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Learning Sparse PCA with Stabilized ADMM
Method on Stiefel Manifold
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Abstract—Sparse principal component analysis (SPCA) produces principal components with sparse loadings, which is very important
for handling data with many irrelevant features and also critical to interpret the results. To deal with orthogonal constraints, most
previous approaches address SPCA with several components using techniques such as deflation technique and convex relaxations.
However, the deflation technique usually suffers from suboptimal solutions due to poor approximations. On the other hand, the convex
relaxations are often computationally expensive. To address the above issues, in this paper, we propose to address SPCA over the
Stiefel manifold directly, and develop a stabilized Alternating Direction Method of Multipliers (SADMM) to handle the nonconvex
orthogonal constraints. Compared to traditional ADMM, the proposed SADMM method converges well with a wide range of parameters
and obtains a better solution. We also theoretically study the convergence property of the proposed SADMM method. Furthermore,
most existing methods ignore an inherent drawback of SPCA — the importance of different components is not considered when doing
feature selection, which often makes the selected features non-optimal. To address this, we further propose a two-stage method which
considers the importance of different components to select the most important features. Empirical studies on both synthetic and
real-world datasets show that the proposed algorithms achieve better performance compared to existing state-of-the-art methods.

Index Terms—Sparse principal component analysis, Feature selection, Stiefel manifold, ADMM
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1 INTRODUCTION

P RINCIPAL Component Analysis (PCA) [33] [45] [55] is one
of the most important tools for data analysis [18] [15] and

dimension reduction [14] [44]. Given a multivariate dataset, PCA
aims to find a set of orthogonal loadings to transform possibly
correlated features into a set of principal components that are
linearly uncorrelated. However, the principal components obtained
by PCA are linear combinations of all original features, which
leads to poor interpretability of the results [31]. Another main
flaw of the classical PCA is that in many real-world datasets, there
can be many noisy features, which may seriously contaminate the
covariance matrix and dramatically affect the accuracy of loading
vectors. Regarding these drawbacks, the sparse PCA (SPCA)
problem, which seeks to find principal components with sparse
loading vectors, has attracted great attention in machine learning,
data mining and signal processing communities [2], [31], [39],
[43], [50], [59].

In the past decade, many attempts have been made to ad-
dress SPCA problem. In general, there are two points should
be considered—the balance between sparsity of loadings and
variance [31], [43], [58], and the orthogonality between loadings
[27]. Some existing algorithms may obtain loading vectors with
the leading one being highly dense while others being highly
sparse [27], [32]. However, in the context of feature selection,
it is unreasonable to use the leading one to explain the variance
and use others to achieve the sparsity. Besides, in practice, the
orthogonality [28], [37] between loadings in SPCA is easy to
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lose when pursuing sparsity [23], [25] on loadings. Here, the
orthogonality indicates the independence of the loadings. It is
meaningless that the loadings are very close, and thus handling
the orthogonal constraints is important.

In practice, given a covariance matrix Σ ∈ Rd×d, a direct
SPCA estimator can be formulated as the following nonconvex
problem [31]:

max
V∈Rd×r

tr(VTΣV)− λ||V||1, s.t. VTV = I, (1)

where r is the number of principal components, V ∈ Rd×r
denotes r corresponding loadings, and λ > 0 is a trade-off param-
eter. Here, the `1-regularizer ||V||1 is applied to induce sparse
solutions. A variety of methods have been proposed to address
the above problem. Unfortunately, due to its nonconvex nature,
Problem (1) is difficult to address. Most approaches thus extend
power methods [56] or apply convex relaxations [53] to address
SPCA. However, these methods can be suboptimal because of poor
approximations. Some approaches deal with SPCA by applying
deflation techniques [41], which find multiple sparse components
one after another by iteratively solving Problem (1) with r = 1.
However, these methods are suboptimal, since the optimal load-
ings when the dimension equals r may not be coincident with
the optimal loadings when the dimension increases to r + 1.
Moreover, these methods may neglect the interactions between
multiple components, thus obtaining suboptimal solutions.

Different from deflation based methods, block algorithms find
multiple sparse principal components jointly. Relying on convex
relations, these block algorithms are guaranteed to stay away from
most of the local minima [53]. However, the convex relaxations are
often expensive to address and the computational complexity of
these methods is very high, which make them unsuitable for high-
dimensional data. Besides, some block algorithms suffer from the
imbalance of sparsity among loadings, like one version of GPower
[32], in which the leading loading is often highly dense and takes
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account of the most variance while other loadings are enforced to
achieve sparsity.

