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Late Fusion via Subspace Search
With Consistency Preservation

Xuanyi Dong™, Yan Yan™, Mingkui Tan™, Yi Yang"™, and Ivor W. Tsang

Abstract— In many real-world applications, data can be repre-
sented by multiple ways or multi-view features to describe various
characteristics of data. In this sense, the prediction performance
can be significantly improved by taking advantages of these
features together. Late fusion, which combines the predictions of
multiple features, is a commonly used approach to make the final
decision for a test instance. However, it is ubiquitous that different
features dispute the prediction on the same data with each other,
leading to performance degeneration. In this paper, we propose
an efficient and effective matrix factorization-based approach to
fuse predictions from multiple sources. This approach leverages
a hard constraint on the matrix rank to preserve the consis-
tency of predictions by various features, and we thus named
it as Hard-rank Constraint Matrix Factorization-based fusion
(HCMF). HCMF can avoid the performance degeneration caused
by the controversy of multiple features. Extensive experiments
demonstrate the efficacy of HCMF for outlier detection and the
performance improvement, which outperforms the state-of-the-
art late fusion algorithms on many data sets.

Index Terms— Late fusion, matrix factorization, classification.

I. INTRODUCTION

EATURE representation of objects, which transforms

raw data into numerical features, is a prerequisite for
most real-world applications. There are often multiple ways
to generate numerical features from raw data for visual
recognition. For example, for image data, one can construct
hand-crafted features such as scale-invariant feature trans-
form (SIFT) feature [1] and Histograms of Gradients (HOG)
feature [2], or extract features based on well-trained convo-
lutional neural networks (CNNs) [3]. Moreover, text data can

Manuscript received December 23, 2017; revised May 25, 2018 and July 22,
2018; accepted August 25, 2018. Date of publication August 30, 2018; date of
current version October 1, 2018. This work was supported in part by the Data
to Decisions CRC (D2D CRC), in part by ARC under Grant FT130100746 and
Grant DP180100106, in part by the National Natural Science Foundation of
China under Grant 61602185, and in part by the Recruitment Program for
Young Professionals. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Khan M. Iftekharuddin.
(Corresponding author: Yi Yang.)

X. Dong, Y. Yan, and I. W. Tsang are with the Centre for Artificial
Intelligence, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail:  xuanyi.dong@student.uts.edu.au;  yan.yan-3@student.uts.edu.au;
ivor.tsang @uts.edu.au)

M. Tan is with the School of Software Engineering, South China University
of Technology, Guangzhou 510640, China (e-mail: mingkuitan@scut.edu.cn).

Y. Yang is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing 100864, China, and also
with the Centre for Artificial Intelligence, University of Technology Sydney,
Ultimo, NSW 2007, Australia (e-mail: yi.yang@uts.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2867747

be represented by term frequency-inverse document frequency
(tf-idf) and word2vec. Each category of features tends to
capture some specific characteristics of data, such as textures
of images and frequencies of text data. When building a pre-
diction model, the model trained on one kind of features could
be biased and hence may incur unsatisfactory performance.
Existing works have investigated the performance improve-
ment by combining multiple kinds of features in real-world
applications [4]-[9].

Late fusion is a typical approach to obtaining the final
decision on testing data. It aims to fuse the predictions from
different features [S]-[7]. A commonly used method is to
learn weights for predictions from various features to combine
them, which has a number of variations [4], [6], [7]. Among
these algorithms, multiple kernel learning (MKL) [10], [11]
is often used to train such a weighted combination. How-
ever, a single feature may produce corrupted predictions on
some data, which likely degenerates performance. To deal
with this issue, therefore, some works formulate it as a
robust low-rank matrix recovery problem [5], [12] by nuclear
norm minimization. Nevertheless, nuclear norm minimization
applied in these works requires singular value decomposition
(SVD), which would be computationally unaffordable for large
matrices.

To avoid the expensive nuclear norm minimization, in this
paper, we propose a more efficient matrix factorization (MF)
algorithm to recover the underlying low-rank label matrix.
Particularly, our method searches the solution in a low-rank
subspace under a fixed-rank constraint. This is a hard con-
straint, and thus different from [5] and [12] which introduce
a soft constraint on the low-rank property. On the other hand,
to remove the abnormal predictions generated by individual
features, we propose to filter out these inconsistent results by
using the ¢ | regularization. Especially, £ | loss can preserve
the fidelity within each column by the £> loss in the vertical
direction. It is also robust to sparse errors across all the
columns by £ loss in the horizontal direction. Compared to
{1 loss, €5 loss is sensitive to outliers, thus may not produce
robust and satisfactory predictions. 1 loss is not sensitive
to outliers, but not capable to detect the abnormal features
which generate corrupted results. Besides, most existing MF
optimization methods only consider smooth loss functions,
rather than the non-smooth loss. Therefore, we, in particular,
present an approach based on the augmented Lagrangian mul-
tiplier (ALM) to extend MF methods to non-smooth problems,
and the framework is illustrated in Figure 1.
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Fig. 1. The framework of HCMF. In this example, there are 10 instances,
3 classifiers, and 3 classes. Predictions of each classifier are converted to a
binary indicator matrix, denoted by Ly, Ly, and L3. Let L = [Ly, Ly, L3]
be the label matrix. HCMF detects and removes the outliers on L and then
recovers the underlying low-rank subspace of L as the predictions on the
testing data. Lastly, we apply a post process to generate the fusion results.

The main contributions are summarized as follows:

(1) We formulate the late fusion problem as a fixed-rank
robust matrix recovery problem, which is the first
attempt to introduce a hard constraint on the low-rank
property to the late fusion problem. HCMF intuitively
removes inconsistent predictions caused by abnormal
features and preserves the consistency of predictions
from different sources.

