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Abstract

Domain adaptation aims to reduce the effort on
collecting and annotating target data by leverag-
ing knowledge from a different source domain.
The domain adaptation problem will become ex-
tremely challenging when the feature spaces of the
source and target domains are different, which is
also known as the heterogeneous domain adapta-
tion (HDA) problem. In this paper, we propose a
novel HDA method to find the optimal discrimina-
tive correlation subspace for the source and target
data. The discriminative correlation subspace is in-
herited from the canonical correlation subspace be-
tween the source and target data, and is further op-
timized to maximize the discriminative ability for
the target domain classifier. We formulate a joint
objective in order to simultaneously learn the dis-
criminative correlation subspace and the target do-
main classifier. We then apply an alternating di-
rection method of multiplier (ADMM) algorithm
to address the resulting non-convex optimization
problem. Comprehensive experiments on two real-
world data sets demonstrate the effectiveness of the
proposed method compared to the state-of-the-art
methods.

1 Introduction
In traditional machine learning, people usually have to col-
lect as more labeled data as possible to achieve good clas-
sification performance in a target domain of interest. How-
ever, the collection and annotation of data can be very
expensive and time-consuming. To tackle this issue, do-
main adaptation (DA) is proposed to utilize auxiliary data
from another domain, a.k.a., source domain, to enhance
the performance of the target task [Pan and Yang, 2010;
Patel et al., 2015]. DA has been successfully applied in many
real-world applications, including text classification [Chen
and Zhang, 2013], visual recognition [Duan et al., 2010;
2012b],

∗The co-first authors.
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To build the connection between two different feature
spaces, a usual way is to learn a feature transformation map-
ping to project the heterogeneous source and target data
into the same space [Duan et al., 2012a; Li et al., 2014;
Hubert Tsai et al., 2016]. Existing state-of-the-art methods
mainly focus on reducing the domain distribution mismatch
when learning the feature transformation and the target clas-
sifier. For example, SHFA [Li et al., 2014] employs feature
augmentation strategy, while CDLS [Hubert Tsai et al., 2016]
learns landmarks based on the maximum mean discrepancy.

When learning the feature transformation to bridge the two
heterogeneous feature spaces, one critical issue is how to pre-
serve the useful information due to the feature transformation.
However, if important information is lost after the feature
transformation, it will be very difficult to boost the learning
performance over the target data using the transformed source
features, even the domain distribution mismatch is reduced by
some efforts in the existing HDA approaches [Li et al., 2014;
Hubert Tsai et al., 2016]. To this end, in this paper, we pro-
pose a new algorithm called Discriminative Correlation Anal-
ysis (DCA) to deal with the heterogeneous domain adaptation
problem by learning a discriminative subspace that preserves
the maximum feature correlation between the source and tar-
get domain data. On one hand, the learned subspace should
maximize the feature correlation as measured in the canoni-
cal correlation analysis (CCA) method. On the other hand, it
also ensures good discriminative ability such that the empiri-
cal training loss over target domain data is minimized.

We formulate a joint objective to learn the target classifier
and the correlation subspace simultaneously, which, however,
leads to a non-trivial optimization problem. To address it,
we take advantage of the characteristic of general solutions
to CCA, and represent the set of optimal projection matri-
ces based on an orthogonal matrix and two arbitrary matrices
(See Section 3.3 for more details). By optimizing a trans-
formed objective, we seek to find the best projection matrix
with discriminative power so that the feature correlation be-
tween two domains can be guaranteed to be maximized when
learning the target domain classifier. Interestingly, the resul-
tant optimization problem becomes much easier to address,
since we have only a single orthogonal constraint in the re-
formulated objective. We then use an alternating direction
method of multipliers (ADMM) algorithm to solve the result-
ing problem. We evaluate our proposed DCA approach on
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two real-world benchmark data sets.

2 Related Work
Homogeneous domain adaptation has been extensively stud-
ied in the last decade [Pan and Yang, 2010; Patel et al., 2015].
Recently, heterogeneous domain adaptation (HDA) has been
attracting more and more attention. The principal challenge
of HDA is that the feature spaces of the source and target do-
mains are completely different, making it difficult to leverage
the source data to assist the target task [Zhou et al., 2014a;
2016]. Generally, the existing HDA algorithms can be di-
vided into two categories.

