multi-view

image input or specialized framework design, with an in-
crease of 3.0 in accuracy compared to the previous best
method.

5.3. More Insights into Fine-Grain Large Scene Un-
derstanding

To reveal the capability of 3D-VLMs to understand small
objects in scenes, we further conducted a more in-depth anal-
ysis of existing methods on XR-QA and XR-QA-S, as shown
in Tab. 4. We re-implement Leo [18] and Ll3da [8] to keep
all other settings the same as ours to conduct a fair compari-
son. The performance of existing methods on XR-QA-S has
significantly declined compared to XR-QA. This is due to
the loss of details during downsampling required by object
recognition techniques, making it difficult to perceive small
objects in the scene accurately. Our proposed LSceneLLM
can automatically complete fine-grained visual information
and performs best on XR-QA-S, outperforming the existing
methods on CIDEr by a large margin.

5.4. Module Plug-and-Play Analysis

To further verify that the scene magnifier module can be
easily integrated into most existing 3D-VLM frameworks
to enhance fine-grain understanding, we integrated it with
two major architectures Leo [18] and Ll3da [8], as shown
in Tab. 4. For the Ll3da framework, adding the scene mag-
nifier module resulted in a 4.44 improvement in XR-QA
and an 11.09 improvement in XR-QA-S. In comparison, the
improvement was less significant compared to ours. We at-
tribute this to the fact that the use of modules that compress



Ll3da# Leo#LSceneLLMTarget Object
High Low

On the table below the window.
LSceneLLM

Where is the magazine located?
Question

On the dinner table, 
close to the window.

GT

In the middle.
LSceneLLM

Where is the table located in 
the room?  

Question

In the center.
GT

For lighting.
LSceneLLM

What is the purpose of 
the lamp?

Question

Used for lighting.
GT

Fail to 
locate 
small 
item

Focus on 
query object 

actually

Focus on 
irrelevant 
objects

Figure 5. Visualization of attention map of LLM. Red represents high activation values, while blue represents low activation values.

visual information like Qformer [23] has resulted in the loss
of visual details. Leo models the entire scene directly at
the object level, so the improvement after adding the scene
magnifier module is less compared to the other two frame-
works due to the absence of the coarse scene understanding
module.

5.5. Ablation Studies

We conduct several ablation studies, including the num-
ber of vision tokens, the dense vision token selection strategy,
the selection threshold of attention value, and the number of
dense vision tokens that interact with sparse vision tokens
using the XR-QA dataset, as shown in Tab. 5. We experi-
mentally found that using the attention map from LLM to
identify the areas of interest and activating 10%-20% of
these areas yields the best performance for our method. For
more detailed information, please refer to Appendix B.

5.6. Qualitative Analysis

Visualization of Attention Map We explore the areas the
model focuses on when answering questions by visualizing
the attention maps of the generated sequence of LLM to
scene vision tokens, as shown in Fig. 5. Experiments were
conducted using LSceneLLM and two other commonly used
3D-VLM frameworks Ll3da [8] and Leo [18]. As illustrated
by the example in the first row, when asked about the lo-

cation of the magazine which is on the table in the scene,
LSceneLLM accurately identifies the magazine’s position
and correctly focuses on the table mentioned in the response.
The other two methods only roughly focus on the magazine’s
location and output the wrong answers. When asked about
smaller objects (the third row), LSceneLLM is also able to
accurately locate the position of the small objects, while the
other two methods fail to do so.

6. Conclusion
In this paper, we investigate the paradigm of 3D-VLMs

for large 3D scene understanding. To precisely locate task-
related visual information, we propose an adaptive frame-
work that automatically identifies task-relevant areas by
leveraging LLM’s visual preference when tackling different
tasks, followed by a plug-and-play scene magnifier module
to capture fine-grained details in focused areas. Experimen-
tal results demonstrate that our approach achieves significant
performance improvements on large 3D scene understanding
benchmarks. We further propose the XR-Scene cross-room
understanding benchmark to complete the benchmarking
process for 3D-VLMs in large-scale environments. We hope
that our findings will inspire further advancements in the de-
velopment of large 3D scene understanding methodologies.
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APPENDIX

A. More Details on Generation of XR-Scene

Generation of Cross-Room Scenes HM3D [30] contains
several cross-room, multi-floor 3D scenes. In SceneV-
erse [20], annotations are generated for each room in the
HM3D scenes, including object properties and spatial rela-
tionships with surrounding objects. As shown in Fig. 4(a).
For a given scene, we leverage the ground-true central posi-
tions of each room in HM3D. We randomly sample one room
and calculate the Euclidean distances between other rooms,
the nearest N rooms are selected to form a cross-room scene.