(2) We propose an ALM-based optimization algorithm to
deal with the proposed low-rank-constrained problem
efficiently. Two challenges in this problem are the
fixed-rank constraint and non-smoothness of £ ; loss.
Our method decouples the two difficulties and handles
them separately.

(3) We provide theoretical convergence analysis for the
proposed robust matrix recovery algorithm. Our method
has a lower computation complexity than most previous
methods.

(4) We empirically demonstrate the efficacy of our method
regarding outlier detection and show the better perfor-
mance achieved by the hard constraint on the matrix
rank. Moreover, compared to existing late fusion and
feature fusion algorithms, our proposed algorithm shows
significant improvements.

II. RELATED WORK

MKL is a typical method to combine different features for
the multi-modal fusion. Gehler and Nowozin [4] proposed
boosting approaches to ensemble different features by the
weighted fusion. Lai et al. [7] proposed a sample specific
late fusion based on graph Laplacian with RankSVM style
constraints. Xu ef al. [6] proposed an optimization algorithm
to learn the weights, thresholding, and smoothing parameters
jointly. However, these MKL based fusion methods only learn
weights to combine different basic models, and they do not
consider the outlier rejection in the fusion process explicitly.

MF has attracted increasing attention recently. Many man-
ifold optimization approaches on MF have been proposed
by exploiting the manifold geometry in subspace. Based
on the manifold optimization, fixed-rank matrices are sup-
posed to belong to a smooth matrix manifold [13]-[15].
Vandereycken [13] proposed a low-rank geometric conjugate

TABLE I
NOTATION AND SYMBOLS USED IN THIS PAPER

Symbols Description
n the number of testing instances
m the number of classifiers
T; the instance
C the number of classes
R the set of real numbers
fi the i-th classifier
L; the indicator matrix for predictions of i-th classifier
L the horizontal concatenation of all L;
X the recovered matrix from L
I 1l2,1 the ¢2,1 norm
, 'V two factor matrices that constrain the rank of X
A the Lagrange multipliers.
o the penalty in the augmented Lagrangian function
p the increasing factor for

gradient (LRGeomCG) method. Boumal and Absil [14]
applied first- and second-order Riemannian trust-region meth-
ods to solve the low-rank matrix completion by exploiting
the low-rank constraint. Ngo and Saad [15] described gradient
methods based on a scaled metric on the Grassmann manifold
for low-rank matrix completion. They required the incoherent
matrix assumption and fresh measurements at each itera-
tion, and thus their method cannot be guaranteed the global
optimality in our work. Besides, the Riemannian manifold
method may converge faster than the alternating minimization
approach [13]. However, most MF methods only consider the
general least square loss, which cannot be directly applied to
handle {51 loss.

Feature fusion algorithms [8], [16] combines different mod-
els in the feature level, which costs more computational
expense than the late fusion. They are proposed for specific
tasks. For example, Feichtenhofer ef al. [8] explored a variety
of fusion methods to combine spatial and temporal CNN mod-
els, significantly improving the performance of two-stream
network [16]. It requires additional effort to extend these
methods to general problems. Other researchers leverage the
fusion idea into their framework, such as [17]-[23].

III. THE PROPOSED APPROACH

We first elaborate on the basic formulation of HCMF. We
then present the details of using ALM extending MF to handle
{2,1 loss. Lastly, we introduce the post-process strategy to
convert the recovered label matrix to the final predictions.

A. Problem Formulation

We introduce most notation and symbols in Table I. Suppose
there are n testing instances and C classes. We denote each
instance as x; € RY, where 1 < i < n and R? denotes
the d-dimension feature vector. Assume that we have already
trained m classifiers, i.e., fi, f2, ... fm- Then by applying each
single classifier f; (1 < j < m) on the entire testing
data, one can derive an indicator matrix L; € IR”XC, where
Lj;c = 1 if the i-th instance is assigned to the c class,
otherwise L; ;. = 0 (as shown in Figure 1). L € R"mC g
the horizontal concatenation of L;, where 1 < j < m. Since
the matrix L may contain outliers, HCMF aims to detect and
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remove outliers from L by recovering L into another matrix
X € R™"C_ On the one hand, to preserve the consistency
among m classifiers, we introduce a rank constraint on L. On
the other hand, to catch the outlier columns, we apply robust
2.1 loss, which is computed by ||X]||2,1 = Z;”:Cl />0 Xlzj
Therefore, a general formulation of recovering the underlying
low-rank label matrix can be written as follows:
n%}n [IL — X][2,; s.t. rank(X) = p, (1)
where X is the underlying low-rank label matrix to be recov-
ered, rank(X) obtains the rank of X, and p is an integer. In our
setting, to preserve the consistency among various classifiers,
we use the hard constraint on the rank, i.e., p = C.
It is difficult to optimize Problem (1) directly due to the
presence of the rank constraint. We hence transform the
original problem as an MF formulation as follows:

min |[L —X][2,1
X

st. X=UV, UeR™P, VeRP"C )
where U and V are two factor matrices. If the U and V have
the dimension of n x p and p x mC, then the rank of matrix X
will be less than p. This is the rank constraint shown in Eq. (1).
Most existing MF algorithms focus on smooth loss functions,
rather than a non-smooth ¢; 1 loss function [13]-[15]. In the
following section, we present an ALM optimization framework
to solve Problem (2).