The first group of HDA algorithms utilizes auxiliary data
to bridge source and target domains [Yang et al., 2015]. Text-
image pairs are used to perform image classification tasks in
[Zhu et al., 2011]. In [Wu et al., 2014], researchers con-
structed transition probabilities via co-occurrence data to en-
hance classification tasks. Tan et al. [Tan et al., 2015] pro-
posed to select informative intermediate domains to connect
source and target domains. However, collecting auxiliary
data brings extra cost, and it might be difficult to obtain co-
occurrence data in some applications like object recognition.

The second group of HDA algorithms performs feature
transformation to connect two different feature spaces [Shi
et al., 2010; Wang and Mahadevan, 2011; Kulis et al., 2011;
Wu et al., 2013; Hoffman et al., 2014; Zhou et al., 2014b;
Xiao and Guo, 2015]. Among them, most algorithms were
designed for the supervised HDA scenario, where only la-
beled training instances are available in the target domain.
The recent proposed SHFA [Li et al., 2014] and CDLS [Hu-
bert Tsai et al., 2016] methods show that the unlabeled tar-
get domain instances are helpful for HDA tasks, and achieve
state-of-the-art performance on the benchmark data sets. In
particular, SHFA [Duan et al., 2012a; Li et al., 2014] aug-
ments labeled source and target data based on two projec-
tion matrices, and trained a SVM classifier on the augmented
data. CDLS [Hubert Tsai et al., 2016] finds representative
cross-domain landmarks to derive a domain-invariant feature
subspace, and then train a classifier in the learned subspace.
Nevertheless, those two methods did not consider the feature
correlation between the source and target domain. In con-
trast, we find the optimal discriminative subspace that is en-
sured to maximize the feature correlation, thus our method is
more effective for transferring the source domain knowledge
for learning the target domain classifier.

3 Methodology
3.1 Problem Definition and Notation
In the heterogeneous domain adaptation problem, we have a
source domain and a target domain that are represented by
different features. The task is to learn a classifier for predict-
ing the target domain instances.

Let us denote by XS = {(xS,i, yS,i)|nS
i=1} the source do-

main, where nS is the number of source domain instances,
xS,i ∈ RdS is the i-th training instance with dS being the
source feature dimension, and yS,i ∈ Y is the label of xS,i

with Y = {1, . . . ,K} being the label space and K being the
number of categories.

Similarly, we denote by XL = {(xL,i, yL,nL
)|nL
i=1} the tar-

get domain labeled instances, where nL is the number of la-
beled instances, xL,i ∈ RdT with dT being the target fea-
ture dimension, and yL,i ∈ Y is the label of xL,i. Follow-
ing [Li et al., 2014; Hubert Tsai et al., 2016], we also con-
sider the semi-supervised situation where some unlabeled in-
stances are available in the target domain, which is denoted
by XU = {(xU,i)|nU

i=1}, where xU,i ∈ RdT . We also denote
by nT = nL + nU the total number of instances in the target
domain.

In the reminder of this paper, for any matrix A, A> is the
transpose of A, and the MATLAB style notation A(:, a : b)
is the submatrix including the elements of all the rows and the
a-th to b-th columns.

3.2 Proposed Model
The core issue of the HDA problem is how to learn a feature
transformation, such that the source domain training data can
be effectively utilized for the learning tasks in the heteroge-
neous target domain. To ensure that sufficient information is
preserved during this process, inspired by the canonical cor-
relation analysis (CCA), we aim to maximize the feature cor-
relation when learning the feature transformation for HDA
tasks.

Given two kinds of features, canonical correlation anal-
ysis (CCA) finds two orthogonal projection matrices P ∈
RdT×dC and Q ∈ RdS×dC , such that the correlations af-
ter projection are maximized, where dC is the dimension af-
ter projection. Since CCA usually considers the same num-
ber of two sets of data, we use n source instances XS =
[xS,1, . . . ,xS,n] ∈ RdS×n from XS and n target instances
XT = [xT,1, . . . ,xT,n] ∈ RdT×n from XL ∪ XU to perform
CCA, where n = min{nS , nT }.