Besides the above issues, there is one inherent drawback in the
SPCA model in (1) — the importance of different components is
inherently the same when considering feature selection using the
regularizer ||V||1. For example, we consider a case of 2 loadings
(i.e., V = [v1,v2]) and assume that only the first component
(namely v1) is a true component and v2 is a redundant one. Due
to the orthogonal constraint VTV = I, it follows that ||v1||2 =
||v2||2 = 1. Without loss of generality, suppose v2 is mistakenly
considered, then v2 has equal importance to v1 in the regularizer
||V||1 (even though v2 is a redundant component). In this case,
at least one feature related to v2 shall be considered due to the
constraint ||v2||2 = 1. This feature is apparently a redundant
feature since v2 is redundant. In practice, some redundant features
shall be mistakenly included if some redundant components are
mistakenly considered.

To address the above issues, instead of directly handling the
orthogonal constraints, we propose to perform the optimization
over the Stiefel manifold [16]. Specifically, we propose a stabilized
Alternating Direction Method of Multipliers (SADMM) algorithm
for addressing SPCA by exploiting the geometric structure of
Stiefel manifold. Since the loading vectors are updated on the
Stiefel manifold, the orthogonal constraint always holds. More-
over, in contrast to conventional ADMM methods which may
converge slowly when the algorithm parameters are not well
chosen, the proposed SADMM method converges well with a wide
range of parameters. Furthermore, our proposed algorithm does
not rely on the estimation of the covariance matrix, thus enjoying
good scalability to high-dimensional data.

The main contributions of this paper are concluded as follows.

• We propose a stabilized ADMM (SADMM) method over the
Stiefel manifold to efficiently solve the SPCA problem by
splitting the penalty term into two terms, each of which is
associated with one block in ADMM. We provide a theoret-
ical analysis of the convergence property for the proposed
algorithm. In particular, the proposed method converges well
with a wide range of parameters.

• We take the importance of different components into con-
sideration and develop a two-stage SADMM method to
select the most important features. Since the features related
to a component with larger singular value are often more
important, the two-stage SADMM method helps to select
more important features with more discriminative power or
larger variance.

• Extensive experiments on several real-world datasets demon-
strate the effectiveness of the proposed SADMM method and
the two-stage SADMM method.

The rest of the paper is organized as follows. In Section 2,
we review some important related work. In Section 3, we present
the notations used in the paper. In Section 4, we introduce the
proposed methods for SPCA and provide some theoretical results.
In Section 5, we present the experimental results on both synthetic
and real-world datasets. We conclude this work in Section 6.

2 RELATED STUDIES

During the past decade, a variety of methods have been proposed
to handle the SPCA problem. There are two critical points in the
SPCA problem — pursuiting the sparse representation [24], [38],

[42] of loadings and holding the orthogonal constraint [10], [35]
between loadings.

Some methods solved the optimization problem through ma-
trix approximation. Jolliffe et al. [31] solved the LASSO based
problem via a projected gradient descent approach to find the
modified principle components with zero loadings. Shen and
Huang [47] adapted the SVD to PCA and obtained the principle
components through solving a low-rank approximation problem
under some sparsity-inducing penalties. Zou et al. [58] formulated
the SPCA as a regression-type optimization problem with LASSO
(elastic net) penalty

min
V,U∈Rd×r

‖X−XUVT‖2F + λ‖U‖2F +
r∑
i=1

γi‖vi‖1,

s.t. UTU = I.
And then, they obtained the top-r principle components by itera-
tively solving two subproblems w.r.t. U and V, respectively.

In [30], the authors proposed a two-stage method which uses a
diagonal thresholding based preprocessing step to select relevant
variables and then obtains principle components. Ma et al. [40]
proposed to estimate the sparse principal subspace based on
iterative thresholding. Moghaddam et al. [43] studied a discrete
spectral formulation for SPCA and provided a greedy branch-
and-bound search approach. Grbovic et al. [21] introduced two
types of grouping constraints into the SPCA problem to ensure
the reliability of the resulting groups.

Some methods solved SPCA relying on power methods.
Journee et al. [32] proposed a generalized power method (GPower)
to solve the single-unit (r = 1) or block (r > 1) SPCA problems
with `0-norm or `1-norm regularizers. Yuan and Zhang [57]
proposed an efficient SPCA approach based on a truncated power
method (TPower). In [26], the single component SPCA problem
was formulated as a nonlinear eigenproblem and solved via an
inverse power method.

