
ML-FOREST: A Multi-Label Tree Ensemble
Method for Multi-Label Classification

Qingyao Wu, Mingkui Tan, Hengjie Song, Jian Chen, and Michael K. Ng

Abstract—Multi-label classification deals with the problem where each example is associated with multiple class labels. Since the

labels are often dependent to other labels, exploiting label dependencies can significantly improve the multi-label classification

performance. The label dependency in existing studies is often given as prior knowledge or learned from the labels only. However, in

many real applications, such prior knowledge may not be available, or labeled information might be very limited. In this paper, we

propose a new algorithm, called ML-FOREST, to learn an ensemble of hierarchical multi-label classifier trees to reveal the intrinsic label

dependencies. In ML-FOREST, we construct a set of hierarchical trees, and develop a label transfer mechanism to identify the multiple

relevant labels in a hierarchical way. In general, the relevant labels at higher levels of the trees capture more discriminable label

concepts, and they will be transferred into lower level children nodes that are harder to discriminate. The relevant labels in the hierarchy

are then aggregated to compute label dependency and make the final prediction. Our empirical study shows encouraging results of the

proposed algorithm in comparison with the state-of-the-art multi-label classification algorithms under Friedman test and post-hoc

Nemenyi test.

Index Terms—Multi-label classification, label dependency, label transfer, tree classifier, ensemble methods

Ç

1 INTRODUCTION

MULTI-LABEL classification aims to predict the presence
or absence of certain labels of an example which is

associated with multiple classes. Different from classical
multi-class problems, where an example is associated with
only one single label, multi-label classification is more
general since real-world objects often contain multiple
semantic objects. For example, a real-world image usually
belongs to multiple categories based on different contexts,
such as water, ship, etc.; while a text document can be classi-
fied into a set of topics, such as news, sports, etc. In the last
decades, multi-label classification problem has received
broad attention from various research domains, such as text
categorization [1], [2], [3], bioinformatics [4], [5], [6], and
computer vision [7], [8], [9].

A straightforward multi-label classification approach is
binary relevance (BR) [10], which decomposes the problem
into a set of single-label multi-class problems. In this way, a
set of multi-class classifiers are learnt and then applied to
do prediction. This simple method, however, totally
neglects the dependencies among multiple labels. In prac-
tice, multiple objects in an example (such as an image) may
have strong relations or dependencies. For example, if a ship
category is presented in an image, it is very likely that the
water category is also in that image. Exploiting such label

dependency may significantly improve the prediction per-
formance for multi-label classification.

Plenty of previous studies [11], [12] have tried to exploit
the label dependency to improve the prediction perfor-
mance. However, how to effectively model the label depen-
dency explicitly is still a challenging problem. In [13], the
authors simply assume that the label dependency is pro-
vided as prior knowledge in real-world situations. Some
other approaches, like [14], [15], consider learning the label
dependency from very limited information, e.g., the co-
occurrence of the labels in the training set. However, these
kind of learning methods may cause over-fitting issues [11].

In this paper, we propose a new tree ensemble algorithm,
called ML-FOREST, to explicitly exploit label dependency
for multi-label classification. In ML-FOREST, a set of hierarchi-
cal trees are constructed to learn the label dependency, and
then combined as an ensemble to do multi-label prediction.
Specifically, the primary focus of this paper is to find a good
hierarchical structure so that two relevant instances with
strong label dependency will be located in the same node of
the tree. To achieve this, we design a new tree generation
algorithm to partition the learning data into smaller subsets
from the root to the leaves, and then identify relevant labels
for each node with a label transfer mechanism.

For the first task, we train multi-class classifiers at
each node to divide the data into child nodes. Here, each
data instance is partitioned into one child node according to
the classifier prediction results, and the class label with
highest probability given at the node is considered as its
relevant label.

For the second task of the algorithm, a label transfer mech-
anism is involved to recursively propagate the relevant labels
from the root down to the leaf nodes. For example, if a rele-
vant label is found at a node, all of its children nodes would
automatically belong to this relevant label, andwe seek a new

� Q. Wu, M. Tan, H. Song, and J. Chen are with the School of Software
Engineering, South China University of Technology, Guangzhou,
Guangdong 510641, China.
E-mail: {qyw, sehjsong, ellachen}@scut.edu.cn, tanmingkui@gmail.com.

� M. K. Ng is with the Mathematics Department, Hong Kong Baptist
University, Hong Kong. E-mail: mng@math.hkbu.edu.hk.

Manuscript received 5 Aug. 2015; revised 28 May 2016; accepted 10 June
2016. Date of publication 15 June 2016; date of current version 7 Sept. 2016.
Recommended for acceptance by J. Gama.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2581161

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016 2665

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

relevant label (if any) which respects the label dependencies
of the instances in children nodes. In the end, each leaf node is
characterized bymultiple relevant labels given by the nodes
at different levels of the tree. This leads to a new label
dependency representation, where the learning models at
different levels work together effectively to reveal multi-
ple label concepts belonging to the given data. Intuitively,
the relevant labels at high levels in the hierarchy may
tend to capture “more significant” label concepts and
hence are thematically more general; while the relevant
labels at low levels would capture “less significant” label
concepts and hence are thematically more specific.

In Fig. 1 we illustrate the above ideas by showing an
example of a hierarchical tree constructed in a multi-label
scene classification task. In this figure, the instances at the
root node belong to water or sand or both these two classes
simultaneously (e.g., a beach scene contains both water and
sand). A hierarchical tree then is constructed to partition the
data from the root to the leaf nodes, and we identify the rel-
evant labels at each node to capture the label concepts based
on the label transfer mechanism. In particular, the data
instances are partitioned into the same node if they are close
to each other and they would be labeled hierarchically such
that the label concepts at higher layers are often more easier
to be characterized.

In the above example, part of the beach images would be
partitioned into nodeA and labeled as water at the first layer
of the tree; while the rest beach images would be labeled as
sand in node B, depending on which class the images belong
to. The resulting class decision hyperplanes will further
split the data of nodeA into nodes C andD. It is worth men-
tioning that the water class associated to node D is inherited
from node A, whilst the sand class associated to node E is
given by node B. For convenience, hereafter this hierarchical
multi-label tree is referred to (Ml-Tree).

The major contributions of this paper are as follows:

� We propose a new hierarchical tree algorithm,
called ML-TREE, to solve the multi-label classification
problem. Unlike BR method which transforms a
multi-label classification problem into independent
binary classification problems, our algorithm exploits
the intrinsic label dependency of the data and

incorporates the ML-TREE structure to find the rele-
vant labels of an instance with multiple labels. There-
fore, the proposed approach provides a principled
way for modeling the intrinsic label dependency of
the data into a tree structure.

� We design a label transfer mechanism to find the rel-
evant labels in the hierarchy. The labels of high levels
in the hierarchy will be used as priors for the nodes
in low levels to reduce the label space. Therefore,
building the classifier model for low level labels can
be very efficient.

� We develop an ensemble strategy to construct multi-
ple hierarchical multi-label trees and combine the
predictions of different trees as an ensemble to make
predictions.

� We evaluate the empirical performance by conduct-
ing an extensive set of experiments on real-world
problems in text classification, computer vision and
bioinformatics. Experimental results demonstrate
that the ML-FOREST approach is highly competitive to
the state-of-the-art approaches under Friedman and
Nemenyi tests [16].

The rest of this paper is organized as follows. The problem
of multi-label classification and related work are introduced
in Section 2. The proposed methodology is then described
in Section 3. The data sets, the experimental setup and
experimental results are discussed in Section 4. Finally, con-
clusions are drawn in Section 5.

2 RELATED WORK

Let X ¼ Rd be the d-dimensional input space. Given a
labeled data set fðxi; yiÞgmi¼1, where xi 2 X contains m

instances and yi 2 Y ¼ f0; 1gq consists of q possible labels,

the multi-label learning aims to learn a hypothesis
f : X ! Y that maps an input x 2 X to outputs y 2 Y.
Regarding the label yi of the ith example, yji ¼ 1 if xi con-

tains the jth target, and yji ¼ 0 otherwise.
In the past decades, a number of multi-label classification

approaches have been developed regarding various areas,
such as text categorization [1], [2], [3], bioinformatics [4],
[5], [6], and computer vision [7], [8], [9]. These works have
revealed that exploiting the dependency among different
labels is crucial to improve the performance for multi-label
classification. For example, Zhang et al. [14] summarized
the existing multi-label approaches into three categories
based on the orders of dependencies exploited in the sys-
tem, including First-order approaches, Second-order approa-
ches and Higher-order approaches.

First-order approaches decompose the multi-label classifi-
cation task into a number of independent tasks [17], [18].
The most common method is the binary relevance method
[10], which transforms a multi-label problem into multiple
separate and independent binary problems, one for each
label. It is clear that the first-order methods are incapable of
label dependency, which might cause a degradation of the
predictive performance.

Second-order approaches consider the pairwise relations
between labels, such as the interaction between any pair of
labels [19], [20]. In general, such pairwise label dependency
is estimated by the co-occurrence or some other equivalent

Fig. 1. An example of a hierarchical tree for scene classification.

2666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

measures of the labels. However, these approaches might
over-fit the training data since these dependencies are usu-
ally inaccurate.

High-order approaches consider even higher order of
relations among labels, such as the full-order style
imposed on all the labels [21], [22], [23], [24]. For exam-
ple, Clare and King [25] applied the dependencies
between all labels to enhance the multi-label classification
performance. However, the full-order approaches are usu-
ally impossible when the number of labels is large, where
the number of possible label subset combinations could
be exponentially huge.