Mathematically, the optimization problem of CCA is

max
P,Q

trace
(
P>XTX>S Q>

)
,

s.t. P>XTX>T P = I, Q>XSX>S Q = I,
(1)

where I is an identity matrix. It can be equivalently written
as a minimization problem as follows,

min
P,Q

||X>T P−X>S Q||2F ,

s.t. P>XTX>T P = I, Q>XSX>S Q = I.
(2)

Although CCA finds the projection matrices that maximize
the correlation, it does not utilize the label information of
the target data. Therefore, the discriminative capacity of the
projected features cannot be guaranteed, which is critical for
learning a good classifier in the target domain. To this end,
we propose to maximize the canonical correlation between
two domains, and simultaneously minimize the regularized
training loss on the labeled target data, which is given as fol-
lows.

min
w,P,Q

C

nL∑
i=1

ξL,i +
1

2
||w||2 + γ

2
||X>T P−X>S Q||2F ,

s.t. P>XTX>T P = I, Q>XSX>S Q = I,

(3)
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where w is the parameters for the target classifier, ξL,i is the
loss on the i-th labeled target instance, C and γ are the trade-
off parameters.

In particular, the cross-entropy loss is used in our model
due to its smoothness and the ease of dealing with multi-class
problems. To deal with the domain distribution mismatch, in-
spired by [Li et al., 2014], we augment each labeled target
instance by its projected feature vector when learning the tar-
get classifier, i.e., the i-th augmented target instance is given
by x̃L,i = [x>L,i, (P

>xL,i)
>]> ∈ RdC+dT , where P is the

projection matrix. Then, the cross-entropy loss function is
given by

ξL,i = log
( K∑
k=1

exp(w>k x̃L,i −w>yL,i
x̃L,i)

)
, (4)

where wk ∈ RdC+dT is the parameter vector for the k-th
class. Also, the parameter w in Eq. (3) for target classifier
can be written as

w = [w>1 , . . . ,w
>
k , . . . ,w

>
K ]> ∈ R(dC+dT )K . (5)

After w is learned, the label of the i-th unlabeled target
instance xU,i can be predicted by

ŷU,i = argmax
k

w>k x̃U,i, (6)

where x̃U,i is an unlabeled augmented target instance.
To utilize the unlabeled instances in the target domain, we

further use the current w to predict the unlabeled target in-
stances in the training process. Then, we also minimize the
cross-entropy loss for the unlabeled target instances with the
pseudo labels, which is given as

min
w,P,Q

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i +
1

2
||w||2 + γ

2
||X>T P−X>SQ||2F ,

s.t. P>XTX
>
T P = I, Q>XSX

>
SQ = I,

(7)

where ξU,i is the loss on the i-th unlabeled target instance
with the predicted label ŷU,i. We iteratively refine the pseudo
labels, thus improve the learned subspace and the classifier.

3.3 Discriminative Correlation Subspace
Problem (7) is nontrivial to solve because of the non-convex
objective function and the complicated orthogonal con-
straints. A suboptimal solution might be obtained, but good
feature correlation and discriminative capacity can hardly be
guaranteed.

To this end, we first find the set of subspaces that maxi-
mizes the canonical correlation term in (7), and then seek for
the most discriminative subspace in the feasible set. To deal
with the complicated orthogonal constraints, we take advan-
tage of the characteristic of general solutions to CCA [Chu et
al., 2013], which shows that P and Q can be represented by
an orthogonal matrix, and two arbitrary matrices. Thus, we
reformulate the problem (7) as a new one with only a simple
constraint.

In particular, the characteristic of CCA is provided in the
following theorem,

Theorem 1 Let the reduced SVDs of XT and XS be

XT = [UT,1UT,2]

[
ΣT

0

]
V>T = UT,1ΣTV>T , (8)

and

XS = [US,1US,2]

[
ΣS

0

]
V>S = US,1ΣSV>S , (9)

respectively. In addition, let

Z1ΣZ>2 = V>T VS (10)

be the SVD of V>T VS .
Under mild conditions, the solutions to Problem (2) can be

represented by the following equations

P = ATΘ + BTΦT , (11)
Q = ASΘ + BSΦS , (12)

where

AT = UT,1Σ
−1
T Z1(:, 1 : dC), BT = UT,2,

AS = US,1Σ
−1
S Z2(:, 1 : dC), BS = US,2.