Given a covariance matrix Σ ∈ Rd×d, the convex SDP
relaxation [13], [52] for SPCA can be formulated as:

max
W∈Rd×d

tr(ΣW)− λ‖W‖1, s.t. tr(W) = 1, 0 �W � Id,

where W is a projector to the principle subspace (e.g., a
reparametrization of VVT where V is the loading matrix),
0 � W � Id means the eigenvalues of W should be in [0, 1],
and λ > 0 is a trade-off parameter. In [13], the authors proposed
a method called DSPCA to relax the SPCA problem as a convex
SDP problem with an `1-norm constraint. d’Asprenont et al. [12]
proposed a convex relaxation based greedy algorithm (PathSPCA)
to compute a full set of solutions. Amni et al. [4] provided the
theoretical optimality guarantees of the SDP relaxation based on
the spiked covariance model in [29]. Considering the drawbacks of
deflation in DSPCA, Vu et al. [52] proposed a Fantope projection
and selection (FPS) method, which formulated the SPCA problem
as an SDP and solved it in the sparse principle subspace directly.
Gu et al. [22] proposed a convex estimator and a nonconvex
estimator based on the SDP relaxation with novel regularizations.
Wang et al. [53] proposed a two-stage method which consists of
sparse orthogonal iteration pursuit as a main stage and a SDP
relaxation estimator for initialization. Asteris et al. [5] studied
the connection between SPCA and the bipartite maximum weight
matching problem, and proposed a bipartite matching based SPCA
approach. Bouveyron et al. [7] used Bayesian Variable Selection to
obtain several sparse components with the same sparsity pattern.
Ma et al. [39] focused on high-dimensional problem and proposed
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a convex estimator based on the Sum-of-Squares relaxation. In
[11], the authors summarized and analysed the existing SPCA
methods that using `1-norm to pursuit feature selection. Never-
theless, there are some major differences between our proposed
method and these mentioned methods, which are summarized as
follows: 1) These methods adopt deflation techniques to find mul-
tiple sparse components, which neglect the interactions between
multiple components. Our proposed method find multiple sparse
components jointly. 2) These methods neglect the importance
of different components when considering feature selection, our
proposed method address this drawback to select more important
features.

3 NOTATIONS

Matrices and vectors are denoted by upper-case and lower-case
boldface characters, respectively. A set is denoted by calligraphic
letter. Given an integer m ∈ Z+, let [m] = {1, ...,m}. Given an
index set I ⊆ [m], let A(:, I) denote the columns of A regarding
I . Let the superscript T denote the transpose of a vector/matrix, 0
be a vector/matrix with all zeros, and diag(v) be a diagonal matrix
with diagonal elements being v, 〈A,B〉 = tr(ABT) be the inner
product of A and B, where tr(·) is the trace operator. Let ‖v‖p be
the `p-norm of a vector v. The `1-norm of a matrix Z is defined
as ‖Z‖1 =

∑
ij |Zij |. Also, we let ||Z||2,1 =

∑
i ||Zi·||2 be the

`2,1 norm of matrix Z. The operator max(u,v) operates on each
dimension. Let Z = Udiag(σ)VT be the SVD of any matrix Z ∈
Rn×d. The Frobenius norm of Z is defined as ‖Z‖F = ‖σ‖2. For
a convex function Ω(Z), we denote by ∂Ω(Z) its subdifferential
at Z. Lastly, given a square matrix A, we define sym(A) =
1
2 (A + AT) and skew(A) = 1

2 (A−AT).

4 SPCA ON THE STIEFEL MANIFOLD

Let X = [x1, · · · ,xn]> ∈ Rn×d be a dataset of n instances with
d features. In this paper, we seek to learn SPCA by solving the
following optimization problem:

min
V∈Rd×r

1

2
||X−XVVT||2F + λΩ(V), s.t., VTV = I, (2)

where λ is a trade-off parameter and Ω(V) is some sparsity-
inducing regularizer. Here, we consider the `1-norm regularizer
on V, namely Ω(V) = ||V||1, which encourages V to be sparse.
One may also apply `2,1-norm on V to encourage row sparsity of
V. Note that, V lies on the Stiefel manifold

Strd =Mr = {V ∈ Rd×r|V>V = I},
which is a set of d by r orthogonal matrices. Besides, Mr is
compact, and its dimension is (dr− 1

2r(r+1)). Since VTV = I,
it follows that

1

2
||X−XVVT||2F =

1

2
||X||2F −

1

2
||XV||2F . (3)

In this paper, we first consider solving the following problem:

min
V∈Mr

−1

2
||XV||2F + λ||V||1. (4)

Here, the Stiefel manifold Mr is nonconvex, so Problem (4) is
hard to address. The non-smooth term ||V||1 makes the problem
even more challenging to address. To address this problem, we
propose a novel Alternating Direction Method of Multipliers
(ADMM) on the Stiefel manifold.

The ADMM method has been widely applied in distributed
optimization and statistic learning areas. Following [8], to decou-
ple the non-smooth ‖V‖1 from the smooth term, we introduce
an auxiliary variable matrix Υ and add an additional equality

Algorithm 1 ADMM for SPCA
Require: Input data X, r, λ, ρ0, ρmax and β ∈ (1, 2).

1: Initialize V0,Υ0 and Ω0 = 0.
2: For t = 0, ..., T − 1
3: Compute

Vt+1 = arg minV∈Mr
Lρt(V,Υt,Ωt).