B. Optimization Based on ALM

Most MF optimization methods only consider smooth loss
functions instead of the non-smooth ¢; | loss in Problem (2).
In this section, we present an ALM-based algorithm to opti-
mize Problem (2). By introducing a new variable E = L — X,
we can develop Problem (2) as below:

111311)1(1 [IE|l2,1 s.t. E=L—X, rank(X) = p. 3)
The augmented Lagrangian function of Problem (2) is con-
structed as below:

LOXE X, 1) = |[Ell1 + (A, L — X — E)
+§||L—X—E||%, )

where rank(X) = p, p is a scalar, and A € R"*MC g
the Lagrangian multiplier. Here (A, B) is the inner product
of A € R™" and B € R™", and defined as (A,B) =
Di—=1 2.j=1 AijBjj. Then we can update X and E alterna-
tively. We summarize this procedure in Algorithm 1, where
p is the factor that increases the penalty parameter mu per
iteration. Algorithm 1 involves two sub-problems, which solve
the X and E, respectively. Next we will introduce these two
sub-problems in Sec. III-C and Sec. III-D and then provide
convergence analysis of Algorithm 1 in Sec. III-E. Last we
present the strategies for post process in Sec. V-F.
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Algorithm 1 The ALM Algorithm for Problem (3)

Input: L € R"*™C, rank(X) = p
Initialize p > 1, A\g = 0, Eg =0, and gy > 0.
for t = 0; ||Et+1 — Et“F > € t++ do
while not converge do
1: Obtain Xy by solving Problem (6)
2: Obtain E;;; by solving Problem (12)

end while
3t A1 = A+ (L — X1 — Egga).
4 pg1 = ppae.

end for

Output: X € R"*™¢

C. Subproblem Optimization w.r.t. X

To update X, we have the following augmented Lagrangian
function w.r.t. X:

LX) = (X,L—X—E)—i—%llL—X—EH%

K 2 1 2
= —|IM = X]||% — — 1A%, 5

3| = XI5 = I )
where M = L—E+2_ Eq. (5) is similar to Eq. (4) but fixes E,
A, and u. Since we ﬁlx E, the ||E||2,1 term in Eq. (4) becomes
the constant value, and we thus omit ||E||2 1 in Eq. (5). Hence,
we derive the following subproblem w.r.t. X:

min ||M — X||%, s.t rank(X) = p. (6)
Problem (6) contains a smooth loss function of X, and we thus
propose to solve this subproblem by exploiting Riemannian
geometry of smooth fixed-rank matrices, which is briefly
presented as below.

The key idea of manifold optimization is that the update of
X is always performed on the same manifold, which ensures
the rank of X unchanged as the optimization iterates. In other
words, we search the solution for X in a low-rank subspace.
A smooth manifold of fixed-rank- p matrices is defined as [13]:

M, ={Xe RmC rank(X) = p}
= {Udiag(o)V" : U e St’, V € St"C, ||o o = p}

where St’;, = {U € R"™? : UTU = I} denotes the Stiefel
manifold of n x p real and orthonormal matrices. We denote
the tangent space by Tx M, of M, at X = Udiag(o)V' €
R”X’”c, which is obtained as below:

Tx./\/lp
= {(UMVT+U,VI4UV] : M € RP*P,
U, e R™>?,UTU=0,V, e R"C*? VIV=0}. (7)

One can define a metric gx(A,B) = (A,B) on M,, with
X € M, and A,B € TxM,, then M, becomes a Rie-
mannian manifold by restricting (A, B) to the tangent bundle,
defined as the disjoint union of all tangent spaces: T M, =
Usxem, X} x TeiM, = {(X,P) € RrxmC o RrxmC . X ¢
My, P e TxMp}.

Let f(X) = |IM — XII%. Suppose that G = Vf(X) in
Euclidean space is at X = Udiag(s)V'. Then, according
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Algorithm 2 Computation of Grad f(X) (Algorithm 2 in [13])

Input: X = Udiag(o)VT € M,, G.
I.R, <« G'U, R, « GV.
2. M+ U'R,,.
33U, «R,-UM, V, < R, - VM.
Output: gradf(X) = UMVT + U, VT + UV] € Tx M,

Algorithm 3 LRGeomCG (Algorithm 1 in [13])

Input: Initial X; € M,, tangent vector n =0, k = 1.
while not converge do
1. Compute Riemannian gradient Py = gradf(Xy) by
Algorithm 2.
2. Compute a conjugate direction with PR+: ,, = —Pj+
5k7—xk—1%xk (nkfl) € TM:D
3. Find a step size t;, = min; f(X + tn;,)
4. Update Xy 41 = Rx,, (tkny)-
S5.k=k+1.
end while
Output: X € M,,.

to [13], the Riemannian gradient of f(X) on M, is given
as the orthogonal projection of G onto the tangent space at X:

grad f (X) = Prya, (G), @®)

where Pryam,(Z) 1 Z +— Py ZPv—i-Pd-ZPv—i—PUZP‘J; denotes
the orthogonal projection of any Z € R"*"C onto the tangent
space at X = Udiag(a)VT. Here Py = UUT and Pd- =
I—UUT for any U € St.

Lemma 1: Assuming that U,, V, and M are computed by
Algorithm 2, we can obtain grad f (X) = UMV+U, VT +UV],
which is equivalent to the definition of grad f (X) in (8).

Proof:

grad f (X)

= UMV' + U, VT + UV

=UWU'GV)V' + (R, —UM)V' + UR, — VMT

= PyGPy +GVV' —UMV' +UU'G — UMV'

= PuGPy + GPy —2UMV' + Py G

= PuGPy + GPy —2UU'R,)V' + PG

= PuGPy + GPy —2U(U'GV)V' + PG

= PyGPy + (I — Py)GPy + PyG( — Py)

= PuGPy + P;GPy + PyGPy.

O

Based on the above discussion, the solution of X can be

solved by Algorithm 3. Particularly, in Step 2 of Algorithm 3,
Pr is determined by a Polak-Ribiere (PR+) rule [13]:

_ grad f(Xy) " (grad f (Xe) — grad f (Xe-1))
(grad f (Xk—1), grad f (Xx—1))
The step size # in Step 3, given a search direction 5, €
Tx, M, is chosen such that

FRx, (temy)) < f(Xk) + crte(grad f (X)), n),

©)

(10)

where 0 < ¢ < % The notation 7x, ,—x, (14_1) in Step 2 and
Rx, (txn;) denote vector transport and retraction, respectively.
For more details of above two operators and the geometry of
M, see [13] and the references therein.