Here, Θ is an orthogonal matrix, and ΦT and ΦS are arbi-
trary matrices.

For the proof, please refer to Section 3 in [Chu et al., 2013].

Remark 1 Theorem 1 states that given the matrices
AT ,BT ,AS and BS , as long as Θ is orthogonal, the ma-
trices P and Q obtained by Eqs. (11) and (12) are the solu-
tions to Problem (2) for any ΦT and ΦS . In particular, these
solutions have the same objective value of Problem (2).

Based on Theorem 1, instead of solving Problem (7) di-
rectly, we optimize P and Q from the feasible set of the CCA
problem, such that the learned P and Q are beneficial for the
classification task in the target domain. According to Eqs.
(11) and (12), the problem of finding P and Q can be equiv-
alently converted to the problem of finding Θ, ΦT and ΦS .
Moreover, as all {Θ,ΦS ,ΦT } give the same objective value
of Problem (2), we further remove the CCA term in Problem
(7), which leads to the following problem,

min
w,Θ,ΦT

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i +
1

2
||w||2,

s.t. Θ>Θ = I.

(13)

The new model leverages both source and target data to
find a discriminative correlation subspace by exploiting CCA
and label information of the target instances. With Θ and ΦT

observed, we can obtain P according to Eq. (11), thus can
project the target data into the found subspace. Since we only
consider the training loss on the target data, we do not need
to learn Q in the above problem.

3.4 Optimization
Now we discuss how to optimize Problem (13). In order to
handle the orthogonal constraint on Θ, we construct a new
matrix Θ̃ ∈ Ω, where the set Ω = {Θ̃|Θ̃

>
Θ̃ = I}. Then
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Problem (13) can be reformulated as an equality-constrained
problem as

min
w,Θ,ΦT ,Θ̃

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i +
1

2
||w||2,

s.t. Θ = Θ̃, Θ̃ ∈ Ω.

(14)

We apply the alternating direction method of multipliers
(ADMM) to solve this problem [Boyd et al., 2011]. Specif-
ically, the augmented Lagrangian function of Problem (14)
can be written as

L(w,Θ,ΦT , Θ̃,Λ) = C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i

+
1

2
||w||2 + ρ

2
||Θ− Θ̃ + Λ||2F ,

(15)

where Θ̃ ∈ Ω, Λ is the dual variable matrix, ρ is the penalty
parameter.

The ADMM algorithm involves three main steps, which
are detailed as follows.

• Update
(
w,Θ,ΦT

)
by solving the following problem

(
w,Θ,ΦT

)
:= arg min

w,Θ,ΦT

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i

+
1

2
||w||2 + ρ

2
||Θ− Θ̃ + Λ||2F ,

(16)

• Update Θ̃ by solving the following problem

Θ̃ := arg min
Θ̃∈Ω

ρ

2
||Θ + Λ− Θ̃||2F , (17)

• Update Λ using a simple rule

Λ := Λ + Θ− Θ̃. (18)

The proposed Discriminative Correlation Analysis (DCA)
algorithm is summarized in Algorithm 1. Since the objective
is non-convex and Ω is also non-convex, Problem (14) is a
non-convex optimization problem. However, as stated in Re-
mark 1, as long as Θ is orthogonal, the matrices P and Q
obtained by Eqs. (11) and (12) are the solutions to Problem
(2) for any ΦT and ΦS . As a result, our method, which is in-
herited from CCA, is stable to the initialization of (Θ,ΦT ).
Next, we are ready to describe how to solve Problems (16)
and (17) efficiently.

Solution to Subproblem (16)
Subproblem (16) is still a non-convex optimization problem.
To solve this, we alternatively update w and (Θ,ΦT ). De-
tailedly, we firstly fix w and update (Θ,ΦT ) by

(
Θ,ΦT

)
:= arg min

Θ,ΦT

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i

+
ρ

2
||Θ− Θ̃ + Λ||2F .