4: Compute
Υt+1 = arg minΥ Lρt(Vt+1,Υ,Ωt).

5: Update Ωt+1 = Ωt + ρt(Vt+1 −Υt+1).
6: Update ρt+1 = min(βρt, ρmax).
7: End For

constraint V = Υ into (4). We then transform Problem (4) into
the following equivalent:

min
V∈Mr

− 1

2
||XV||2F + λ||Υ||1, s.t., V = Υ. (5)

By introducing a dual variable matrix Ω ∈ Rd×r for the
equality constraint, we obtain an augmented Lagrangian:

Lρ(V,Υ,Ω) =− 1

2
||XV||2F + λ||Υ||1

+ 〈Ω,V −Υ〉+
ρ

2
||V −Υ||2F ,

(6)

where ρ > 0 is a penalty parameter. By iteratively minimizing
Lρ(·) w.r.t. V and Υ, the general ADMM algorithm is conducted
in Algorithm 1.

In Algorithm 1, the parameter ρ increases monotonically,
which aims to reduce the gap between V and Υ gradually. The
minimization over V is performed on the Stiefel manifold Mr ,
which will be depicted in detail in the following section. Given V,
the optimization of Lρ(V,Υ,Ω) over Υ can be written as

min
Υ

λ||Υ||1 +
ρ

2
||V −Υ +

1

ρ
Ω||2F , (7)

which has a closed-form solution Υ∗. Specifically, let Z := V +
1
ρΩ, we can compute Υ∗ by a simple shrinkage operation

Υ∗ij := max(|Zij | −
λ

ρ
, 0) sign(Zij). (8)
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Fig. 1. Convergence of Algorithm 1 on synthetic data X ∈ R1000×1000.

In Algorithm 1, the shrinkage operation in Eq. (8) is sensitive
to the value of λ/ρ, which may incur convergence issues. Specifi-
cally, since ρ increases monotonically, λ/ρ varies w.r.t. iterations.
As a result, Algorithm 1 may be hard to converge if λ and ρ0 are
not well adjusted.

To illustrate the above problem, we conduct a synthetic exper-
iment on a toy dataset with the detailed setting being provided in
Section 5.1.1. The results are shown in Fig. 1. We observe that
when we change the best setting (λ = 10 and ρ = 1000), the
convergence behavior of Algorithm 1 is sensitive to the value of
λ/ρ. If λ/ρ is not appropriately chosen, Algorithm 1 may be far
away from the promising solution.
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4.1 Stabilized ADMM for SPCA

In this section, we propose a stabilized ADMM to address the
convergence issue incurred by the value of λ/ρ. To this end, we
split the augmented Lagrangian function Lρ(V,Υ,Ω) into two
parts by introducing the following two functions:

Aρ(V,Υ,Ω) =− 1

2
||XV||2F

+ 〈Ω,V −Υ〉+
ρ

2
||V −Υ||2F ,

(9)

and
Bγ(V,Υ,Ω) =λ||Υ||1

+ 〈Ω,V −Υ〉+
γ

2
||V −Υ||2F .

(10)

Following the conventional ADMM scheme, we propose a
stabilized ADMM scheme in Algorithm 2. Specifically, at each
iteration, V and Υ are updated by minimizing Aρ(·) and Bγ(·),
respectively. Ω is updated relying on the parameter γ only.

Letting Z := V + 1
γΩ, similar to Algorithm 1, we can update

Υ via the following shrinkage operation:

Υt+1
ij := max(|Zij | −

λ

γ
, 0) sign(Zij). (11)

In the proposed Algorithm 2, when updating V by minimizing
Aρ(·), we can keep the parameter ρ increasing monotonically
to make the residual of the equality constraint decrease fast. On
the other hand, when updating Υ, we use a fixed γ to obtain a
fixed shrinkage operation, which makes the update of Υ more
stable. As a result, although ρ keeps monotonically increasing,
the thresholding for shrinkage λ/γ keeps fixed, leading to more
stable and faster convergence. Meanwhile, thanks to the increasing
parameter ρ in the penalty term in Eq. (9), the residual of the
equality constraint still converges fast.

Algorithm 2 Stabilized ADMM (SADMM) for SPCA
Require: Input data X, r, λ, ρ0, ρmax, γ and β ∈ (1, 2).

1: Initialize V0,Υ0 and Ω0 = 0.
2: For t = 0, ..., T − 1
3: Compute

Vt+1 = arg minV∈Mr Aρt(V,Υt,Ωt).
4: Compute

Υt+1 = arg minΥ Bγ(Vt+1,Υ,Ωt).
5: Update Ωt+1 = Ωt + γ(Vt+1 −Υt+1).
6: Update ρt+1 = min(βρt, ρmax).
7: End For

By exploiting the geometric structure of Riemannian mani-
fold (i.e., Stiefel manifold), SADMM can effectively handle the
orthogonal constraint in SPCA. For convenience of presentation,
hereafter we denote SADMM for SPCA on the Stiefel manifold
as StSPCA.