D. Subproblem Optimization w.r.t. E

Similarly, to update E, we have the following problem:

min [[Ell1 +|IN ~ E|I}, (1n)

where N=L -X+ % The above problem can be efficiently
solved by the column-wise soft-thresholding operator [24]:

0, if [[Nj|]2 <a
OCNi

IINill2”

(12)

; otherwise,

where E; and N; denote the i-th column of E and N, and

=1
a=s5.

E. Convergence Analysis

The following lemma and theorem provide the theoretical
convergence guarantee of the proposed algorithm. We empha-
size that our problem is a non-convex problem with a rank
constraint, which is rarely studied in the previous literature.

Lemma 2: Given that p > 1, the sequence {u;} is always
increasing, Eg = 0, Lo = 0 and po > 0, suppose that there
exists D > 0 such that ||v||[p < D for all v € %
Then the sequence {A;} computed by Algorithm 1 is bounded,
i.e, ||AllF < D for any t > 0.

Proof: By the optimality of E, in Step 2 in Algorithm 1,
we have the sub-differential of £ w.r.t. E as zeros:

LX¢q1, Erg1, Ar, ur)

| O
= a(||Et+l||2,l) + A+ #t(L - Xz+1 - Et+1)

O(||Esis1ll2,1) + Arg1
= —At1 € 0([|Ers1l]2.1)-

0 e

13)

The second equation is due to Step 3 of Algorithm 1. Consider
the computation of E;; in Eq. (12), which is associated with
L, X;+1, A, and u;. Then we will analyze those variables
respectively.

L is the observation and thus can be bounded. X;;; is
bounded due to the convergence guarantee of Step 1 in
Algorithm 1 [13].

{X;} is initialized by setting A9 = O and {u,} is non-
decreasing. Therefore, as Algorithm 1 runs, all the elements
of E;11, 0(E;+1) and A; are bounded accordingly as ¢
increases. This makes some non-negative D exist such that
% < D. Furthermore, we have ||A;||r < D for any
t > 0. This completes the proof. O

Theorem 1: Suppose the sequences {X;};2,, {E/};2, and
(A )22, are generated by Algorithm 1. As t — oo, the gradi-
ents of L w.r.t. X and E vanish, thus any accumulation point
(X*, E*) is a stationary point.
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Proof: Starting with Step 3 in Algorithm 1, we have
1
L-X1—Ey1 = —Qy1—Ay)
Hi
1
= [IL=Xit1=Erp1llr = o NAr+1 =2l F.
13

Since u, always increases as ¢ increases, consider that when
iy — 400, we have

1
IL = Xiq1 — ErpillF < Iu—(”)vt+1||F + [IA:[lF) — 0,
t

which implies that all the elements in L — X, 11 — E;4 is
approaching to 0. Here we employ the result of Lemma 2.
By employing the result in [13, Proposition 4.2] with a
suitable choice of regularization, for + — oo, we have the
following result after running Step 1 of Algorithm 1:

A
1Pry, s, (L — X1 — B + #—’)HF — 0,
t

which indicates that the Riemannian gradient of X;y; is
approaching to 0.

Recall the definition of the orthogonal projection in Eq. (8),
ie., Prem, (Z) :Z+— PyZPy+ PjZPV + PUZP‘}, we have

At
||PTX,+1MP(L—Xz+1 —-E + E)HF

A
= 1Pry, M, (L —=Xpy1 — Ery1 + ;)
‘f‘PTxtHMp(EtH —E)llr — 0.

Considering that all the elements in L — X, — E;;1 is
approaching to 0, we can also derive that all the elements
in PTX1+| M, (Er1 —E;) is approaching to 0, and additionally
||PTxt+lMp(Et+1 —E)llF — 0.

When g, is very large, we have

A
L—X1 —Eqg + =
133
A
AL — X1 — By + -
Hi+1

~L-Xiy41 —E41 =0,
which implies that

Aiyi

1Pry,, M, (L= Xig1 — Erp1 + )NIF — 0.

Hi+1

This furthermore indicates that, before any update in the
(t + 2)-th iteration of Algorithm 1, X, has already made
Riemannian gradient (grad f (X;+1)) approach to 0. Therefore,
we can observe that Step 1 of Algorithm 1 in the (t 4 2)-th
iteration will not change X;;; very much to make gradf(X)
vanish, i.e., ||Pry m, (L = Xe42 = Eipi + AiLyp - 0,
That is X;42 — Xp41 -

On the other hand, due to the dependence of E;;» on X; 4o,
E; > will also not change very much from E, 1, which means
E;i» — E;y. This proves that (X;, E;) is a stationary point
when t — +o00. (]
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F. Post Process

After we recover the low-rank matrix X from the label
assignment matrix L, it requires post-processing to generate
the (hard) prediction labels for testing data from X. There
can be a large number of approaches to generate the hard
labels. In this paper, intuitively, we consider the following
three strategies:

[AVE] A prediction score matrix X* € R"*C is obtained
by X*=1/m 271=1 X, where X is the recovered result for
L;. The indicator of the highest value in each row of X* is
regarded as the predicted label for the corresponding instance.

[VOTE] For X; where 1 < j < m, we set I;; as the index
of the highest value in the i-th row of X;. Each I;; contributes
one point to the i-th data with label I;;. The label with the
most votes is the final prediction result.

[GATE] For X; where 1 < j < m is transformed through
the softmax function as a gate of the corresponding confidence
score matrix, which is normalized by L, norm. As X; removes
outliers from L;, we produce the X; by the corresponding
score matrix after softmax and normalization. The similar
process as the first strategy is applied to predict the final labels.