(19)

Algorithm 1 Discriminative Canonical Correlation Analysis

Input: Unlabeled source instances XS = {xS,i}nS
i=1,

labeled target instances XL = {xL,i, yL,i}nL
i=1,

unlabeled target instances XU = {xU,i}nU
i=1.

1: Initialize (Θ,ΦT ) such that Θ>Θ = I.
2: Initialize w by Softmax Regression.
3: repeat
4: Obtain {ŷU,i}nU

i=1 by Eq. (6),
5: Update (w,Θ,ΦT ) by solving Problem (16),
6: Update Θ̃ by solving Problem (17),
7: Update Λ according to Eq. (18),
8: until converge.

Next, we fix (Θ,ΦT ) and update w by solving the follow-
ing problem,

w := argmin
w

C

nL∑
i=1

ξL,i + C

nU∑
i=1

ξU,i +
1

2
||w||2, (20)

which is a standard softmax regression problem on the aug-
mented data.

We use the LBFGS algorithm to solve the above two sub-
problems [Schmidt, 2005]. The warm start strategy is used to
solve these subproblems. Specifically, we update the param-
eters from the results that are obtained by the last iteration
of ADMM. Note that the label information of the target in-
stances is exploited to update (Θ,ΦT ), which assists to find
the discriminative correlation subspace that is beneficial for
the target classification task.

Solution to Subproblem (17)
Subproblem (17) seeks to find an orthogonal matrix that is
closest to Θ+Λ. The solution can be calculated by Singular
Value Decomposition. Specifically, let

UΣV> = Θ + Λ (21)

be the SVD of Θ+Λ, the solution of Problem (17) is UV>.

4 Experiments
4.1 Data Sets
• Office Data Set. The Office data set [Saenko et al., 2010]

includes 4106 images with 31 categories from three do-
mains: amazon (A), dslr (D), webcam (W). We use the
publicly available SURF [Bay et al., 2006] feature and the
DeCAF6 [Donahue et al., 2014] feature in our experiments.
The dimensions of SURF and DeCAF6 features are 800
and 4096, respectively.

• Office-Caltech Data Set. The Caltech-256 data set [Grif-
fin et al., 2007] includes 256 categories, among which 10
categories are overlapped with the Office data set. The
same 800-d SURF feature is publicly available for those
10 categories from the Caltech-256 data set.
We use these 10 overlapping categories between the Office

data set and Caltech-256 in our experiments. To extensively
evaluate our proposed method, we design experiments by ex-
ploiting all possible combinations across different domains
and different types of features.
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Table 1: Results on the Office data set using 3 labeled target instances

S→ T SVM Softmax CCA+Softmax SHFA CDLS DCA
DeCAF6 → SURF

A→ D 56.62± 3.39 56.67± 2.92 58.11± 3.89 56.93± 3.79 57.09± 3.62 59.13± 3.47
A→W 57.86± 2.76 61.56± 3.75 62.33± 4.14 60.65± 7.11 60.57± 4.34 63.35± 5.56
D→ A 42.97± 3.20 44.44± 2.35 44.05± 2.29 42.71± 1.75 44.12± 1.90 44.78± 1.63
D→W 57.86± 2.76 61.56± 3.75 64.86± 2.93 63.10± 2.36 60.82± 1.78 64.41± 2.70
W→ A 42.97± 3.20 44.44± 2.35 46.76± 2.94 46.54± 2.49 47.80± 2.14 48.99± 2.12
W→ D 56.62± 3.39 56.67± 2.92 57.29± 4.32 62.43± 2.59 60.00± 6.97 59.25± 4.79
Average 52.48 54.22 55.57 55.39 55.07 56.65