Initialization of V. In our case, by setting ρ = 0 and Ω0 = 0
at the beginning of ADMM, the minimization of Aρ(V,Υ,Ω) is
reduced to: minV∈Mr − 1

2 ||XV||2F . The optimal solution to this
problem, denoted by V0, can be trivially obtained by a truncated
SVD of rank r on X, i.e., [Ũ, S̃, Ṽ] = svds(X, r). After that, we
initialize V0 by V0 = Ṽ. In experiments, we empirically study
the effects on different initializations of V. We first adopt random
initialization and truncated SVD to initialize V. Then we run the
proposed algorithm based on the obtained V. Interestingly, even
with random initializations, our method still shows a competitive
convergence behavior.

4.2 Conjugate Gradient on Riemannian Manifold

The optimization of Aρ(V,Υ,Ω) w.r.t. V is performed on the
Stiefel manifoldMr. To equip the optimization on manifolds, we
need to introduce some geometries over the Stiefel manifoldMr .
First, the tangent space to Mr at V (i.e., the set of all tangent
vectors toMr at V) , denoted by TVMr, is defined as

TVMr :=
{
Z ∈ Rd×r : ZTV + VTZ = 0

}
.

On the tangent space TVMr at any V ∈ Mr, if we in-
troduce the standard inner product as a metric 〈Y,Z〉V :=
tr(YTZ), ∀Y,Z ∈ TVMr , then Mr can be viewed as a
Riemannian submanifold of Rd×r . Given a smooth function f(V)
onMr , let G = ∇f be the gradient of f in the Euclidean space.
Then, the Riemannian gradient of f at V, denoted by gradf(V),
is given as the orthogonal projection of G onto the tangent space:

gradf(V) = PTVMr
(G), (12)

where
PTVMr

(Z) = Z−V sym(VTZ). (13)

Different from the optimization in the Euclidean space, the
search direction on a manifold should follow a path on the
manifold [1]. At the kth iteration, based on the Riemannian
gradient gradf(Vk) at Vk, we can construct the search direction
ζk = −gradf(Vk), which corresponds to the steepest descent
direction in the Euclidean space and is known to be slow in
convergence. Hence, we address this by applying a Nonlinear
Conjugate Gradient (NCG) method, which has shown promising
performance and fast convergence speed [34], [51]. Algorithm 3
summarizes the NCG method. The convergence threshold is set to
1e− 5 and the maximum number is set to 30.

Following NCG in the Euclidean space, the conjugate search
ζk direction can be calculated by ζk = −gradf(Vk) + βkζk−1.
However, since gradf(Vk) ∈ TVk

Mr , gradf(Vk−1) ∈
TVk−1

Mr, and ζk−1 are in different tangent spaces of the
manifold, the above equation is not applicable on Riemannian
manifolds. To address this, we need to introduce the Vector Trans-
port TX→Y(ζX), which transports ζX from one tangent space
TXMr to another tangent space TYMr . Here, TX→Y(ζX) can
be computed by PTYMr

(ζX). After that, we can compute the
conjugate search direction by

ζk = −gradf(Vk) + βkTVk−1→Vk
(ζk−1),

where βk can be calculated by the Fletcher-Reeves rule [17].

Once the search direction ζ is computed, we can move V
alongh the direction ζ with the step size θ. The step size is chosen
according to the strong Wolfe conditions, and the details can be
found in the supplementary material. After that, in order to make
V stay on the manifold, we map it on the manifold Mr by the
following Retraction operation:

RV(θζ) = qf(V + θζ), (14)
where qf(A) denotes the Q factor of the QR decomposition of
A.

Once a search direction ζ is computed, we can move V along
the direction ζ and to stay on the manifold by a Retraction
mapping on Mr . Specifically, let ξ = θζ, the retraction at V
along the direction ζ with the step size θ can be computed by

RV(ξ) = qf(V + ξ), (15)
where qf(A) denotes the Q factor of the QR decomposition of
A. Here, the strong Wolfe conditions are used to choose θk, and
the details can be found in the supplementary material.
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Algorithm 3 Nonlinear Conjugate Gradient for Updating V.
1: Initialize V0 and ζ0 = 0. Let k = 1.
2: Compute the Riemannian gradient gradf(Vk) (by (12)).
3: Compute a conjugate direction by ζk = −gradf(Vk) +
βkTVk−1→Vk

(ζk−1).
4: Choose a step size θk satisfying the strong Wolfe conditions,

and set Vk+1 = RVk
(θkζk).

5: Stop if the stopping conditions are achieved; otherwise, let
k = k + 1 and go to step 2.