Hierarchical tree-based model is a family of learning
algorithms with simple theoretical foundation, and has
been widely applied in multi-label classification [22], [25],
[26], [27], [28], [29], [30]. For instance, Clare and King [25]
adapted the C4.5 algorithm for multi-label data by modify-
ing the formula of entropy calculation. Comit�e et al. [31]
learned multi-label alternating decision trees from text
data. Blockeel et al. [32] proposed predictive clustering
trees (PCT) to make multi-target prediction/multi-label
classification; while Vens et al. [23] introduced a high-
order approach to extend PCT algorithm where these
classes are organized in a hierarchical form, but the hierar-
chical label dependencies should be provided by external
information as prior knowledge. Tsoumakas et al. [22]
proposed a hierarchy of multi-label classifiers (HOMER)
algorithm using a tree structure to handle problems with a
large number of labels, in which the whole label set is dis-
jointed into subsets to construct the tree by using a bal-
anced clustering algorithm. This method is a high-order
approach and it does not require the label structure as
prior knowledge, but it is computationally inefficent to
fine-tuning the parameters involved in constructing the
hierarchical model.

Recently, various researchers (see [33], [34], [35]) have
exploited the random forest type ensemble methods to
enhance the learning performance. Motivated by recent
progress in ensemble learning, we propose to exploit
label dependencies to improve the multi-label prediction
performance via the ensemble of hierarchical trees,
namely ML-FOREST. Our proposed ML-FOREST method is a
high-order method, where each classifier tree addresses
dependency among a subset of labels based on relevant
labels generated from the root to the leaves. Note that in
this way, the size of the label subset is much reduced
when considering their dependencies, and such intrinsic
label dependencies will be explicitly presented in the
hierarchical trees. More importantly, the learned depen-
dency which offers a natural way to gain more insights
into the multi-label classification, will lead to improve-
ment in predictive performance and lower computational
cost compared to other state-of-the-art tree based multi-
label learning algorithms.

The proposed ML-FOREST algorithm is different from
PCT [32], HOMER [22], and Two Stage Architecture
(TSA) [36].

� In PCT [32], a variance function is employed to split
the learning data by maximizing the cluster homoge-
neity, and a prototype function is used to compute a

label for each leaf. In our proposed method, classifier
models are constructed to partition the data into
child nodes; while we identify the relevant labels
at each node and transfer the labels from the root
to leaves in a top-down manner to preserve label
dependence in the hierarchy.

� HOMER starts with a root node containing all the
possible classes, followed by a recursive process to
partition the classes into the leaves (each class corre-
sponds to one leaf). Each internal node contains the
union of the labels of its children. On the contrary,
our proposed algorithm recursively partitions learn-
ing data into child nodes, in which every internal
node consists of all instances of its children. In addi-
tion, for a multi-label instance x, HOMER forwards x
into multiple leaves, and the union of the single-
labels in the corresponding leaves is used as the
multi-label output of the HOMER approach; while
in our proposed algorithm, the multi-label instance x
is forwarded into only one leaf node, and the corre-
sponding labels of nodes in the path from the root to
this leaf are taken as the multi-label output of the
proposed approach.

� Madjarov et al. [36] propose a Two Stage Arc-
hitecture algorithm for multi-label learning. The
algorithm is implemented by using two layers. In
particular, binary relevance models are built in the
first layer to reduce the complexity of the training
of pair-wise models in the second layer. This
method is a second-order approach. While in our
proposed algorithm, we construct a hierarchical
tree structure, which models the label dependency
following the divide-and-conquer paradigm. We
use a recursive process to partition the data into
smaller subsets, and this process continues until the
remaining instances at the node cannot be further
split by the induced classifier. Therefore, our algo-
rithm is a high-order approach that constructs mul-
tiple-layer models.

3 METHODOLOGY

In this section, we present the ML-FOREST method in details.
We first describe the classifier tree construction algorithm
as well as the label transfer mechanism for exploiting label
dependencies. Next, we incorporate the classifier trees into
a forest via a new ensemble framework to further improve
the prediction performance, and give the computational
complexity of the proposed algorithm.

3.1 The ML-TREE Algorithm

Statistically, the label dependency can be categorized into
two groups, namely conditional and unconditional depen-
dency. Here the conditional label dependency captures the
dependency of the labels given a specific instance x 2 X ;
while the unconditional label dependency is the expected
dependency averaged over the marginal distribution of all
instances [12].

The joint conditional probability distribution pðyjxÞ,
specifies the probability of the label combination for a
specific instance, which provides a convenient point of

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2667

departure for analyzing the conditional label dependence.
Mathematically, pðyjxÞ can be written as

pðyjxÞ ¼ pðy1jxÞpðy2; . . . ; yqjy1; xÞ
¼ pðy1jxÞpðy2jy1; xÞpðy3; . . . ; yqjy1; y2; xÞ
¼ pðy1jxÞpðy2jy1; xÞ . . . pðyqjy1; . . . ; yq�1; xÞ;

(1)

where the elements of y ¼ ðy1; y2; . . . ; yqÞ can be arranged by
arbitrary order. Based on the above formulation, the joint
conditional probability pðyjxÞ can be estimated by multiple
steps, with each step for one class. To be more specific, we
can build a model to compute a prediction probability for

one label given x (e.g., pðy1jxÞ), then the output is used as
the prior to help the estimation of the probability for

another label (e.g., pðy2jy1; xÞ).
Recently, researchers have considered the classifier

chain (CC) idea (see [37], [38]) to model the underlying
label dependency. The classifier chain [38] algorithm
which can be considered as a deterministic approximation
of probability only using f0; 1g values [37]. All these two
algorithms build q classifiers for estimation w.r.t. q class
labels, in which the jth classifier is used to estimate

pðyj ¼ 1jx; y1; . . . ; yj�1Þ and the result is further propa-
gated to the ðjþ 1Þth classifier by constructing a new fea-
ture vector augmented by the value of jth label. The

ðjþ 1Þth classifier is to estimate pðyjþ1 ¼ 1jx; y1; . . . ; yjÞ
and generates a new feature vector ðx; y1; . . . ; yjþ1Þ for the
next classifier. The order of labels to be computed in PCC
and CC has a great impact on the classification perfor-
mance, and how to determine the order of labels is still
an open question [38].

Motivated by recent progress in exploiting label depen-
dency, in this paper, we propose a new hierarchical tree
algorithm, called ML-TREE, which explicitly considers
the intrinsic label dependency in a hierarchy way. The
pseudo-code of the algorithms is described in Algorithm 1
and 2. Specifically, there are three folds constructing the
hierarchical structure: 1) At each internal node, a multi-
class classifier model is built to partition the training data
into smaller subsets according to the predictions of the
model; 2) A set of relevant labels are identified at each
node for multi-label classification; 3) The relevant labels of
a node in high levels will be transferred into its child
nodes, which consider the remained labels according to
the classifier built in this phase.

Algorithm 1.ML-TREE

Input: A training data set D, and a relevant label vector b ¼
none

Output: A hierarchical multi-label tree
1: (b, h, P) = SPLITTEST(D;b)
2: if h 6¼ none ^ Acceptable(P) then
3: forDi 2 P do
4: treei=ML-TREE(Di, b)
5: end for
6: return node(h, b, [iftreeig)
7: else
8: return leaf(h, b)
9: end if

Algorithm 2. SPLITTEST

Input: A training data set D, a relevant label vector bp from
parent

Output: A classifier h, a new relevant label vector b, and a
partition P for current node

1: compute p using Eq. (2)
2: compute b using Eq. (3) and (4)
3: (h, P) = (none, f)
4: h = build classifier on D for those labels which have not been

identified according to b
5: if h 6¼none then
6: P= partition D using h
7: end if
8: return (b, h, P)

We seek to find the relevant labels to be associated with
the data examples at each node. If no examples are found,
the majority class of its parent node is returned; otherwise,
the majority class of all examples at the node is returned.
After that, the relevant labels identified by the nodes at
higher levels are transferred into the nodes at lower levels
as prior label information. This major step of ML-TREE, i.e.,
SPLITTEST, is detailed as follows:

i) The ML-TREE function invokes itself recursively for
each partition using the SPLITTEST function to train a multi-
class classifier and identify the relevant labels. At each
node splitting, SPLITTEST builds a group of one-against-all
binary classifiers [39] for those remained labels that have
not been identified in any of its parent nodes, i.e., the
labels with bj ¼ 0 (see Line 4 in Algorithm 2) .

Then, each example is classified into one class with maxi-
mum confidence score from the multi-class classifier, and it
is partitioned into the corresponding child node in next
layer (see Line 6 in Algorithm 2). Note that it is possible that
the confidence scores of two (or more) classifiers might be
equally maximal. In this case, the example is classified into
the class with the largest prior.

ii) In order to find the relevant labels for each node, we
design a label purity vector, denoted by p ¼ ½p1; . . . ; pq�>, to
represent the purities of different classes. Specifically, we
calculate each class label’s data purity by

pj ¼ 1

jDj
X

xi2D
yji ; (2)

where pj 2 ½0; 1� is the purity for the jth class label, D is the
examples at the node, and jDj is the number of examples
in D.

We then construct a relevant label vector, b ¼ ½b1; . . . ; bq�>,
and incorporate the purities to seek the majority labels as
the relevant labels of a node by

bj ¼ 1; if pj � �;
0; otherwise;

�
(3)

where bj is the relevant label indicator for the jth class label,
� 2 ð0:5; 1:0Þ is a purity threshold.

iii) We propose to use a label transfer mechanism to
transfer the result of the relevant label vector to lower
layers. Our idea is to preserve the identified relevant label

2668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

vector bp ¼ ½b1p; . . . ; bqp�> from the parent node and incorpo-
rate it as an additional indicator with the relevant label vec-

tor bc ¼ ½b1c ; . . . ; bqc�> of a child node to obtain a final result of
relevant labels b as follows:

bj ¼ 1; if bjp ¼ 1 or bjc ¼ 1;
0; otherwise:

�
(4)

iv) The above process continues until the stopping criterion
is reached, i.e., the data cannot be further split by the
induced classifiers.