According to the experiments, the last strategy “GATE”
usually outperforms best (shown later). We thus choose this
strategy as the post process for all experiments by default
except for the post process analysis section.

IV. ALGORITHM ANALYSIS

A. Computation Complexity

1) The Overall Computational Complexity of HCMF:
Assume that § and 7 are the numbers of iterations of
Algorithm 1 and Algorithm 3, respectively. In practical exper-
iments, we emphasize that we only perform the inner loop
in Line 1 and 2 in Algorithm 1 for one time, which is
known as inexact ALM [25]. The per-iteration complexity
of updating of X is O((n + mC)C?). According to [13], T
is less than 100 for most situations. S, in our experiments,
is usually small (10 to 50). The per-iteration complexity of
updating E and post-processing can be easily calculated as
O(mmC) and O(nmC). The total per-iteration complexity is
thus O (ST ((n+mC)C>*+ O (nmC)), which is linear by growing
of n and m, with the cubic complexity of C.

2) Computational Complexity of SVD in HCMF: HCMF
requires SVD in Algorithm 3 when it performs retraction.
However, the computational complexity is C* in each iteration
of our method, where C is the estimated rank. We would like
to emphasize that in the low-rank matrix recovery scenario,
C is much smaller than n, which the number of rows in the
matrix X. Compared to the SVD performed on the matrix X,
the computational complexity C is always computationally
affordable in the low-rank setting. Most nuclear norm-based
methods [5], [12] have the cubic computational complexity on
m or n due to the presence of SVDs. Compared with them,
our algorithm is more efficient for the large-scale problems.
For example, Gao et al. [12] reported their entire complexity is
(mC)3+n(mC)? per iteration. With the increase in the number
of classifiers, the computation costs too much to be affordable
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due to the cubic complexity of m, but ours can still solve the
solution.

B. Hard Constraint vs. Soft Constraint

The objective function in Eq. (1) is similar to [12]. However,
they apply a soft low-rank constraint, rank(X) < p, on the
7,1 loss for the clustering problem [12]. The soft low-rank
constraint is not applicable to the object recognition task,
which will be discussed later. Therefore, we leverage the hard
low-rank constraint in our proposed algorithm.

C. Limitations and Failure Cases

1) One Testing Sample: Some real-time applications might
require the algorithm to handle one image per frame,
i.e., n = 1 for our algorithm. If n = 1, the consistency between
different classifiers cannot be estimated correctly due to the
lack of data. In this case, our algorithm fails. However, in a
typical machine learning task, testing data usually comes in
bulk, rather than a data sequence. If a new test sample comes,
re-running on the entire updated data is common for fusion
methods. It may not be surprising to see accuracy improvement
for the fusion algorithm. Our goal is to design a fusion
method which improves performance as much as possible
given the ideal base predictions. Our empirical results show
better performance of our algorithm than other baselines.

2) Poor Classifiers: HCMF aims to find the consistency
property among the different prediction results X. If most
classifiers perform well, we can easily find the outliers and
remove the abnormal predictions from X. In contrast, if most
classifiers perform bad, the dominant of X is the wrong
predictions. In this case, the correct predictions may be the
outliers, and the fusion result can become worse than a
single model. However, such a case is rare in the supervised
classification problems.

V. EXPERIMENTAL STUDIES
A. Synthetic Experiments

This synthetic experiment aims to study the ability of our
method to detect the outliers. We first generate a ground-truth
label matrix G € {0, 1}"*C. We set n = 250 and C =
where, as aforementioned, n is the number of instances and C
is the number of classes. We then create m (m = 15) copies
of the ground-truth matrix. We randomly permute a certain
proportion of their labels, denoted by the noise ratio. In this
way, we construct a contaminated matrix X with the size of
n x mC, and the underlying matrix is a rank-C matrix.

1) Comparison With the Hard Rank Constraint Algorithm:
We use HCMF (hard low-rank constraint) to recover the
low-rank matrix X and compare our result with RCEC [12]
(soft low-rank constraint). Figure 2 illustrates the ratio of each
eigenvalue from the recovered matrix by principal components
analysis (PCA). The recovered matrix represents the prediction
based on the results from m = 15 different classifiers. To
preserve the consistency, the rank of this recovered matrix
should be as close as to C = 20. From Figure 2, we can see
that the recovered matrix of ours well preserve the low-rank
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Fig. 2. Comparison of the hard-rank constraint (HCMF) and the soft-rank
constraint (RCEC) on the synthetic data. We show the ratio of each eigenvalue
to the sum of eigenvalues (y-axis). The x-axis indicates indexes of eigenvalue,
sorted from large to small. HCMF preserves the low-rank property. However,
RCEC can hardly recover the matrix into the original rank.
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Fig. 3. Visualization results of HCMF on the synthetic dataset. Each
sub-figure has 15 columns, where each of them represents the result of
one classifier. In each sub-figure, each row corresponds to one instance,
where different colors represent different class labels. The “Ground Truth”
figure shows the visualized ground truth data. In each block (apart from the
first block), we visualize the randomly contaminated results of 15 classifiers,
and the recovered results from our algorithm. Most outlier elements are
corrected, even if there is 50% random noise.

property. However, the soft constraint [12] cannot recover
the ratio of each eigenvalue compared to the ground-truth
matrix. Therefore, they are not able to recover the rank of X,
i.e., preserve the consistency among different classifiers.

2) Visualization on the Synthetic Data: To better demon-
strate the efficacy, we visualize the recovered result of X by
our algorithm. From Figure 3, we can observe that HCMF
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TABLE II

COMPARISON ON THE SYNTHETIC DATA. THERE ARE S1X FUSED
CLASSIFIERS. THREE OF THEM HAVE THE ACCURACY
OF 80%, AND ANOTHER THREE OF THEM
HAVE THE ACCURACY OF 60%

Best-Single
80.0%

[20]
96.8%

Weighting
97.2%

[AVE]
97.9%

[VOTE]
97 8%

[GATE]
982%

detect the outliers accurately. Furthermore, most outlier entries
are corrected to align with the ground-truth predictions, even
if there is 50% random noise. By restricting the recovered
matrix as low-rank, HCMF can preserve the consistency of all
classifiers to generate the final prediction.