4.3 Two-Stage SADMM for SPCA

In most existing SPCA methods, the importance of different
components is not considered when inducing the sparsity. For
example, in Problem (4), assuming V = [v1,v2, · · · ,vr], the
`1-regularizer ||V||1 treats each component equally. Due to the
orthogonal constraint VTV = I, we have ||v1||2 = ||v2||2 =
...||vr||2 = 1. In practice, some components (e.g., vr) might be
redundant if r is not well estimated. If a redundant component is
mistakenly considered (e.g., vr), it will have equal importance to
leading component v1 in the regularization. As a result, some
redundant features would be mistakenly chosen, since at least
one feature related to vr will be selected due to the constraint
||vr||2 = 1.

Algorithm 4 Two-Stage SADMM for SPCA (StSPCA-2S)
Require: Input data X, r, λ, ρ0, γ and K .

1: Stage I: Call Algorithm 2 to obtain V. Compute the feature
score s =

∑r
i=1 σi|vi|. ChooseK features with theK largest

values in s.
2: Stage II: Perform Algorithm 2 with those selected features to

obtain V∗s . Let V∗ = 0 and update V∗ with Vs.

To address the above issue, we here propose a two-stage
SADMM method in Algorithm 4, which takes the importances
of both components and features into consideration. To this end,
in the first stage, we conduct Algorithm 2 to obtain V, and then
select important features from loadings; in the second stage, we
perform Algorithm 2 with the important features selected in the
first stage.

Specifically, given V obtained in the first stage, for the
component vi, we calculate the corresponding singular value
σi = ‖Xvi‖2 to measure the importance of the component vi.
Considering that the magnitude of |vij | indicates the importance
of the feature j w.r.t. the component vi, we compute the score sj
as follows to measure the importance of the feature j based on all
the components:

sj =
r∑
i=1

σi|vij |. (16)

Based on this, we select K most important features with the K
largest values of sj , where j ∈ {1, . . . , n}. As a result, the
selected features are obtained by considering the importance of
different components.

4.4 Convergence Analysis

We analyze the convergence of the proposed SADMM in Algo-
rithm 2. To this end, we firstly show the convergence property of
step 3 of Algorithm 2 in the following theorem.

Theorem 1. Let {Vk} be the sequence generated by the NCG
method with the strong Wolfe line search, where 0 < c1 < c2 <
1/2, then we have limk→∞ inf ||gradf(Vk)|| = 0.

The proof can be found in Appendices A and B.
Now we are ready to analyze the convergence of SADMM

in Algorithm 2. Let ϕ(V) = 1
2‖X − XVVT‖2F and g(Υ) =

λ‖Υ‖1. Note that ϕ(V) is smooth but non-convex, and g(Υ)
is non-smooth. Theorem 2 characterizes the cluster point of
the sequence generated by Algorithm 2, and shows the global
convergence of Algorithm 2.

Theorem 2. (Global subsequential convergence)
(i) Suppose that ‖XTX‖F ≤ ρ, any convergent subsequence
{(Vti ,Υti ,Ωti)} of the sequence {(Vt,Υt,Ωt)} generated by
stabilized ADMM converges to a cluster point (V∗,Υ∗,Ω∗), i.e.,
lim
t→∞

‖Vt+1 −Vt‖2F + ‖Υt+1 −Υt‖2F + ‖Ωt+1 −Ωt‖2F = 0.

(ii) Any cluster point (V∗,Υ∗,Ω∗) of a sequence
{(Vt,Υt,Ωt)} generated by Algorithm 2 is a stationary
point of problem (4).

The detailed proof can be found in Appendix C.

4.5 Complexity Analysis

Our proposed method has good scalability for large-scale prob-
lems. Specifically, it only needs to perform rank-r truncated SVD
one time for the initialization, which takes O(mnr) complexity
by PROPACK. The vector transport operation also takes O(dr2)
complexity. Additionally, the QR decomposition of d × r ma-
trices is required for the retraction, of which the complexity is
(2dr2 − 2r3/3) flops with fast Givens QR method [19].

5 EXPERIMENTS

We verify the performance of proposed StSPCA and StSPCA-2S
on both synthetic and real-world datasets. To thoroughly com-
pare with the deflation technique, following [41], we also apply
StSPCA to handle multiple components by conducting StSPCA
with r = 1 iteratively, which is denoted by StSPCA-D.

Baselines and Parameters Setting. Several state-of-the-art
SPCA methods are adopted as the baselines, including GPower0,
GPower1, GPower0-B and GPower1-B [32], GRQI [36], IPM
[26], Manopt [6], TPower [57], and Wang [53]. Among them,
Wang, GPower0-B and GPower1-B deal with multiple compo-
nents jointly, while the others rely on deflation techniques. Some
methods mentioned in the related studies are not compared due to
the absence of the source code.