Fig. 2 gives an example of two-label problem regarding
Fig. 1 to illustrate the construction of ML-TREE. Note that
each node in ML-TREE is with a set of one-against-all classi-
fiers. Without lose of generality, we use linear SVM as the
base classifier, and set the thresholding value � ¼ 0:9 as a
default value. As shown in Fig. 2, the root node v1 contains
all training instances, and we train two one-against-all clas-
sifiers (i.e., w0 and wþ) for the “0” and “þ” classes, respec-
tively (see Line 4 in Algorithm 2). We then classify the
instance x according to the confidence scores, i.e., the mar-
gin values ðw0 � xÞ and ðwþ � xÞ (see Line 6 in Algorithm 2).
As illustrated in node v1, the solid lines are the resulting
decision boundaries given by the binary classifiers,
and the dash line is the combined boundary decided by
the relative magnitudes of margins. Specifically, when
ðw0 � xÞ > ðwþ � xÞ > 0, which is the case in region �3 , x
will be classified as “0” class. While if ðwþ � xÞ >
ðw0 � xÞ > 0, which is the case in region �2 , x will be classi-
fied as “+” class.

According to the decision surface, the instances in
regions �1 and �2 would be classified as “þ” class; while the
instances in regions �3 and �4 would be classified as “0”
class. Next, we use the prediction function to compute a
vector of label probabilities p and a vector of relevant labels
b w.r.t. each child node (see Lines 1 and 2 in Algorithm 2).

For v2, we have p ¼ ½1:0; 0:29�> and b ¼ ½1; 0�>. According to
the prediction criterion, the “þ” class is considered as the
relevant label for the instances in v2. When building the clas-
sifier models for v2, we do not need to consider the “þ” class
any more. In other words, we just need to train a classifier
w.r.t. the “0” class for further splitting. The identified rele-
vant label “þ” will be transferred into the following child

nodes, i.e., nodes v4 and v5. The construction process is simi-
lar for nodes v3, v6 and v7 in the right sub-tree.

3.2 The ML-FOREST Algorithm

To improve the prediction performance, we further propose
a ML-FOREST algorithm which extends the tree model using
an ensemble method. A single standalone tree model can be
assumed to partition the whole data space into regions
belonging to different classes. However, it is likely that one
single tree may overfit the data in the local region. In partic-
ular, it may make the inference of a test example unreliable.
By applying an ensemble of trees, we first partition the
whole data set into multiple random data subsets, and then
construct multiple trees for each subset. In this way, we can
greatly reduce the risk of overfitting on training data, and
thus generally increase the overall prediction performance.
More importantly, such strategy can greatly improve the
scalability of the method over large-scale data sets. Lastly,
its complexity is linear w.r.t. the number of trees. The
ML-FOREST algorithm which builds an ensemble of K
classifier trees fT1; . . . ; TKg for multi-label classification is
described in Algorithm 3,

Algorithm 3.ML-FOREST

Training Phase
Input: A training data set D, the number of treesK
Output: A forest of tree classifiers F
1: F ¼ f

2: for i ¼ 1 toK do
3: prepare the training set Di = bootstrap(D)
4: build tree classifier Ti = ML-TREE(D, none)
5: F ¼ F [Ti

6: end for
7: return F
Classification Phase
1: For a given x, let b1; . . . ;bK be the predictions assigned by

the classifiers, calculate the confidence for each class, cj, by
the average combination method:

cj ¼ 1
K

PK
k¼1 b

j
k

2: Assign x to the classes with the confidences larger than a
predefined threshold value

An ensemble learner with higher diversity in compo-
nent learners has better generalization performance. The
theoretical and practical studies of ensemble diversity
are well documented [40], [41]. In order to achieve diver-
sity, we employ two randomization procedures to gener-
ate multiple hierarchical trees in ML-FOREST. First, each
tree is trained on a data subset randomly drawn from
the entire training set D using sampled with replacement
[42]. In addition, the purity thresholding value � for
each tree is selected randomly in the range ð0:5; 1:0Þ.
Such a randomization procedure also frees us from fine-
tuning an optimal � value.

For the task of prediction, ML-FOREST outputs a confi-
dence vector c ¼ ½c1; . . . ; cq�> 2 Rq for a testing example x,

where cj represents the confidence for the jth class. To this
end, we compute the predictions of all the trees regarding x.
For each tree, we seek a decision path from the root down to
a leaf node based on the prediction of classifier at each

Fig. 2. An example of training procedure for multi-label classification.

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2669

node. Based on the relevance label vectors (i.e., b1; . . . ;bK)
from the leaves w.r.t. all K trees, we compute the ensemble
confidence outputs c by

cj ¼ 1

K

XK

k¼1

bjk; (5)

where bjk is the jth element of the relevant label vector bk.
More details about the prediction are given below.

3.3 Prediction Via Thresholding Strategies

For a testing example x, ML-FOREST outputs a prediction vec-

tor y ¼ ½y1; . . . ; yq�> with yj ¼ 1 indicating the jth label is rel-
evant regarding x. Consider a confidence vector

c ¼ ½c1; . . . ; cq�> 2 Rq for x, where each element of c corre-
sponds to a confidence value for one class label. Given w,
the prediction y of x can be completed by finding a bipar-
tition of relevant and irrelevant labels based on a threshold
function such that

yj ¼ 1; if wj � t;
0; otherwise;

�
(6)

where t 2 ½0; 1� is a predefined thresholding value. There are
several ways to set the threshold value t. For example, we
set t ¼ 0:5 for simplicity.

Besides the above strategy, we can apply a max-drop
thresholding scheme, called Maximum Cut (MCut) method
[43], to find more flexible thresholding values for different
examples data sets automatically. In this scheme, a testing
example is first assignedwith a set of relevant labels. Given a
confidence output c for x, we first sort the labels according to
the values of c, and then find two adjacent classes with the
largest gap/difference in terms of their confidences. Lastly,
we use themean value as the threshold value for prediction.

3.4 Computational Complexity

Given a training data set containing m instances the pro-
posed ML-TREE algorithm uses the one-against-all paradigm
to build multi-class classifiers to partition the data at each
node, the complexity of this node depends on the number
of data instances jDvj and the cost to train the classifiers.

To simplify the analysis, we assume that the number
of learning data in the hierarchical tree is m ¼ Nd, and
the tree is a complete N-ary tree with d levels, which
means the average branch-out is N and all leaf nodes
are at the same level [22]. Let fðjDvjÞ be the complexity
of training one binary classifier at node v. The state-of-
the-art algorithms for training a linear SVM classifier
have a time complexity scaling close to OðmÞ [44]. At the
root node, we have a cost of Nm, while at the second
level we have N additional cost of NðmNÞ, i.e., an addi-

tional cost of m. At the subsequent level, we have N2

additional cost of Nðm
N2Þ, and so on. Therefore, the total

cost of the tree is Nmð1þ 1
N þ 1

N2 þ � � � þ 1
NdÞ, which leads

to OðNmÞ as a sum of a geometric series when d
approaches infinity.

For the ensemble classifier with K trees, let the number
of learning data in each tree be m0 ¼ 0:632m, and the aver-
age branch-out is N 0. Thus the cost of every tree is OðN 0m0Þ.

In addition, for each tree, we have an additional cost of
OðmÞ for the sampling. Consequently, the total complexity
of the ensemble classifier isKðOðN 0m0Þ þOðmÞÞ.

Besides the complexity information of our approach,
we also briefly analyze the complexities of several other
well-known multi-label algorithms, i.e., binary relevance
[10], classifier chain [38], and hierarchy of multi-label classi-
fiers [22]. Similar to the analysis for ML-FOREST, let the time
complexity for training a base classifier be OðmÞ w.r.t. m
training instances. BR decomposes a multi-label classifica-
tion problem into q independent binary classification prob-
lems, thus the overall complexity is OðqmÞ. CC algorithm
successively trains q binary classifiers, and appends the
label focused by the last classifier as a new attribute to train
the next classifier. By ignoring the extended label attribute,
the complexity of CC is also OðqmÞ. For HOMER, as each
training instance may pass through multiple paths from the
root to leaves, it is difficult to analyze the complexity w.r.t.
the number of training instances. In [22], it is shown that the
complexity of HOMER is OðfðqÞ þ qÞ, where q is the number
of labels and fðqÞ is the cost of the balanced clustering pro-
cess used in HOMER. The running time comparison of
these algorithms is provided in the experiment section.

4 EXPERIMENTS

4.1 Experimental Results on Synthetic Data Sets

In this experiment, we first use two synthetic data sets to
validate whether our proposed ML-FOREST algorithm can
mine reasonable label correlation or not. In the proposed
ML-FOREST algorithm, we use the amount of reused label co-
occurrences in the leaf nodes of the tree ensemble to auto-
matically estimate the label correlation. Specifically, we con-
struct a m-by-q matrix Q where m is the number of leaf
nodes in the ensemble and q is the number of possible
labels. The ith row of Q is equivalent to the relevant label
vector b of the ith leaf node, where the entries with value 1
correspond to the non-zero elements of b. The ith column of
Q represents the distribution of label li over the leaves in
the ensemble. The label correlation of two labels li and lj is
measured using the f-coefficient defined as follows:

fði; jÞ ¼ ðAD�BCÞ=
ffi
ðAþBÞðC þDÞðAþ CÞðBþDÞ

p
;

(7)

where A, B, C and D are the frequency counts of li ^ lj,
li ^ :lj, :li ^ lj and :li ^ :lj, respectively.