3) The Effect of Unbalanced Instances: We set n = 500,
C =20, and m = 6 to generate the ground-truth label matrix.
We first randomly select 50% instances and label them as the
first class, and we then randomly assign the classes of 2~6 for
the remaining 50% instances. Therefore, the instances of the
first class dominant the whole data. Similar to the above
experiment, we create the predictions of m = 6 classifiers
with the noise ratio of 30%. By using HCMF with GATE,
we obtain the average accuracy of 97.0% by ten runs. If we
simply randomly assign the ground truth label, we can obtain
the average accuracy of 97.2%. The accuracy of the unbalance
case is similar to that of the balance case. Therefore, unbalance
instances will not substantially affect our HCMF.

4) The Effect of Combining Good and Bad Classifiers:
Similar to the experiment in Figure 3, we set n 1000,
C = 20, and m = 6. We then randomly generate the
predictions of three “good” classifiers, where the accuracy
of each classifier is 80%. We also randomly generate the
predictions of three “bad” classifiers, where the accuracy of
each classifier is 60%. The first 500 instances are regarded as
the training set, and the last 500 instances are viewed as the
testing set. We use the neural network to learn m weight values
to do the weighted average on the predictions of m classifiers
on the training set. We denote this method as “Weighting”
in Table II. The weighting method achieves the accuracy
of 97.2%. Our HCMF can effectively utilize the information of
bad classifiers and achieve 97.8% by the VOTE post strategy.
By using the GATE strategy, HCMF obtains a better accuracy
of 98.2%.

5) Comparison With the Smooth Loss: The method of [13]
is originally designed for the smooth loss function, e.g.,
the Frobenius norm. However, to make the results robust
(detecting the outliers), we need to use the £» 1 norm, which is
non-smooth. Therefore, [13] cannot handle such non-smooth
problem considered in this paper. Instead, we propose to use
an ALM-based method to solve the non-smooth > | norm.
To demonstrate the non-smooth {7 ; norm is superior to the
smooth ¢> norm in our problem, we make the following exper-
iment. We replace the {» 1 norm in Eq. (1) by the {> norm, and
use the method of [13] to solve the minx ||L. — X||» with the
low-rank constraint. We use [GATE] as the post-processing
procedure for [13] and obtain the accuracy of 98.2%. From
Table II, [13] only obtains 96.8% accuracy, which is worse
than ours.
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B. Real-World Experiment Setup

To investigate the performance of HCMF on real-world data
and compare with other state-of-the-art algorithms, we perform
the experiments on eight publicly available real-world datasets.

We used the best-performing CNN models, including
GoogleNet [26], ResNet [27], ResNeXt [28], Pre-ResNet [29],
WRN [30], VGG [31], NIN [32], and etc. These features
are fairly state-of-the-art. They have been widely used in
various recent research papers and have been verified the
most effective features by recent internationally recognized
competitions such as the ImageNet competition [3].

On the UCF-101 dataset, five different features are
extracted, i.e., “fc6” of C3D [33], “pool5/7x7_s1” from
GoogleNet, “pool5” of ResNet-152, and two “fc6”s of Two-
Stream [16]. Given a video, we extract the above five features
following the same process described in [16].

On the CIFAR-10 dataset, we extract fourteen differ-
ent kinds of CNN features. These features are extracted
from the last pooling layer of ResNet-20/32/44/56/110, Pre-
ResNet-20/32/44/56/110/164, CIFAR-Full, modified VGG16,
and modified GoogleNet models, respectively.

On the CIFAR-100 dataset, we use the last pooling layer fea-
tures of the ResNet-20/32/44/56/68/110 and the Pre-ResNet-
20/32/44/56/110/164 models (twelve features in total).

For other datasets, i.e., Oxford-IIIT-Pet, PASCAL VOC
2007, Oxford Flower 17, Pascal Sentence and Wikipedia,
we extract eight different kinds of features to train SVM
classifiers. Four of them are from the “fc6” layer of
AlexNet, VGG16/19, CaffeNet [3]. One of them is from the
“pool5/7x7_s1” layer of GoogleNet. Three of them are from
the “pool5” layer of the ResNet-50/101/152 models.

The code and model configuration are public available at
GitHub https://github.com/D-X-Y/HCMF.

C. Comparison With Late Fusion Methods

We compare HCMF to five late fusion methods as follows:

Average Score Fusion (ASF): we directly average the
results from multiple classifiers, then the L, norm is applied
on each classifier’s results for normalization.

Multiple Kernel Learning (MKL): MKL learns a weight
coefficient w for each classifier, and the final scores are
obtained from function f(s) = w’s, > w=1.

Robust Convex Ensemble Clustering (RCEC) [12]: We
apply RCEC to recover X from L in Eq. (2). RCEC employs
the normalize cuts method to generate final clustering results.
In this paper, we instead use the introduced three post strate-
gies to generate the fusion labels for a fair comparison.

Feature = Weighting via Optimal Thresholding
(FWOT) [6]: they propose to learn thresholding, smoothing
parameters and weights in a joint framework to combine
multiple prediction results.

LPBoost [4]: A variant linear combination is applied to
multiple classifiers to boost performance.