All experiments are conducted in Matlab on a server
with two Intel(R) Xeon E5-2620 v3 CPUs (2.40 GHz)
and 128 GB memory. During comparison, we use grid
search to determine the parameters γ and ρ in the
range {10−3, 10−2, 10−1, 100, 101, 102, 103}. For StSPCA and
StSPCA-D, we vary λ in (10−2, 10−1, 100, 101, 102) to control
the selected features. For StSPCA-2S, we vary the parameter K to
control the selected features. We repeat the experiments 10 times,
and report the average results. For fair comparisons, no parallel
technique is used for all the methods.

Real-world datasets. We use seven real-world datasets, which
are commonly used for evaluating SPCA models. Table 1 shows
the statistics of the real-world datasets.
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TABLE 1
Details of Datasets

Dataset #Instances #Features Reference
Colon 62 2,000 [3]

Prostate 102 2,135 [49]
Dlbcl 77 2,647 [48]

Leukemia 72 7,129 [20]
Duke 42 7,129 [54]
GCM 198 11,370 [46]
Breast 128 47,293 [54]

News20 15935 62,061 [9]

5.1 Experiments on Synthetic DataSets
Generation of synthetic data. We generate synthetic data
{xi}ni=1 ∼ N (0,Σ), where Σ ∈ Rd×d is a covariance matrix.
Following [22], [32], we generate Σ = Vgdiag(σ)VT

g , where
σ denotes the vector of eigenvalues and Vg denotes the ground-
truth sparse loading vectors. We choose the first 2 columns of
Vg as sparse orthogonal vectors by setting the first 10 elements
of the first column and the second 10 elements of the second
column to be 1/

√
10, and others to be 0. The rest columns

of Vg are randomly sampled from a uniform distribution. For
eigenvalues in σ, we set σ1 = 400 and σ2 = 300, and the
rests to be 1. In other words, there are 20 relevant features, and
the first two components are much more important. Since the
ground-truth loadings Vg is known, we use the recovery error
ε = ||VVT − Vg(:, 1 : 2)Vg(:, 1 : 2)T||2F as the comparison
metric, where V is the recovered loadings.

5.1.1 Comparison of ADMM and SADMM for SPCA
Firstly, we show the convergence behavior of ADMM for SPCA
under different settings of ρ and λ. See Fig. 1, the best perfor-
mance is achieved under the setting λ = 10 and ρ = 1000. Note
that when we change λ = 1 (Fig. 1(a)) or ρ = 10 (Fig. 1(b)),
the algorithm will be far away from the optimal result, which
indicates the sensitivity of the shrinkage operation λ/ρ. Then we
compare the convergence behavior of ADMM and SADMM for
SPCA under different values of the parameters. From Figs. 2(a)
and 2(b), we can observe that SADMM with different parameters
converges to similar solutions, while ADMM produces a large
difference in convergence. We conclude that SADMM achieves a
better solution and is more stable than ADMM.

(a) Convergence w.r.t. λ (b) Convergence w.r.t. ρ

Fig. 2. Convergence comparison of ADMM and SADMM. Results on
synthetic data X ∈ R1000×1000.

5.1.2 Comparison on Different Noises
In this experiment, we increase the strength of noise by mul-
tiplying irrelevant features by a noise factor from 1 to 12. We
report the result on synthetic data X ∈ R100×1000 in Fig. 3 and

(a) Recovery error (b) Running time

Fig. 3. Recovery performance on synthetic data X ∈ R100×1000.

(a) (b)

Fig. 4. (a): Recovery performance on synthetic data X ∈ R500×5000;
(b): Convergence of different initialization methods of V for SADMM.

X ∈ R500×5000 in Fig. 4(a). From Fig. 3(a), we observe that the
GPower based methods and Manopt perform relatively worse than
other methods; while the recovery errors of GRQI, IPM, TPower
and Wang increases rapidly when the noise degree is around 4. On
the contrary, the proposed StSPCA-2S, StSPCA and StSPCA-D
perform well even when the noise factor is 6, which is much better
than others. From Fig. 3(b), GPower based methods are fastest and
our proposed methods have acceptable computational cost. The
same observations can also be obtained from Fig. 4(a) (we omit
the result of Wang, since it requires too much running time). This
indicates that the proposed methods can extract important features
when the data have many noisy features and are more stable to
noises. Lastly, StSPCA-2S achieves the best performance, which
demonstrates the effect of the proposed two-stage strategy.

5.1.3 Comparison of Different Initialization Methods
We study the convergence of the proposed method with different
initialization strategies — the SVD initialization introduced in
SADMM and random initialization. We report the results on
the synthetic data X ∈ R1000×1000. Fig. 4(b) shows that even
with random initialization, the proposed method still achieves a
comparable result. This demonstrates that our proposed optimiza-
tion methods on nonlinear manifolds are guaranteed to converge.
Moreover, the proposed initialization helps to achieve faster con-
vergence and a better solution. Furthermore, we have theoretically
shown that the complexity of the proposed initialization strategy
is low in Sec. 4.5. Thus, our proposed method can converge faster
to a better solution with small additional complexity.