As we have no ground-truth label correlation for real-
world data, we study two synthetic data sets [11] in which
we know the exact label relationship. In the experiments, we
use them to check the validity of our proposed method for
capturing the label correlation. The data sets have 5,000
instances and five labels from l1 to l5. l5 is assigned to an
instance if it does not belong to l1 to l4. In the first data, we
have l1 ¼ l2 and l3 ¼ l4. In the second data, we have
l1 ¼ l2 _ l3 _ l4. The label correlation information for these
two data sets are given in Tables 1 and 2, respectively. The
last row (column) of the tables for l5 has negative references
because l5 is assigned to an instance if it belongs to none of l1
to l4. Table 1 shows that the entries ð1; 2Þ, ð2; 1Þ, ð3; 4Þ and
ð4; 3Þ are 1.0, while Table 2 shows that the entries ð1; 2Þ, ð1; 3Þ,

2670 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

ð1; 4Þ have relatively large positive values. These results are
consistent with the ground-truth label correlation.

4.2 Experimental Results on Real Data Sets

In this experiment, we compare the proposed ML-FOREST

algorithm with 8 well-known multi-label classification algo-
rithms on 12 benchmark multi-label data sets. For the pur-
pose of reproducibility, we provide the code at: https://
sites.google.com/site/qysite/.

4.2.1 Data Sets

Twelve multi-label data sets are used in the experiments, and
these data sets are benchmark data sets from different appli-
cation domains: scene, emotions and corel5k are image data sets,
genebase and yeast are biology data sets, and the remaining
seven are document corpus. Reuters(10), Reuters(21), and
Reuters(90) are the Reuters-21578 text data sets w.r.t. the larg-
est 10 classes, 21 classes, and 90 classes, respectively. All the
data sets are originally split into training and test set [45]. The
characteristics of the data sets are summarized in Table 3.

4.2.2 Parameter Instantiation

We compare the proposed Algorithm with eight well-
known multi-label classification algorithms, i.e., binary rele-
vance [10], classifier chain (CC) [38], multi-label k nearest
neighbor (ML-kNN) [18], instance-based and logistic regres-
sion (IBLR-ML) [21], hierarchy of multi-label classifiers [22]
and predictive clustering trees [32], random forest of predic-
tive clustering trees (RF-PCT) [35] and Two stage architec-
ture [36]. The implementations of the BR, CC, ML-kNN,
IBLR-ML, HOMER, RF-PCT and TSA algorithms are based
on the MULAN library1, and the implementation of the
PCT algorithm is based on the CLUS system.2

For the algorithms using base classifiers (i.e., BR, CC,
HOMER, TSA and ML-FOREST), SVM with linear kernel in
LIBSVM library [46] is used as the base classifier. The
options “-b 1” is used to learn SVMs with probability out-
puts in the experiments. We use five-fold cross validation
on the training set to select parameters. In particular, for
each algorithm, the parameters yield the best average ham-
ming loss using cross validation are selected. After that, the
algorithm is trained again with the selected parameters on
the whole training set and evaluated on the test set for the
comparison. The ranges of parameters of different algo-
rithms are given as follows. The number of neighbors k in
ML-kNN and IBLR-ML is tuned from 5 to 30 with an incre-
ment of 5. The number of clusters in the HOMER is tuned

within the range of 2 to 6. The values for parameter C of
SVM for BR, CC, TSA and HOMER are tuned with the val-

ues 2�5; 2�3; . . . ; 23. For RF-PCT, we set the number of mod-

els to 50. We try the feature subset sizes of log 2f þ 1,
ffiffiffi
f

p
,

f=10 and f=2, where f is the total number of features. Such
setting is similar to the testing in [47], and we find that f=2
results in yields the best performance, thus we use f=2 as
the feature subset size in the model.

Our ML-FOREST algorithm has three essential parame-
ters: the number of trees K, the purity threshold � and
the penalty parameter C of SVM base classifiers. For
each tree, we randomly selected � in the range

ð0:9; 0:95Þ. We set K ¼ 50 and C ¼ 2�5 as default values.
Unless otherwise stated, we use these default settings in
the experiments.

4.2.3 Performance Measures

The performance of multi-label classification is measured by
the bipartition-based metrics based on the comparison of the
predicted labels of each example with the ground-truth
labels provided by the data set. In our experiments, nine
bipartition-based metrics (hamming loss, example-based
accuracy, example-based precision, example-based recall,
example-based F1, subset accuracy, macro-precision,
macro-recall and macro-F1) are used to measure the perfor-
mance. Please see [50] the detailed definitions of these met-
rics. The ranking-based metrics (e.g., one-error, coverage,
ranking loss and average precision) compare the predicted
ranking of the labels with the ground-truth ranking.

TABLE 1
Label Correlation of the First Synthetic Data Set,

l1 ¼ l2 and l3 ¼ l4

labels l1 l2 l3 l4 l5

l1 1.00 1.00 -0.14 -0.14 -0.09
l2 1.00 1.00 -0.14 -0.14 -0.09
l3 -0.14 -0.14 1.00 1.00 -0.14
l4 -0.14 -0.14 1.00 1.00 -0.14
l5 -0.09 -0.09 -0.14 -0.14 1.00

TABLE 3
Description of the Multi-Label Data Sets in Terms

of the Number of Training (#tr.e.) and Test (#t.e.) Examples, the
Number of Features (f), the Total Number of Labels(q),

and the Label Cardinality (lc)

data set domain #tr.e. #t.e. f q lc

scene Image 1,211 1,196 294 6 1.07
Reuters(10) Text 6,490 2,545 500 10 1.11
Reuters(21) Text 7,140 2,747 500 21 1.16
Reuters(90) Text 7,770 3,019 500 90 1.24
medical Text 333 645 1,449 45 1.25
genebase Biology 463 199 1,186 27 1.25
ohsumed Text 6,286 7,643 500 24 1.66
emotions Image 391 202 72 6 1.87
tmc2007 Text 21,519 7,077 500 22 2.16
bibtex Text 4,880 2,515 1,836 159 2.40
corel5k Image 4,500 500 499 374 3.52
yeast Biology 1,500 917 103 14 4.2

The data sets are ordered by their label cardinality (i.e., average number of
labels per example).

TABLE 2
Label Correlation of the Second Synthetic Data Set,

l1 ¼ l2 _ l3 _ l4

labels l1 l2 l3 l4 l5

l1 1.00 0.29 0.35 0.36 -0.03
l2 0.29 1.00 0.30 0.23 -0.06
l3 0.35 0.30 1.00 0.15 -0.03
l4 0.36 0.23 0.15 1.00 -0.03
l5 -0.03 -0.06 -0.03 -0.03 1.00

1. http://mulan.sourceforge.net
2. http://clus.sourceforge.net.

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2671

https://sites.google.com/site/qysite/
https://sites.google.com/site/qysite/
http://mulan.sourceforge.net
http://clus.sourceforge.net

We also consider other four ranking-based metrics (one-
error, coverage, ranking loss, and average precision) for
multi-label ranking evaluation. Ranking-based metrics are
threshold independent. These measures compare the pre-
dicted ranking of the labels with the ground-truth ranking.

We use a two-step statistical test procedure (the corrected
Friedman test and the post-hoc Nemenyi test) as recom-
mended by Dem�sar [16] to compare the algorithms in a pair-
wise way across multiple data sets. The comparison results
of the algorithms w.r.t. different evaluation metrics are
given in Tables 4 to 17. The Friedman test is a non-paramet-
ric test for multiple hypotheses testing. The procedure
involves ranking the algorithms (each row in each section of
the table) in a descending order based on their performance
for each data set separately in which the best performance
for each data set gets the rank of 1.

The average rank of each algorithm across all the data sets
(each column in each section of the table) is computed. Then,
the Nemenyi post-hoc test is used in order to detect which
algorithms are significantly different from each other, based
upon the average ranks of the algorithms. The performances
of two algorithms is significantly different if their average
ranks differ bymore than a critical distance (CD)whose value
is depended on the number of algorithms, the number of data
sets and a given significance level p. The results of the Neme-
nyi post-hoc test can be visually presented with diagrams
[16] as shown in Fig. 3, where the critical distance is 3.468 and

the significant level is p ¼ 0:05. For each evaluation metric,
the values on the horizontal axis show the average ranks of
the algorithms in a manner that the algorithm has the best
(worst) rank. The algorithms that do not differ significantly
are connected by a bold horizontal line.