1) Experiment Settings: The parameter u is selected from
{0.1, 1,5}, p is select from {1.01,1.05, 1.1} and € is select
from {0.01,0.001,0.0001} in all our experiments. Q is
always the full indexes in our experiments. Among different
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TABLE III

THE MEAN ACCURACY ON REAL-WORLD DATASETS. FWOT CosTS EXCESSIVE TIME FOR TRAINING UCF-101, CIFAR-10, CIFAR-100
(OVER 24 HOURS), AND WE THUS OMIT THESE RESULTS INDICATED BY “-”. WE USE THE GATE STRATEGY FOR THE POST PROCESS

Method UCF-101 CIFAR-10 CIFAR-100 Oxford-IIIT-Pet PASCAL VOC 2007
ASF 86.78% 94.21% 76.91% 92.46% 90.51%
MKL 85.38% 94.15% 72.71% 87.13% 85.82%
RCEC 86.60% 94.99% 77.13% 92.11% 90.92%
FWOT - - - 92.90% 91.20%
LPBoost 86.24% 94.88% 76.59% 92.73% 91.42%
HCMF 89.03 % 95.11% 77.72% 92.90% 90.98%

TABLE IV

COMPUTATIONAL TIME ON REAL-WORLD DATASETS. COMPUTATIONAL TIME IS RECORDED IN SECONDS. FWOT C0STS EXCESSIVE TRAINING TIME
ON SOME DATASETS (OVER 24 HOURS), SO WE OMIT THESE RESULTS INDICATED BY “00”. MKL 1S AN EARLY FUSION METHOD, AND IT THUS
CANNOT BE DIRECTLY COMPARED WITH LATE FUSION METHOD REGARDING THE COMPUTATIONAL TIME

Method UCF-101 CIFAR-10 CIFAR-100 Oxford-IIIT-Pet PASCAL VOC 2007
ASF 0.01 0.01 0.01 0.01 0.01
RCEC 86.60 81.41 255.51 18.82 16.45
FWOT oo oo 0 61697.45 19674.01
LPBoost 110.81 72.45 4750.90 43.67 7.46
HCMF 421.23 5.384 417.26 76.16 15.21

parameters, there are only small differences in the pre-
diction performance. LIBLINEAR [34] is adopted for our
basic classification toolbox. The parameters are set as the
default in LIBLINEAR and liblinear-mkl, unless otherwise
specified. For RCEC method, we use 5-fold cross validation
to select the best parameter f from {0.01,1,2,4,6,...,20}
and set 4 = 0.1,y = 0.01, which are suggested by
Yi et al. [35]. For FWOT, the smoothing parameter candidates
are {0.5, 0.6, ..., 0.9} and the parameter C in is selected from
{1074,1072, ..., 10*} according to cross-validation, which is
same in [6]. For LPBoost, we use cross-validation to pick up
the best v from {0.5, 0.6, 0.7, 0.8, 0.9} suggested in [6].

2) Datasets: We use five datasets for the late fusion compar-
ison. UCF-101 is commonly used for action recognition, which
has 9573 training and 3783 testing videos, categorized into
101 human action classes. CIFAR-10 contains 60000 pictures
with 10 classes. CIFAR-100 similar with CIFAR-10, while
has 100 classes. Oxford-IIIT-Pet contains 7349 images cov-
ering 37 different breeds of cats and dogs. PASCAL VOC
2007 is a dataset for object detection and image classification.
We only use the image with a single class, which includes
6,146 images. For UCF 101, we use the official split-1 set
for training and testing. For Oxford-IIIT-Pet and PASCAL
VOC 2007, we randomly sample fifty percent pictures as our
training data and the others as testing data.

3) Quantitative Comparison: Table III shows the mean
accuracy results for the five datasets, and our proposed algo-
rithm provides a significant improvement compared with other
effective late fusion methods on most datasets. Additionally,
our algorithm is more efficient than other late fusion methods
in most situations. As we can see from Table IV, some
methods are not capable of dealing with large-scale datasets.
For example, FWOT is too slow to train; thus we do not show
its result for UCF-101 and CIFAR (more than one day). The
time consumption of ours is acceptable in all experiments
and quite fast on CIFAR-10/VOC2007. Combined with the

fusion performance listed in Table III, we would like to
show that our method achieves superior performance with
acceptable computational time. Our method and RCEC have
the similar range of running time. Nevertheless, our method
outperforms RCEC regarding accuracy for all the five datasets.
In conclusion, our method can handle the large-scale problem
efficiently and yield stable performance.

4) Sensitivity to the Number of Testing Data n: We inves-
tigate the sensitivity of our method to the number of the
testing data. We test our method on 1K, 2K, 4K, 6K, 8K,
and 10K instances as the input of late fusion. We use the
same experiment settings as described above. Experiments
with these six different numbers of instance obtain similar
results, where the variance is less than 0.1%. We observe
that our method is not sensitive to the number of instances.
Experiments demonstrate the robustness and stability of our
method.

5) Discussion: To be noticed, we use the SVM predic-
tions rather than the direct CNN outputs for the experiments
in Table III and Table IV, because FWOT and MKL can
only leverage SVM predictions. Therefore, by using the SVM
prediction, we can investigate the fusion performance of ours
and five compared algorithms by a fair comparison. We can
usually obtain superior fusion results by taking the CNN
predictions as inputs compared to SVM predictions. We will
compare results that use the CNN predictions later.

D. Comparison With Feature Fusion Methods

Feature fusion aims to combine the different classifiers’ pre-
dictions by the feature-level fusion. To fuse multiple models in
the feature level, one should load these models in GPU instead
of CPU to improve the efficiency. For most current GPU
devices, there is only less than 12 GB memory. Given such
limited memory, it might be unaffordable to run CNN-based
feature fusion for many different models.
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TABLE V
THE MEAN ACCURACY OF FEATURE FUSION METHODS ON CIFAR-10

RCEC
95.56%

HCMF
95.93%

Bayesian
94.10%

Pooling Layer
95.21%

Prob Layer
95.32%

Comparison and Discussion: We compare the following
three feature fusion methods, i.e., global-pooling feature
fusion and probability prediction fusion. We choose the
global-pooling layer feature of all residual-based networks
used in Table III. For these two feature fusion methods,
we directly concatenate the global-pooling layers (and the
probability prediction layers), and then use a fully connected
layer with 10 output to combine the concatenation feature
to the final prediction for CIFAR-10. For our fusion algo-
rithm, we use the CNN predictions rather than the SVM
predictions used in Table III. In Table V, HCMF achieves
the best performance among these feature fusion methods.
Besides, we also compare ours with RCEC by using the CNN
predictions as inputs, where we achieve about 9% relative
accuracy improvement.