5.2 Results on Real-World DataSets
We then conduct experiments on several real-world datasets.
Note that the results for some methods are absent since these
methods require more than 10,000 seconds. Firstly, we compare
the proposed methods with baselines on first five datasets. TABLE
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TABLE 2
Total cumulative variance captured by k = 3 components on various datasets.

Method Colon Prostate Dlbcl Duke Leukemia
GPower-0 1.713e+03 1.477e+04 4.153e+10 1.541e+03 1.899e+03
GPower-1 1.707e+03 1.457e+04 4.084e+10 1.573e+03 1.871e+03

GRQI 1.724e+03 1.653e+04 3.531e+10 1.462e+03 1.875e+03
IPM 1.638e+03 1.682e+04 4.028e+10 1.647e+03 1.921e+03

TPower 1.605e+03 1.597e+04 3.863e+10 1.497e+03 1.639e+03
Wang 2.173e+03 2.062e+04 - - -

StSPCA 2.116e+03 2.096e+04 4.408e+10 1.838e+03 2.391e+03
StSPCA-D 1.741e+03 1.672e+04 4.015e+10 1.627e+03 2.138e+03
StSPCA-2S 2.354e+03 2.185e+04 4.768e+10 1.951e+03 2.508e+03
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(c) variance when r = 3
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(d) variance when r = 5
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(f) running time when r = 3
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(g) running time when r = 5

Fig. 5. Results on the GCM dataset.

2 lists the total cumulative variance captured by r = 3 sparse com-
ponents, where each one activates 50 features. Total cumulative
variance represents the sum of variances of each extracted sparse
principal component. Since GPower0-B, GPower1-B and Manopt
obtain loading vectors with the leading one being highly dense
(close to PCA) while the others being highly sparse, these methods
may suffer from imbalance of sparsity among loadings. Therefore,
we omit the results of them when r > 1. From TABLE 2, we
observe that compared with deflation based methods, the block
based methods (Wang, StSPCA and StSPCA-2S) achieve better
performance, which proves that block based methods outperform
deflation based methods when extracting multiple sparse compo-
nents. Moreover, our proposed methods StSPCA and StSPCA-
2S outperform other baselines in most cases, which proves the
effectiveness of our proposed algorithms. In addition, StSPCA-2S
achieves the highest values in all cases, which indicates that it is
meaningful to consider the importance of different components.

In addition, we also compare our methods with baselines

under different numbers of components and features on three
larger datasets, which includes tens of thousands of instances
and features. We extract different numbers of sparse principal
components (i.e., r ∈ {1, 3, 5}) and features (varying from 50
to 500). We draw several observations as follows.

• Effects on the number of components and features. When
r = 1, all the compared methods achieve the comparable
performance. Our proposed algorithms achieve the highest
values in most cases and are among the fastest algorithms.
When r = 3 or 5, StSPCA-2S, and StSPCA outperform
the other baselines, which indicates that the methods finding
multiple components jointly are more effective compared
to the deflation-based methods. Moreover, we can observe
that our proposed algorithms can extract more important
features. In particular, StSPCA-2S shows that considering the
importance of different sparse components is more beneficial
to feature extraction.

• Comparison of StSPCA variants. Compared with StSPCA-
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D, StSPCA and StSPCA-2S show that block based methods
are beneficial to extract multiple sparse components. Besides,
StSPCA-2S achieves the better performance than StSPCA
when r = 3 or 5, which is consistent with the observation on
the synthetic data. This further demonstrates the effectiveness
of our proposed two-stage method in Algorithm 4.

• Comparison on efficiency. GPower based methods are
fastest in all cases, but they exhibit the worst performance
in variance. The methods of TPower, GRQI, IPM take more
running times when increasing the number of components. In
addition, another efficient block based method Wang requires
too much running time. Conversely, our proposed methods
have acceptable computational cost while achieving the best
performance in variance.

6 CONCLUSIONS

In this paper, we have proposed a stabilized ADMM (SADMM)
to address the SPCA problem on the Stiefel manifold. The global
convergence of the proposed algorithm has been theoretically
analyzed. Based on SADMM, a two-stage method has also been
proposed for SPCA. Extensive experiments on both synthetic and
real-world datasets demonstrate superior performance compared
to other methods in terms of interpretable variance and computa-
tional efficiency.
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(b) variance when r = 1
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(c) variance when r = 3
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(d) variance when r = 5
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(f) running time when r = 3
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(g) running time when r = 5

Fig. 6. Results on the Breast dataset.
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(c) variance when r = 3
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(f) running time when r = 3
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(g) running time when r = 5

Fig. 7. Results on the News20 dataset.
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