4.2.4 Results with Bipartition-Based Metrics

Fig. 3 shows the diagrams of the results on the multi-label
classification data sets for the bipartition-based metrics.
Tables 4 to 12 show the complete comparison results of
the algorithms for different evaluation metrics. Each of
the tables represents a specific evaluation metric. For each
evaluation metric, the uparrow " (downarrow #) indicates
that a larger (smaller) value is more useful for such a spe-
cific evaluation metric. The numbers in brackets are the
ranks of the algorithms in terms of one particular evalua-
tion metric, and the numbers in boldface indicate the best
ranking algorithms. The last row in each section of the
table is the average ranks of the algorithms across all the
data sets. According to the experimental results, ML-FOR-

EST achieves competitive performance with the compared
algorithms. The experiments also reveal a number of
interesting points:

� The ML-FOREST, TSA, RF-PCT and HOMER meth-
ods are hierarchical methods using different strate
gies to exploit the label dependency. ML-FOREST,

TABLE 4
Performance of the Multi-Label Classification Algorithms in Terms of Hamming Loss#

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.1028(5) 0.1062(7) 0.0960(2) 0.0893(1) 0.1180(8) 0.1332(9) 0.0977(4) 0.1041(6) 0.0966(3)
Reuters(10) 0.0165(3) 0.0166(4) 0.0218(8) 0.0208(7) 0.0155(1) 0.0288(9) 0.0187(6) 0.0160(2) 0.0183(5)
Reuters(21) 0.0110(2) 0.0109(1) 0.0141(8) 0.0130(7) 0.0115(4) 0.0214(9) 0.0129(6) 0.0111(3) 0.0128(5)
Reuters(90) 0.0050(2) 0.0049(1) 0.0054(6) 0.0058(8) 0.0053(5) 0.0118(9) 0.0057(7) 0.0051(3) 0.0052(4)
medical 0.0119(1) 0.0120(2) 0.0197(7) 0.0299(9) 0.0141(6) 0.0230(8) 0.0130(4) 0.0131(5) 0.0121(3)
genbase 0.0746(9) 0.0744(8) 0.0015(3) 0.0016(4) 0.0030(5) 0.0078(7) 0.0007(1) 0.0011(2) 0.0037(6)
ohsumed_norm 0.0434(2) 0.0431(1) 0.0564(5) 0.0569(6) 0.0480(4) 0.0624(9) 0.0595(8) 0.0580(7) 0.0450(3)
emotions 0.2137(3) 0.2459(4) 0.2830(9) 0.2797(8) 0.2112(2) 0.2591(6) 0.1972(1) 0.2632(7) 0.2564(5)
tmc2007 0.0553(3) 0.0554(4) 0.0611(8) 0.0583(6) 0.0578(5) 0.0759(9) 0.0495(1) 0.0550(2) 0.0601(7)
bibtex 0.0123(3) 0.0124(4) 0.0139(7) 0.0189(9) 0.0137(6) 0.0145(8) 0.0130(5) 0.0122(2) 0.0120(1)
corel5k 0.0092(1) 0.0093(2) 0.0094(3) 0.0231(9) 0.0103(7) 0.0096(5) 0.0095(4) 0.0119(8) 0.0100(6)
yeast 0.2048(4) 0.2196(8) 0.1980(1) 0.2005(3) 0.2119(7) 0.2426(9) 0.2065(6) 0.2060(5) 0.1985(2)
Avg. rank 3.17 3.83 5.58 6.42 5.00 8.08 4.42 4.33 4.17

TABLE 5
The Performance of the Multi-Label Classification Algorithms in Terms of Accuracy "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.5811(7) 0.6702(2) 0.6240(5) 0.6495(4) 0.5838(6) 0.5698(9) 0.6608(3) 0.5811(8) 0.7189(1)
Reuters(10) 0.8945(6) 0.9038(3) 0.8600(9) 0.8706(7) 0.9054(2) 0.8602(8) 0.8991(5) 0.8994(4) 0.9153(1)
Reuters(21) 0.8689(4) 0.8796(2) 0.8553(6) 0.8511(8) 0.8731(3) 0.7794(9) 0.8537(7) 0.8684(5) 0.8837(1)
Reuters(90) 0.7741(6) 0.7874(3) 0.7788(5) 0.7860(4) 0.7972(1) 0.5678(9) 0.7295(8) 0.7738(7) 0.7932(2)
medical 0.7048(3) 0.7074(2) 0.3731(8) 0.4225(7) 0.6712(5) 0.2036(9) 0.6740(4) 0.6488(6) 0.7590(1)
genbase 0.3595(9) 0.3600(8) 0.9782(4) 0.9849(3) 0.9652(6) 0.9284(7) 0.9916(1) 0.9866(2) 0.9673(5)
ohsumed 0.5028(4) 0.5219(3) 0.3241(6) 0.2761(7) 0.5290(2) 0.1878(9) 0.2349(8) 0.3649(5) 0.5571(1)
emotions 0.5173(2) 0.5035(3) 0.3177(8) 0.3160(9) 0.4917(4) 0.4827(5) 0.5804(1) 0.4344(6) 0.4287(7)
tmc2007 0.5953(5) 0.5987(4) 0.5567(7) 0.5651(6) 0.6024(2) 0.4544(9) 0.6393(1) 0.5997(3) 0.5243(8)
bibtex 0.2865(5) 0.3067(4) 0.1294(8) 0.1651(7) 0.3352(2) 0.0462(9) 0.2299(6) 0.3179(3) 0.3568(1)
corel5k 0.0501(5) 0.0553(4) 0.0184(8) 0.0412(6) 0.1055(3) 0.0000(9) 0.0222(7) 0.1934(1) 0.1194(2)
yeast 0.4984(6) 0.4352(9) 0.4920(7) 0.5031(3) 0.5195(2) 0.4530(8) 0.5341(1) 0.4991(5) 0.5009(4)
Avg. rank 5.17 3.92 6.75 5.92 3.17 8.33 4.33 4.58 2.83

2672 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

TSA and HOMER are based on problem transfor-
mation mechanism using SVM base classifiers to
solve a hierarchy of partial binary classification
problems, whilst RF-PCT is to utilize multiple
component classifiers each deals with a partial
data set. We observe that this type of methods
consistently achieve better performance than the
other methods, such as MLkNN and PCT are not
competitive mainly due to the inadequacy of
modeling label dependency. This suggests the

importance of leveraging label dependency for
multi-label classification.

� Comparing ML-FOREST with HOMER, we see that
both ML-FOREST and HOMER have excellent overall
performances. HOMER ranks 1st in terms of recall
and macro-recall, while ML-FOREST is better than
HOMER in terms of precision. Precision and recall
are two different quantitative measures which evalu-
ate the algorithm performance from different
aspects. Precision is the fraction of predicted labels

TABLE 6
The Performance of the Multi-Label Classification Algorithms in Terms of Precision "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.6063(7) 0.7032(2) 0.6547(5) 0.6798(4) 0.6127(6) 0.5991(9) 0.6898(3) 0.6060(8) 0.7573(1)
Reuters(10) 0.9075(6) 0.9158(3) 0.8726(8) 0.8819(7) 0.9168(2) 0.8725(9) 0.9155(4) 0.9104(5) 0.9409(1)
Reuters(21) 0.8890(4) 0.8989(2) 0.8766(6) 0.8713(8) 0.8905(3) 0.8129(9) 0.8732(7) 0.8870(5) 0.9340(1)
Reuters(90) 0.8045(6) 0.8179(3) 0.8111(5) 0.8163(4) 0.8245(2) 0.5790(9) 0.7607(8) 0.8018(7) 0.8524(1)
medical 0.7450(3) 0.7470(2) 0.4163(8) 0.4668(7) 0.7183(5) 0.2574(9) 0.7276(4) 0.6875(6) 0.8451(1)
genbase 0.3613(9) 0.3617(8) 0.9899(6) 0.9975(2) 0.9807(7) 0.9950(3) 1.0000(1) 0.9950(4) 0.9941(5)
ohsumed 0.6373(4) 0.6609(2) 0.4339(6) 0.3708(7) 0.6473(3) 0.2656(9) 0.3387(8) 0.4646(5) 0.7785(1)
emotions 0.6229(4) 0.6007(5) 0.5107(8) 0.4942(9) 0.6345(3) 0.5817(6) 0.6980(1) 0.5489(7) 0.6619(2)
tmc2007 0.7607(4) 0.7627(3) 0.7243(8) 0.7283(7) 0.7337(6) 0.6481(9) 0.7699(2) 0.7603(5) 0.7779(1)
bibtex 0.4575(5) 0.4679(4) 0.2543(7) 0.2531(8) 0.4767(3) 0.1396(9) 0.3839(6) 0.4832(2) 0.5656(1)
corel5k 0.1298(4) 0.1157(5) 0.0425(8) 0.0680(7) 0.2146(3) 0.0000(9) 0.0770(6) 0.3242(1) 0.2680(2)
yeast 0.6994(4) 0.6966(5) 0.7322(1) 0.7069(3) 0.6686(7) 0.6370(9) 0.6678(8) 0.6941(6) 0.7171(2)
Avg. rank 5.00 3.67 6.33 6.08 4.17 8.25 4.83 5.08 1.58

TABLE 7
The Performance of the Multi-Label Classification Algorithms in Terms of Recall "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.6217(8) 0.6877(3) 0.6488(5) 0.6576(4) 0.6346(6) 0.5711(9) 0.6948(2) 0.6325(7) 0.7441(1)
Reuters(10) 0.9111(6) 0.9183(5) 0.8750(8) 0.8849(7) 0.9244(1) 0.8714(9) 0.9200(4) 0.9213(3) 0.9227(2)
Reuters(21) 0.8897(5) 0.8993(2) 0.8743(6) 0.8668(8) 0.8968(3) 0.7816(9) 0.8710(7) 0.8933(4) 0.9093(1)
Reuters(90) 0.7942(7) 0.8056(2) 0.7963(5) 0.8027(4) 0.8227(1) 0.5683(9) 0.7383(8) 0.7963(6) 0.8051(3)
medical 0.7628(2) 0.7509(3) 0.3953(8) 0.5339(7) 0.7186(4) 0.2036(9) 0.7116(5) 0.6997(6) 0.7822(1)
genbase 0.9891(3) 0.9890(4) 0.9782(7) 0.9874(5) 0.9795(6) 0.9284(9) 0.9916(1) 0.9915(2) 0.9732(8)
ohsumed_norm 0.5479(4) 0.5679(3) 0.3579(6) 0.2961(7) 0.6234(1) 0.1878(9) 0.2417(8) 0.4484(5) 0.5681(2)
emotions 0.6089(2) 0.5965(4) 0.3639(8) 0.3622(9) 0.5371(6) 0.5842(5) 0.7005(1) 0.5998(3) 0.4893(7)
tmc2007 0.6940(4) 0.6930(5) 0.6542(7) 0.6546(6) 0.7383(2) 0.5322(9) 0.7477(1) 0.7036(3) 0.5334(8)
bibtex 0.2949(5) 0.3199(4) 0.1335(8) 0.2095(7) 0.3800(2) 0.0462(9) 0.2453(6) 0.3393(3) 0.3952(1)
corel5k 0.0515(6) 0.0587(5) 0.0190(8) 0.0772(4) 0.1225(3) 0.0000(9) 0.0223(7) 0.2625(1) 0.1423(2)
yeast 0.5822(5) 0.4950(9) 0.5491(8) 0.5783(6) 0.6327(2) 0.5860(4) 0.6749(1) 0.5903(3) 0.5730(7)
Avg. rank 4.75 4.08 7.00 6.17 3.08 8.25 4.25 3.83 3.58