SURF→ DeCAF6

A→ D 87.76± 4.98 86.68± 3.89 85.33± 5.12 88.79± 5.25 90.84± 3.46 93.46± 2.09
A→W 86.19± 2.56 86.41± 2.46 86.49± 3.48 90.37± 2.17 88.08± 2.82 93.06± 1.41
D→ A 81.26± 2.65 83.85± 2.18 83.83± 2.27 84.76± 1.75 82.38± 2.24 88.57± 1.72
D→W 86.19± 2.56 86.41± 2.46 86.61± 1.83 90.04± 2.64 87.10± 3.40 92.41± 1.06
W→ A 81.26± 2.65 83.85± 2.18 83.03± 2.93 85.57± 2.38 84.07± 2.53 89.27± 1.09
W→ D 87.76± 4.98 86.68± 3.89 87.01± 3.80 92.90± 2.25 90.09± 4.97 93.27± 2.59
Average 85.07 85.65 85.38 88.74 87.10 91.67

In particular, the Office data set contains both SURF and
DeCAF6 features for all three domains (i.e., A, D and W),
so for each pair of domains, we perform the HDA tasks by
using one type of feature for the source domain, and the other
one for the target domain, which leads to two groups of tasks
(i.e., DeCAF6→ SURF, and SURF→DeCAF6). Each group
contains 6 tasks, i.e., A→D, A→W, D→A, D→W, W→A,
and W→D.

For the Office-Caltech data set, since the Caltech domain
contains only SURF feature, we perform experiments by us-
ing Caltech as the source domain, and one of the three do-
mains in the Office data set as the target domain, and vice
versa. This also leads to two groups of HDA tasks. The first
group takes DeCAF6 as the source feature, and SURF as the
target feature, thus includes A→ C, D→ C and W→ C three
tasks. Similarly, the second group takes SURF as the source
feature, and DeCAF6 as the target feature, thus includes C→
A, C→ D and C→W three tasks.

Similar to the experimental settings in [Hubert Tsai et al.,
2016], we randomly choose 3 target instances per category as
the labeled target data for all the target domains, and the rest
instances as the test data. For the source domains constructed
on A, C and W, we randomly choose 20 source instances per
category for training. For the source domains constructed on
D, we randomly choose 5 source instances per category since
the number of instances in D is much smaller. All experi-
ments are conducted for 10 trials, and the average classifica-
tion accuracy is reported for comparison.

For our DCA method, we empirically set the subspace di-
mension as dC = 20, the trade-off parameter as C = 1, and
the penalty parameter of ADMM as ρ = 5. For the base-
line method, we follow the previous work [Li et al., 2014]
to report their best results on each data set. The parameter
sensitivity of our DCA method is provided in Section 4.5.

4.2 Baseline Methods
We evaluate the effectiveness of our proposed method by
comparing with the state-of-the-art HDA methods SHFA [Li

et al., 2014] and CDLS [Hubert Tsai et al., 2016], as well as
a few baselines as follows,
• SVM. We perform SVM [Chang and Lin, 2011] on labeled

target data as a baseline without domain adaptation.
• Softmax. Since we adopt the cross-entropy loss in our pro-

posed model, we also conduct softmax regression on la-
beled target data. This is also a baseline method without
domain adaptation.

• CCA+Softmax. CCA+Softmax firstly performs CCA on
source and target data, and then conducts softmax regres-
sion on the augmented labeled target data.

• SHFA. SHFA [Li et al., 2014] learns augmented features
for source and target data, and trains an SVM classifier in
the semi-supervised fashion simultaneously.

• CDLS. CDLS [Hubert Tsai et al., 2016] selects represen-
tative cross-domain instances to derive a proper feature
subspace for domain adaptation. CDLS is also a semi-
supervised algorithm using unlabeled target data.

4.3 Results on Office Data Set
Table 1 presents the average classification accuracy and the
standard deviation for all the methods on the Office data set.
We have several observations as follows.
• SHFA and CDLS are better than the baseline SVM method,

and our newly proposed DCA method is also better than
the baseline Softmax method. Considering both SHFA
and CDLS are designed based on SVM, and our DCA
method adopts the same corss-entropy loss with the Soft-
max method, this clearly verifies that leveraging heteroge-
neous source data is beneficial to enhance the performance
of the target classifier.