XR-QA Generation For each cross-room scene contain-
ing N rooms, we retrieve object annotations from Scen-
eVerse [20] for these N rooms and filter out objects that
appear exactly once in the scene to ensure uniqueness corre-
sponding to the question. For each annotated object, we use
GPT-4 to generate two types of questions: object properties
and spatial relationships with surrounding objects based on
the annotations.

XR-Planning and XR-EmbodiedPlanning Generation
The embodied planning task requires the model to under-
stand the objects in the scene and their specific locations.
Given a high-level task, the model needs to use the objects
in the scene to generate a series of subtasks. In contrast
to single-room scenes, embodied planning in cross-room
scenes is more complex for the model, as it needs to under-
stand the relationships between objects and the rooms, not
just the relationships between the objects themselves.
The scene captioning task requires the model to provide a
general description of the current scene, including the re-
lationships between objects and their attributes. In larger
scenes, scene captioning demands a stronger spatial under-
standing of the model. The model not only needs to perceive
the positional relationships between objects but also pay at-
tention to the areas to which the objects belong. Our tasks
will include generating captions for the entire large scene
as well as requiring the model to caption only a specific
room. Furthermore, the model needs to infer room attributes
based on the objects present, making scene captioning in
cross-scene Scenes more challenging than in single-room
Scenes.
We generate the top-down view of the cross-room scene
and use bounding boxes to specify that a certain annotation
corresponds to a specific room. Follow Leo [18], We use
prompt engineering to guide GPT-4o in understanding the
scene and generating scene captions and QA pairs for em-
bodied planning. Additionally, we provide the model with
a real RGB-rendered top-down view of the scene to further
reduce model hallucinations, as shown in Fig. 6.

Table 6. Ablation studies of selection threshold

Threshold Activate Token Ratio ROUGE METEOR CIDEr

64 40% - 50% 37.68 19.07 114.69
96 10% - 20% 38.18 19.30 117.21

127 3% - 5% 37.89 19.26 115.92

Table 7. Ablation studies of the number of vision tokens

Vision Token Num Scene Magnifier Module ROUGE METEOR CIDEr

512 ✗ 37.27 18.80 112.89
128 ✗ 36.58 18.65 109.92
128 ✓ 38.18 19.30 117.21

Table 8. Ablation studies of dense token

Dense Token Num ROUGE METEOR CIDEr

2 37.91 19.14 115.32
4 38.18 19.30 117.21
6 37.54 19.03 115.14

Table 9. Ablation studies of selection strategies

Select Strategy ROUGE METEOR CIDEr

Attention Map 38.18 19.30 117.21
Random 37.64 19.18 115.66

B. Ablation Study

Selection Threshold of Attention Weight. We also ex-
plored the threshold for the confidence of text tokens to
vision tokens in the attention map. We normalized the at-
tention weight of a text token to all vision tokens to a range
of 0-255. The experimental results show that the model
performs best when the chosen threshold is 96, meaning
10%-20% of the vision tokens are selected to interact with
the corresponding fine-grained scene features. If too many
tokens are selected, the model cannot accurately focus on
the local areas, while if too few tokens are selected, the fine-
grained scene information provided is insufficient, offering
limited help in understanding the scene, as shown in Tab. 6.

Numbers of Dense Vision Token Interact With Sparse
Vision Token. This ablation experiment investigates the
optimal number of dense vision tokens with which each
sparse vision token should interact. We sample a certain
number of point cloud features around the center point of
the sparse vision token from the dense point cloud features
and then aggregate them. As shown in Tab. 8, using 4 dense
vision tokens to represent the fine-grained features of a local
region provides the greatest benefit to the model.

The number of Vision Tokens We first explored whether
sampling more visual information from the environment
would improve the model’s performance. As shown in Tab. 7,



<top-down-view-image> 
Using the provided scene realistic top-down view and room 

caption per room, design a high-level task that can be performed 
in this 3D scene. Besides, decomposing this high-level task into a 
sequence of action steps that can be performed using the 
instances in this 3D scene.(You need to provide a whole summary 
for the multi-room scene. This summary should contain a rough 
summary of what rooms are in the whole scene......)

Please strictly follow the rules below:<rule>
Room Captions:<caption per room> or <object list>
Example: <example>
You need to generate 5 question-answer pairs follow example 

strictlly in json format and re-thinkng the rules before output. 