TABLE 8
The Performance of the Multi-Label Classification Algorithms in Terms of F1 Score "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.6030(8) 0.6870(2) 0.6426(5) 0.6623(4) 0.6102(6) 0.5800(9) 0.6819(3) 0.6062(7) 0.7400(1)
Reuters(10) 0.9045(6) 0.9128(3) 0.8694(8) 0.8792(7) 0.9156(2) 0.8682(9) 0.9115(4) 0.9103(5) 0.9261(1)
Reuters(21) 0.8826(5) 0.8927(2) 0.8691(6) 0.8631(8) 0.8870(3) 0.7913(9) 0.8661(7) 0.8828(4) 0.9013(1)
Reuters(90) 0.7907(6) 0.8035(3) 0.7949(5) 0.8012(4) 0.8148(2) 0.5712(9) 0.7421(8) 0.7902(7) 0.8151(1)
medical 0.7380(2) 0.7361(3) 0.3951(8) 0.4733(7) 0.7040(5) 0.2209(9) 0.7043(4) 0.6793(6) 0.7945(1)
genbase 0.5235(9) 0.5240(8) 0.9821(4) 0.9900(3) 0.9749(6) 0.9467(7) 0.9941(1) 0.9908(2) 0.9769(5)
ohsumed 0.5615(4) 0.5824(3) 0.3703(6) 0.3125(7) 0.6018(2) 0.2107(9) 0.2679(8) 0.4260(5) 0.6265(1)
emotions 0.5901(2) 0.5766(3) 0.3959(8) 0.3911(9) 0.5576(4) 0.5559(5) 0.6675(1) 0.5323(6) 0.5236(7)
tmc2007 0.6863(5) 0.6867(4) 0.6475(7) 0.6513(6) 0.6961(2) 0.5444(9) 0.7265(1) 0.6906(3) 0.6052(8)
bibtex 0.3343(5) 0.3559(4) 0.1619(8) 0.2087(7) 0.3944(2) 0.0671(9) 0.2764(6) 0.3718(3) 0.4270(1)
corel5k 0.0704(5) 0.0733(4) 0.0249(8) 0.0606(6) 0.1436(3) 0.0000(9) 0.0344(7) 0.2774(1) 0.1722(2)
yeast 0.6087(5) 0.5420(9) 0.5993(7) 0.6085(6) 0.6243(2) 0.5668(8) 0.6459(1) 0.6103(3) 0.6090(4)
Avg. rank 5.17 4.00 6.67 6.17 3.25 8.42 4.25 4.33 2.75

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2673

that are also relevant (evaluating the accurate of the
prediction), while recall is the fraction of relevant
labels that are predicted correctly (evaluating the
completeness of the prediction). This result indicates
that the predictions from ML-FOREST are more accu-
rate than those from HOMER; while the predictions
from HOMER are more complete than the ones from
ML-FOREST. A reasonable explanation for this finding
is that, HOMER uses multiple-leaf labeling method
to classify a new multi-label example. HOMER

returns the union of the predicted label set in multi-
ple leaves, therefore the prediction is more complete.
Whilst ML-FOREST is based on decision-path labeling
method which combines the predictive labels from
the root to a leaf as prediction result. The prediction
at each node is obtained by the purity threshold �
with a large value in our experiments and therefore,
is more accurate.

� Comparing ML-FOREST with RF-PCT, both ML-FOREST

and RF-PCT consistently yield competitive, though

TABLE 9
The Performance of the Multi-Label Classification Algorithms in Terms of Subset Accuracy "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.5159(7) 0.6196(2) 0.5686(5) 0.6112(3) 0.5050(9) 0.5393(6) 0.5978(4) 0.5075(8) 0.6564(1)
Reuters(10) 0.8633(5) 0.8758(2) 0.8295(9) 0.8428(7) 0.8739(3) 0.8354(8) 0.8613(6) 0.8656(4) 0.8833(1)
Reuters(21) 0.8260(4) 0.8391(1) 0.8133(7) 0.8129(8) 0.8296(3) 0.7426(9) 0.8147(6) 0.8231(5) 0.8333(2)
Reuters(90) 0.7237(6) 0.7393(3) 0.7307(5) 0.7406(2) 0.7436(1) 0.5588(9) 0.6916(8) 0.7235(7) 0.7317(4)
medical 0.6078(3) 0.6248(2) 0.3070(7) 0.2853(8) 0.5736(5) 0.1535(9) 0.5829(4) 0.5581(6) 0.6543(1)
genbase 0.0000(8.5) 0.0000(8.5) 0.9648(3) 0.9648(4) 0.9296(6) 0.8844(7) 0.9849(1) 0.9749(2) 0.9397(5)
ohsumed_norm 0.3318(3) 0.3463(2) 0.1973(5) 0.1748(7) 0.3187(4) 0.1267(9) 0.1468(8) 0.1934(6) 0.3718(1)
emotions 0.2921(2) 0.2772(3) 0.1040(8) 0.1040(9) 0.2772(4) 0.2624(5) 0.3119(1) 0.1287(7) 0.1683(6)
tmc2007 0.3144(4) 0.3277(2) 0.2816(7) 0.2960(6) 0.3054(5) 0.2025(9) 0.3534(1) 0.3164(3) 0.2778(8)
bibtex 0.1678(5) 0.1817(3) 0.0549(8) 0.0708(7) 0.1825(2) 0.0036(9) 0.1125(6) 0.1765(4) 0.2073(1)
corel5k 0.0040(5) 0.0060(4) 0.0001(7) 0.0020(6) 0.0180(1) 0.0000(8.5) 0.0000(8.5) 0.0120(2) 0.0100(3)
yeast 0.1516(6) 0.1396(8) 0.1592(4) 0.1778(2) 0.1963(1) 0.1178(9) 0.1559(5) 0.1407(7) 0.1658(3)
Avg. rank 4.83 3.42 6.25 5.75 3.67 8.13 4.88 5.08 3.00

TABLE 10
The Performance of the Multi-Label Classification Algorithms in Terms ofMacro-Precision "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.7781(4) 0.7453(7) 0.7931(3) 0.8314(1) 0.6943(8) 0.6561(9) 0.7970(2) 0.7641(5) 0.7486(6)
Reuters(10) 0.9123(1) 0.9083(2) 0.8740(8) 0.8812(7) 0.9014(3) 0.8250(9) 0.8916(5) 0.9007(4) 0.8868(6)
Reuters(21) 0.8690(3) 0.8605(4) 0.8230(8) 0.8584(5) 0.8291(7) 0.6492(9) 0.9202(1) 0.8572(6) 0.8895(2)
Reuters(90) 0.5723(4) 0.5952(1) 0.5429(5) 0.4503(7) 0.5771(3) 0.0337(9) 0.4291(8) 0.5344(6) 0.5942(2)
medical 0.3372(4) 0.3571(3) 0.1477(8) 0.2023(7) 0.3130(5) 0.0185(9) 0.3810(1) 0.2665(6) 0.3665(2)
genbase 0.6994(7) 0.7041(4) 0.7037(5) 0.7391(2) 0.6139(8) 0.4059(9) 0.8519(1) 0.7325(3) 0.7037(6)
ohsumed 0.7206(2) 0.7077(3) 0.6331(5) 0.6524(4) 0.6288(6) 0.1189(9) 0.5935(8) 0.6016(7) 0.7898(1)
emotions 0.6842(3) 0.5956(7) 0.4751(9) 0.4773(8) 0.7051(2) 0.6194(4) 0.7165(1) 0.6006(6) 0.6043(5)
tmc2007 0.7812(5) 0.7664(6) 0.7376(7) 0.7828(4) 0.6951(8) 0.3948(9) 0.8458(2) 0.8042(3) 0.9237(1)
bibtex 0.5220(3) 0.5027(4) 0.1941(7) 0.1698(8) 0.4311(6) 0.0063(9) 0.4410(5) 0.5301(2) 0.6249(1)
corel5k 0.0516(5) 0.0523(4) 0.0334(7) 0.0329(8) 0.0553(3) 0.0000(9) 0.3105(1) 0.0616(2) 0.0516(6)
yeast 0.3729(6) 0.3231(9) 0.6003(1) 0.5101(3) 0.3460(8) 0.4099(4) 0.5626(2) 0.3677(7) 0.3932(5)
Avg. rank 3.92 4.50 6.08 5.33 5.58 8.17 3.08 4.75 3.58