E. Comparison With State-of-the-Art Single Models

This experiment section investigates how much the proposed
method improves the performance, compared with the state-
of-the-art single models on CIFAR-10 and CIFAR-100. In this
section, we directly fuse multiple state-of-the-art CNN pre-
dictions, instead of SVM predictions in the previous section,
to have a fair comparison with those CNN models.

1) Model Details: We summarize the fused models
in Table VI. Table VII reports the test errors of the base-
lines and our methods. For our method, we have two
fusion approaches (with/without ResNeXt-29-16x64). The first
one fuses all the models, the other one does not use the
ResNeXt-29-16x64d.

2) Analysis: We carefully cite the best performances
reported in their papers. As can be observed, our fusion
algorithm is capable of further improving the performance
of single models significantly. We emphasize that ResNeXt
is a very superior performer in single models. HCMF (w/o
ResNeXt) fuses three kinds of models which are all worse
than ResNeXt, but outperforms ResNeXt. When we include
ResNeXt to our fusion algorithm, our method further decreases
the test error. This experiment demonstrates the benefit of
our late fusion method. Moreover, a single model has the
satisfactory performance with deeper depth or wider channel.
However, we can still obtain the performance improvement by
leveraging the fusion algorithm when a single model achieves
its limits.

3) Test the Robustness of Hcmf: To Test The Robustness Of
HCMEF, we include one bad classifier into the fused models.
We design a simplified ResNet. It removes one convolution
layer in the basic residual block. Compared to ResNet-20,
there is only one simplified residual block in each residual
stage. Since this simplified ResNet only have five layers,
we name it as S-ResNet-5 and use it as the bad classifier.
By using S-ResNet-5, we achieve 21.18% error on CIFAR-10
and 51.67% error on CIFAR-100. The results of S-ResNet-5
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TABLE VI

MODELS USED ON CIFAR-10 AND CIFAR-100. “*” REPRESENTS USING
THE BOTTLENECK BLOCK, OTHERWISE WE USE THE BASIC BLOCK

CIFAR-10 CIFAR-100
ResNet 110, 134, 164 56, 110, 164
164*, 200* 110*, 164*
16-10, 22-8, 28-10 | 16-10, 22-8, 28-10
WRN 40-4, 40-8 40-4
NIN 9 9
ResNeXt 29-16x64d 29-16x64d
TABLE VII

THE TEST ERRORS ON CIFAR-10 AND CIFAR-100

Methods CIFAR-10 | CIFAR-100

Pre-ResNet (1001 layers) 4.92 22.71

WRN-28-10 4.17 20.50
Dual-Path-Network [44] 3.65 -

ResNeXt-29-16x64d 3.58 17.31

HCMF (w/o ResNeXt) 347 17.24

HCMF (w ResNeXt) 3.19 16.91

TABLE VIII

THE MEAN ACCURACY USING DIFFERENT POST PROCESS STRATEGIES

Strategy | Wikipedia | Flowers 17 | Pascal Sentence
[AVE] 47.78% 96.77 % 66.40%

[VOTE] 47.85% 96.61% 66.20%

[GATE] 49.03% 96.77 % 67.20%

are much worse than the results shown in Table VII. By
including S-ResNet-5 into “HCMF (w ResNeXt)”, we obtain
the error of 3.21 on CIFAR-10 and 16.93 on CIFAR-100.
The performance of including S-ResNet-5 is similar to not
including that, and HCMF is thus robust to bad classifiers.

F. Post Strategy Selection

In this section, we compare three post strategies, described
in Sec.III-F. We additionally use three different datasets,
i.e., Oxford Flower 17 [36], Pascal Sentence [37] and
Wikipedia [38]. Wikipedia contains paragraphs of text for
each picture, and there are 2,866 image-text pairs categorized
into 10 class. Oxford Flowers 17 has 17 flower classes
with 80 images for each class. Pascal Sentence contains
1,000 images annotated by caption information and catego-
rized into 20 classes. We use the same experiment settings as
the experiments in Table III. 50% of data are sampled as the
training set and the others as the testing set.

Table VIII lists the mean accuracy of three post processing
strategies on three datasets. The mean accuracy of the GATE
strategy is the highest among all three competing strategies.
The outlier detection of HCMF might cause this improvement,
since the recovered matrix provides more consistency benefit-
ing the confidence gate operation.

VI. CONCLUSION

Late fusion aims to improve the prediction performance by
taking advantages of multiple features. In practice, the con-
troversy over different features on prediction is ubiquitous
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and may degenerate the performance. To deal with this issue,
we propose HCMF, a late fusion algorithm, which formulates
this task as a robust matrix recovery problem with a hard
constraint on the matrix rank to preserve the consistency
among various features. Nevertheless, most MF literature only
focus on smooth loss, making it unclear how to extend them
to handle non-smooth robust loss, e.g., {21 loss. We thus
propose an ALM-based algorithm to cope with the non-smooth
loss and provide theoretical convergence guarantee. Moreover,
we demonstrate the hard constraint is more suitable than the
soft constraint when the consistency across all base learners
of the final predictions is required. Empirical studies on the
large-scale real-world datasets demonstrate the improvement
of our method compared to the state-of-the-art fusion methods.
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