• CCA+Softmax performs comparably or slightly better than
the baseline Softmax method. This indicates that the unsu-
pervised method CCA cannot guarantee the good discrim-
inative capacity of the learned subspace, which is critical
for learning the target classifier.
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Table 2: Results on the Office-Caltech data set using 3 labeled target instances

S→ T SVM Softmax CCA+Softmax SHFA CDLS DCA
DeCAF6→ SURF

A→ C 29.74± 2.15 31.64± 2.92 31.46± 3.09 30.38± 2.09 31.84± 3.11 32.79± 3.21
D→ C 29.74± 2.15 31.64± 2.92 32.02± 2.51 31.61± 2.46 32.00± 2.99 33.03± 2.88
W→ C 29.74± 2.15 31.64± 2.92 31.74± 2.73 30.83± 2.54 33.35± 2.64 34.95± 3.24
Average 29.74 31.64 31.74 30.94 32.40 33.59

SURF→ DeCAF6

C→ A 80.37± 3.04 84.00± 2.27 82.95± 2.00 84.30± 1.72 82.56± 2.17 89.93± 0.70
C→ D 88.69± 2.70 89.53± 3.76 88.32± 4.12 94.21± 3.64 92.15± 3.83 95.70± 4.00
C→W 86.20± 3.35 86.20± 2.37 86.41± 2.16 90.04± 3.52 89.71± 4.01 90.94± 2.05
Average 85.09 86.58 85.89 89.51 88.14 92.19

• In terms of mean accuracy, our proposed DCA algorithm
outperforms all other methods, which demonstrates the ef-
fectiveness of our proposed method for finding an optimal
discriminative correlation subspace, and learning the ro-
bust target classifier. Specifically, comparing with the sec-
ond best method SHFA, our method gets better results on
11 of those 12 tasks, which shows that it is beneficial to
ensure the canonical correlation between the source and
target domain when learning the target classifier.

• Compared to DeCAF6, SURF is relatively weak to repre-
sent objects, thus learning tasks based on SURF features
are more challenging. As a result, the performance im-
provement of DCA can be marginal with auxiliary features.

4.4 Results on Office-Caltech Data Set
The results of all the methods on the Office-Caltech data set
are reported in Table 2. We have similar observations as on
the Office data set. Our proposed DCA method achieves the
best performance in all of six tasks. This clearly demonstrates
the effectiveness of our proposed DCA method for heteroge-
neous domain adaptation.

4.5 Sensitivity Study
We take the task A(DeCAF6)→ D(SURF) as an example to
show the parameter sensitivity of our proposed DCA method.
In particular, our method mainly involves the penalty parame-
ter ρ that controls the residual of the equality constraint in Eq.
(14). We vary ρ ∈ {1, 5, 10, 15, 20, 25, 30}, and plot the re-
sults in Figure 1. In general, the performance of DCA is not

sensitive to ρ. We plot the relative residual ε = ||Θ−Θ̃||F
||Θ||F

w.r.t. ρ in Figure 1(b). When ρ = 1, the relative residual
is large, which means that the equality constraint Θ = Θ̃ is
not satisfied well. Nevertheless, when ρ ≥ 5, ε becomes very
small, and the classification accuracy is also stable.

4.6 Performance w.r.t. Iterations
We study the performance of DCA w.r.t. the iteration number
on two example tasks in Figure 2. Specifically, Figure 2(a)
shows the results on the task of A(SURF) → D(DeCAF6),
and Figure 2(b) shows the results on the task of W(SURF)→
A(DeCAF6). From the figures, the accuracy of the proposed
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Figure 1: Sensitivity study DCA on the A→ D task from DeCAF6

to SURF. (a) Accuracy w.r.t. ρ. (b) ε w.r.t. ρ.
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Figure 2: Accuracy w.r.t. number of iterations of DCA on two ex-
ample tasks.

method improves with increasing iterations, and keeps rela-
tively stable within 10 iterations. In other words, our method
converges to a solution with good performance very quickly.

5 Conclusions
In this paper, we proposed a new heterogeneous domain adap-
tation method to learn a discriminative correlation subspace
between source and target data. We formulated a unified ob-
jective to learn the target classifier, and simultaneously op-
timize the discriminative correlation subspace. An ADMM
algorithm was applied for solving the proposed learning prob-
lem. Experiments on two real-world data sets clearly demon-
strated the effectiveness of the proposed method.
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