TABLE 11
The Performance of the Multi-Label Classification Algorithms in Terms ofMacro-Recall "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.6134(8) 0.6770(3) 0.6374(5) 0.6442(4) 0.6270(6) 0.5605(9) 0.6792(2) 0.6250(7) 0.7297(1)
Reuters(10) 0.8237(4) 0.8368(3) 0.7539(8) 0.7415(9) 0.8571(1) 0.8062(5) 0.7886(6) 0.8487(2) 0.7769(7)
Reuters(21) 0.7460(4) 0.7579(1) 0.6980(5) 0.6952(6) 0.7564(3) 0.5442(9) 0.6171(8) 0.7577(2) 0.6875(7)
Reuters(90) 0.3983(4) 0.4014(3) 0.3551(7) 0.4058(2) 0.4427(1) 0.0375(9) 0.2161(8) 0.3772(6) 0.3809(5)
medical 0.3066(4) 0.3191(3) 0.0859(8) 0.2141(7) 0.2557(5) 0.0220(9) 0.3498(1) 0.2353(6) 0.3266(2)
genbase 0.7755(2) 0.7755(3) 0.6961(6) 0.7189(5) 0.6366(8) 0.4021(9) 0.8519(1) 0.7407(4) 0.6479(7)
ohsumed 0.4100(4) 0.4383(2) 0.2365(6) 0.2087(7) 0.5308(1) 0.0822(9) 0.1403(8) 0.3148(5) 0.4276(3)
emotions 0.6048(3) 0.5880(4) 0.3129(9) 0.3284(8) 0.5286(6) 0.5853(5) 0.6824(1) 0.6131(2) 0.4772(7)
tmc2007 0.4878(5) 0.5006(4) 0.4073(7) 0.4269(6) 0.5614(2) 0.2601(9) 0.3945(8) 0.5021(3) 0.6275(1)
bibtex 0.1698(5) 0.1922(4) 0.0508(8) 0.1177(7) 0.2600(1) 0.0063(9) 0.1366(6) 0.2098(3) 0.2372(2)
corel5k 0.0135(7) 0.0216(6) 0.0090(8) 0.0428(2) 0.0307(4) 0.0000(9) 0.2995(1) 0.0387(3) 0.0298(5)
yeast 0.3233(6) 0.2705(9) 0.3075(8) 0.3379(4) 0.3682(3) 0.3842(2) 0.3980(1) 0.3333(5) 0.3195(7)
Avg. rank 4.67 3.75 7.08 5.58 3.42 7.75 4.25 4.00 4.50

2674 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

perhaps not the best performance in terms of all the
metrics. ML-FOREST and RF-PCT perform well in
terms of macro precision and macro recall which take
average of the precision and recall over different
classes. This result implies that these two tree ensem-
ble methods are robust across a range of different
datasets and classes. Both of them are able to achieve
good overall performance in the evaluation. The rea-
son for this is that although growing each individual
tree in ML-FOREST and RF-PCT may not be optimal,

multiple fully grown trees can make it up for good
and robust performance.

� We further analyze the performance of the ML-FOREST

w.r.t. different types of data. We can see that the per-
formances of ML-FOREST on text data sets (e.g., Reu-
ters, ohsumed and bibtex) are better than those of
the image and biology data sets. A reasonable expla-
nation for this finding is that we use SVMs with a lin-
ear kernel as base classifier for ML-FOREST. Previous
study [49] has shown that most text categorization

TABLE 12
The Performance of the Multi-Label Classification Algorithms in Terms ofMacro-F1 "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.6853(7) 0.7063(4) 0.7003(5) 0.7226(3) 0.6575(8) 0.6025(9) 0.7322(2) 0.6865(6) 0.7375(1)
Reuters(10) 0.8635(4) 0.8692(3) 0.8050(8) 0.7998(9) 0.8769(1) 0.8132(7) 0.8338(5) 0.8720(2) 0.8239(6)
Reuters(21) 0.7996(3) 0.8028(1) 0.7408(7) 0.7612(6) 0.7876(4) 0.5576(9) 0.7112(8) 0.8005(2) 0.7780(5)
Reuters(90) 0.4503(3) 0.4574(2) 0.4077(7) 0.4090(6) 0.4749(1) 0.0336(9) 0.2630(8) 0.4256(5) 0.4403(4)
medical 0.3124(4) 0.3271(3) 0.1037(8) 0.1815(7) 0.2687(5) 0.0201(9) 0.3581(1) 0.2431(6) 0.3358(2)
genbase 0.7008(5) 0.7032(4) 0.6998(6) 0.7258(3) 0.6183(8) 0.4038(9) 0.8519(1) 0.7361(2) 0.6718(7)
ohsumed 0.5023(4) 0.5267(2) 0.3174(6) 0.3046(7) 0.5437(1) 0.0958(9) 0.1753(8) 0.3934(5) 0.5227(3)
emotions 0.6072(2) 0.5568(6) 0.3469(9) 0.3705(8) 0.5781(5) 0.5957(4) 0.6800(1) 0.6027(3) 0.5249(7)
tmc2007 0.5691(5) 0.5803(4) 0.4850(7) 0.5212(6) 0.6051(2) 0.2938(9) 0.4460(8) 0.5813(3) 0.7009(1)
bibtex 0.2241(5) 0.2470(4) 0.0692(8) 0.1308(7) 0.3007(2) 0.0063(9) 0.1834(6) 0.2678(3) 0.3129(1)
corel5k 0.0185(7) 0.0263(6) 0.0128(8) 0.0295(5) 0.0333(4) 0.0000(9) 0.3008(1) 0.0412(2) 0.0345(3)
yeast 0.3247(8) 0.2785(9) 0.3361(5) 0.3651(3) 0.3467(4) 0.3914(1) 0.3784(2) 0.3354(6) 0.3332(7)
Avg. rank 4.75 4.00 7.00 5.83 3.75 7.75 4.25 3.75 3.92

TABLE 13
The Performance of the Multi-Label Classification Algorithms in Terms of One-Error #

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.2425(3) 0.2776(7) 0.2533(6) 0.2341(1) 0.3294(8) 0.3813(9) 0.2475(4) 0.2366(2) 0.2475(5)
Reuters(10) 0.0530(2) 0.0534(4) 0.0896(8) 0.0864(7) 0.0727(6) 0.1218(9) 0.0625(5) 0.0515(1) 0.0531(3)
Reuters(21) 0.0641(2) 0.0648(3) 0.1012(8) 0.0910(6) 0.0961(7) 0.1744(9) 0.0823(5) 0.0593(1) 0.0673(4)
Reuters(90) 0.1447(3) 0.1414(2) 0.1534(5) 0.1613(6) 0.1650(8) 0.4193(9) 0.1630(7) 0.1395(1) 0.1467(4)
medical 0.1597(2) 0.1690(3) 0.3612(7) 0.5256(8) 0.2465(6) 0.6279(9) 0.2016(5) 0.1721(4) 0.1504(1)
genbase 0.0000(2.5) 0.0000(2.5) 0.0000(2.5) 0.0000(2.5) 0.0050(7) 0.0050(8) 0.0000(5) 0.0000(6) 0.0050(9)
ohsumed_norm 0.2281(3) 0.2224(1) 0.3892(6) 0.4117(7) 0.3202(4) 0.5393(9) 0.4438(8) 0.3598(5) 0.2239(2)
emotions 0.2921(1) 0.3614(7) 0.3615(8) 0.3564(6) 0.3515(5) 0.3812(9) 0.2970(2) 0.3020(3) 0.3020(4)
tmc2007 0.1710(4) 0.1749(5) 0.2040(7) 0.1946(6) 0.2374(8) 0.2984(9) 0.1542(2) 0.1600(3) 0.1170(1)
bibtex 0.3575(2) 0.3586(3) 0.6020(7) 0.6294(8) 0.4584(6) 0.7829(9) 0.4123(5) 0.3718(4) 0.3458(1)
corel5k 0.6760(3) 0.6860(4) 0.6940(5) 0.8820(9) 0.7580(7) 0.7680(8) 0.6400(2) 0.5980(1) 0.7140(6)
yeast 0.2443(7) 0.3162(9) 0.2345(2) 0.2410(4) 0.2497(8) 0.2334(1) 0.2443(6) 0.2356(3) 0.2410(5)
Avg. rank 3.04 4.21 5.96 5.88 6.67 8.17 4.67 2.83 3.75

TABLE 14
The Performance of the Multi-Label Classification Algorithms in Terms of Coverage #

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.5017(2) 0.5761(6) 0.5326(4) 0.5485(5) 1.1204(9) 0.9607(8) 0.5284(3) 0.4900(1) 0.6806(7)
Reuters(10) 0.2016(2) 0.2059(3) 0.3434(7) 0.3324(6) 0.5839(9) 0.3937(8) 0.2122(4) 0.1737(1) 0.3136(5)
Reuters(21) 0.3611(2) 0.3648(3) 0.7197(7) 0.5643(5) 1.6702(9) 0.9425(8) 0.3702(4) 0.3189(1) 0.6309(6)
Reuters(90) 2.0768(3) 2.1007(4) 2.9248(5) 3.1977(7) 12.7410(9) 7.1332(8) 1.7857(2) 1.4495(1) 3.0113(6)
medical 2.1349(1) 2.2977(3) 3.2775(6) 5.5488(7) 5.9922(9) 5.8977(8) 2.1457(2) 2.3752(4) 3.2000(5)
genbase 0.4925(3) 0.4925(4) 0.5678(8) 0.5025(5) 0.5226(6) 0.3116(1) 0.5477(7) 0.5779(9) 0.4774(2)
ohsumed 2.6219(2) 2.4900(1) 4.1917(4) 4.6049(7) 9.8917(9) 6.6931(8) 4.3671(5) 3.3690(3) 4.3869(6)
emotions 1.9455(2) 1.9851(4) 2.5149(8) 2.2970(6) 2.6634(9) 2.3515(7) 1.9208(1) 1.9505(3) 2.0545(5)
tmc2007 2.4972(6) 2.5796(7) 2.4054(5) 2.3213(4) 7.8205(9) 4.1345(8) 1.8273(1) 2.1683(2) 2.3071(3)
bibtex 23.5730(3) 24.2592(4) 61.0501(8) 48.7797(6) 74.1217(9) 58.5996(7) 18.6720(2) 16.4091(1) 25.4803(5)
corel5k 107.0980(3) 120.1340(6) 111.2760(4) 199.0800(8) 320.5720(9) 120.5880(7) 96.3340(2) 92.1240(1) 114.5120(5)
yeast 6.5638(7) 7.1145(9) 6.4144(2) 6.4264(3) 6.9586(8) 6.5354(5) 6.2443(1) 6.5431(6) 6.4885(4)
Avg. rank 3.00 4.50 5.67 5.75 8.67 6.92 2.83 2.75 4.92

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2675

problems are linearly separable and so linear kernel
is often applied for text categorization tasks, while a
radial basis kernel is more appropriate for image
and biology data. In practice, the prior knowledge of
which kernel function should be used is difficult to
obtain in advance.