In this room, there is a sink, nine cabinets, 
a kitchen counter, an oven, two mugs, three 
books, four hoses, four pictures, eight 
lamps, a TV, eight chairs, five potted plants, 
a refrigerator, a rug, four tables, four 
stools, four vents, and a light switch……

In this room, there are two vents, two 
cabinets, one hose, and two potted plants. 
The room appears to be well-equipped with 
ventilation and storage options. The 
presence of a hose suggests the possibility 
of cleaning or watering tasks……

In this room, there are 4 pillows, 2 lamps, 1 
decoration, 2 cabinets, 1 picture, and 2 storage 
boxes. The pillows are aligned with each other and 
are lower than the lamps. The lamps are higher than 
the cabinets and the pillows. One lamp is below 
another lamp……

In this room, there is a solitary bathtub, 
standing as the sole object of interest. Its 
presence suggests a space dedicated to 
relaxation and cleansing. The room's purpose is 
clear……

The scene features multiple distinct areas. One 
area is a restful bedroom with a bed …… The 
practical and organized area contains pictures, 
boxes for storage …… a minimalistic area 
illuminated by a single lamp exudes calm and 
simplicity, offering a peaceful environment.

Large scene caption

Question: i want to set up a cozy reading corner. 
what should i do?
Answers:  1. go to the room with the single lamp 2. 
place a chair near the lamp 3. add a table next to 
the chair 4. place a few books on the table 5. 
switch on the lamp to create a warm ambiance

Large scene embodied planning

Figure 6. Generation pipeline of XR-SceneCaption and XR-EmbodiedPlanning.

Where is the clutter in relation to the stairs? 
On left side of stairs.

What color is the bed?
White.

What is the shape of the bed?
Rectangular.

What is the color of the toilet paper?
White.

What color is the faucet?
Silver.

What color is the toilet?
White.

What color are the tables?
Brown.

Where is the curtain in relation to the window? 
Left.

Where is the table in relation to the_door? 
To right of door.

Figure 7. More Attention Visualization of LSceneLLM.



Table 10. More 3D scene understanding results. ∗ means do not identify the question-related objects for the model.

Method
Scene Caption Embodied Planning Embodied QA

ROUGE CIDEr METEOR ROUGE CIDEr METEOR ROUGE CIDEr METEOR

Leo* [18] 1.80 20.84 13.29 46.40 204.78 19.86 30.89 86.14 18.81
Chat-Scene [16] 3.67 21.05 12.60 40.03 210.86 20.71 34.23 99.01 18.48
Ll3da [8] 1.44 24.62 12.93 45.34 186.13 19.60 33.75 95.53 19.81
LSceneLLM(Ours) 3.07 21.88 14.79 47.05 214.63 21.05 36.00 104.98 21.26

Table 11. Computational complexity results on XR-QA

Method Scene Magnifier Module Vision Token Num Flops CIDEr

Leo ✗ 200 6.55 110.33
Ll3da ✗ 32 4.11 111.35

LSceneLLM ✗ 128 5.3 109.92
LSceneLLM ✓ 128 6.33 117.21

although using four times the number of vision tokens does
lead to some performance improvement, the enhancement is
not as significant as the improvement achieved by incorporat-
ing the LSceneLLM module, which validates the efficiency
of our approach.

Dense Vision Token Selection Strategy. We conducted ab-
lation experiments to verify that the attention map in the self-
attention module reflects the visual information the model
focuses on when answering questions. As shown in Tab. 9,
the selection strategy based on attention weight outperforms
the random selection strategy, demonstrating that the infor-
mation about the regions that the model is currently focusing
on aids in understanding the scene, while the random selec-
tion strategy provides little benefit to the model.

C. More Scene Understanding Results on Scan-
Net

We also test our method on scene caption, embodied plan-
ning, and embodied qa, these datasets are sourced from the
ScanNet part of 3D-LLM [15] and organized by Ll3da [8].
Embodied QA requires the model to answer questions from
the perspective of an agent, considering the agent’s posi-
tion and orientation within the environment. All of these
tasks demand the model to have a holistic understanding
of the entire scene. As shown in Tab. 10, our method out-
performs the current state-of-the-art approaches on most
metrics, demonstrating that the proposed approach not only
captures fine-grained details in the scene but also achieves
an accurate overall understanding of the entire scene.

D. More Attention Visualization of LSceneLLM
on XR-QA

We provide more attention map visualization results when
LSceneLLM deals with different instructions on XR-QA.

Experiment results show that our proposed method can accu-
rately locate the task-relevant visual features using adaptive
visual preferences from LLM.

E. Computational Complexity Analysis
We analyze the computational complexity of the

Ll3da [8], Leo [18], and our method when faced with the
same scene and identical text input. In Leo, the number of
visual tokens corresponds to the number of objects in the
scene, while both the Ll3da and our method use a fixed num-
ber of visual tokens when dealing with scenes of varying
sizes, as shown in Tab. 11. The computational complexity of
our method is situated between the two baseline methods. As
the scene size increases further, LSceneLLM can maintain
a constant computational complexity while preserving the
scene details. In contrast, the computational complexity of
the object-centric method increases with the growing number
of objects in the scene.
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