4.2.5 Results with Ranking-Based Metrics

In this section, we present results w.r.t. ranking metrics.
Fig. 4 shows the results on the multi-label classification data

sets in terms of ranking-based metrics. Tables 13 to 16 show
complete comparison results of the algorithms.

The best performing methods are TSA and BR, followed
by RF-PCT and ML-Forest. RF-PCT is robust across both
bipartition-based metrics and ranking-based metrics. On
the other hand, even though the HOMER approach is able
to produce good results in terms of the example-based
measures, it performs poorly across all the ranking-based
evaluation measures. A similar observation is also found in
recent studies [50], where it is shown that even sophisticate

TABLE 16
The Performance of the Multi-Label Classification Algorithms in Terms of Average Precision "

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.8561(3) 0.8346(7) 0.8492(5) 0.8563(2) 0.7626(8) 0.7548(9) 0.8525(4) 0.8591(1) 0.8354(6)
Reuters(10) 0.9680(2) 0.9675(3) 0.9412(7) 0.9441(6) 0.9365(8) 0.9230(9) 0.9630(4) 0.9711(1) 0.9578(5)
Reuters(21) 0.9576(2) 0.9569(3) 0.9274(7) 0.9358(6) 0.9076(8) 0.8716(9) 0.9472(4) 0.9612(1) 0.9447(5)
Reuters(90) 0.8899(3) 0.8912(2) 0.8770(6) 0.8748(7) 0.8284(8) 0.6579(9) 0.8783(4) 0.8989(1) 0.8780(5)
medical 0.8719(1) 0.8646(2) 0.7289(7) 0.6049(8) 0.7581(6) 0.4915(9) 0.8393(5) 0.8572(3) 0.8438(4)
genbase 0.9945(1) 0.9943(2) 0.9939(3) 0.9924(6) 0.9864(9) 0.9912(8) 0.9927(5) 0.9924(7) 0.9938(4)
ohsumed_norm 0.8052(2) 0.8115(1) 0.6667(5) 0.6421(6) 0.6258(7) 0.4998(9) 0.6238(8) 0.7097(4) 0.7419(3)
emotions 0.7857(2) 0.7660(5) 0.7088(9) 0.7314(6) 0.7092(8) 0.7208(7) 0.7942(1) 0.7832(3) 0.7688(4)
tmc2007 0.8498(4) 0.8451(5) 0.8277(7) 0.8380(6) 0.7244(8) 0.7215(9) 0.8782(2) 0.8642(3) 0.8793(1)
bibtex 0.5699(3) 0.5697(4) 0.3291(8) 0.3349(7) 0.4151(6) 0.2118(9) 0.5612(5) 0.5925(2) 0.6072(1)
corel5k 0.2890(3) 0.2762(5) 0.2770(4) 0.1624(8) 0.1479(9) 0.2163(7) 0.3089(2) 0.3471(1) 0.2647(6)
yeast 0.7526(5) 0.7022(9) 0.7585(1) 0.7570(2) 0.7344(8) 0.7488(7) 0.7544(3) 0.7524(6) 0.7542(4)
Avg. rank 2.58 4.00 5.75 5.83 7.75 8.42 3.92 2.75 4.00

TABLE 15
The Performance of the Multi-Label Classification Algorithms in Terms of Ranking Loss #

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.0799(2) 0.0953(6) 0.0866(4) 0.0892(5) 0.2000(9) 0.1720(8) 0.0861(3) 0.0780(1) 0.1150(7)
Reuters(10) 0.0105(2) 0.0110(3) 0.0258(7) 0.0244(6) 0.0496(9) 0.0316(8) 0.0119(4) 0.0084(1) 0.0207(5)
Reuters(21) 0.0082(2) 0.0084(3) 0.0220(7) 0.0176(5) 0.0642(9) 0.0351(8) 0.0091(4) 0.0069(1) 0.0187(6)
Reuters(90) 0.0140(3) 0.0141(4) 0.0201(5) 0.0242(7) 0.1143(9) 0.0652(8) 0.0127(2) 0.0095(1) 0.0224(6)
medical 0.0325(1) 0.0351(3) 0.0540(6) 0.1029(7) 0.1030(8) 0.1135(9) 0.0344(2) 0.0366(4) 0.0507(5)
genbase 0.0045(4) 0.0046(5) 0.0060(7) 0.0037(2) 0.0059(6) 0.0018(1) 0.0061(8) 0.0077(9) 0.0043(3)
ohsumed_norm 0.0540(2) 0.0507(1) 0.1094(5) 0.1236(7) 0.2883(9) 0.2041(8) 0.1170(6) 0.0831(3) 0.1059(4)
emotions 0.1791(3) 0.1942(4) 0.2795(8) 0.2571(6) 0.3111(9) 0.2648(7) 0.1711(1) 0.1761(2) 0.2033(5)
tmc2007 0.0363(5) 0.0385(7) 0.0380(6) 0.0348(4) 0.1829(9) 0.0889(8) 0.0208(1) 0.0287(2) 0.0316(3)
bibtex 0.0781(3) 0.0792(4) 0.2399(7) 0.1961(6) 0.2972(9) 0.2556(8) 0.0620(2) 0.0556(1) 0.1085(5)
corel5k 0.1194(3) 0.1329(5) 0.1269(4) 0.2525(8) 0.5798(9) 0.1415(7) 0.1072(2) 0.1009(1) 0.1344(6)
yeast 0.1786(6) 0.2079(9) 0.1715(2) 0.1734(3) 0.2040(8) 0.1844(7) 0.1706(1) 0.1759(5) 0.1756(4)
Avg. rank 3.00 4.50 5.67 5.50 8.58 7.25 3.00 2.58 4.92

TABLE 17
The Performance of the Multi-Label Classification Algorithms in Terms of Training Time (in Hours) #

BR CC MLkNN IBLR-ML HOMER PCT RF-PCT TSA ML-FOREST

scene 0.5468(6) 0.8686(7) 0.0313(4) 0.0175(3) 3.1079(9) 0.0004(1) 0.0106(2) 0.0402(5) 2.4658(8)
Reuters(10) 0.3058(6) 0.4330(7) 0.1532(4) 0.1890(5) 3.5188(9) 0.0019(1) 0.0333(2) 0.0357(3) 1.6901(8)
Reuters(21) 0.6063(6) 0.7417(7) 0.1867(5) 0.1740(4) 7.5049(9) 0.0049(1) 0.0857(3) 0.0551(2) 2.9268(8)
Reuters(90) 1.0601(6) 1.1896(7) 0.0830(4) 0.6115(5) 16.9018(9) 0.0173(1) 0.0813(3) 0.0447(2) 2.0974(8)
medical 0.0092(5) 0.0098(6) 0.0010(2) 0.0054(4) 0.1623(8) 0.0004(1) 0.0016(3) 0.0619(7) 0.2783(9)
genbase 0.0943(6) 0.0912(5) 0.0214(4) 0.0011(3) 0.8938(7) 0.0001(1) 0.0006(2) 12.2302(9) 4.8198(8)
ohsumed 7.6682(5) 8.1229(6) 0.9197(3) 0.7229(2) 42.5799(8) 0.2098(1) 5.5266(4) 99.3969(9) 33.4865(7)
emotions 0.3317(7) 0.4120(8) 0.0009(3) 0.0015(4) 3.4787(9) 0.0001(1) 0.0004(2) 0.2355(6) 0.1796(5)
tmc2007 1.3500(3) 1.4708(4) 2.6801(7) 1.8375(5) 13.5168(8) 0.0139(1) 0.1480(2) 2.4727(6) 166.0751(9)
bibtex 22.6319(6) 29.4215(7) 0.4625(2) 2.5392(5) 39.7952(8) 0.0541(1) 0.9940(3) 1.7673(4) 59.8075(9)
corel5k 6.7812(5) 8.9521(6) 0.1062(2) 11.1200(8) 39.4257(9) 0.0715(1) 0.7692(4) 0.4930(3) 9.7242(7)
yeast 7.1219(7) 7.1248(8) 0.0266(5) 0.0015(2) 0.0216(4) 0.0005(1) 0.0057(3) 0.0630(6) 7.3917(9)
Avg. rank 5.67 6.5 3.75 4.17 8.08 1.00 2.75 5.17 7.92

2676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

approaches are not able to outperform all other methods in
all measures. The evaluation measures used in the experi-
ments assess the learning performance from different
aspects and one algorithm rarely outperforms another algo-
rithm on all criteria. With the results shown in Fig. 4 and
Tables 13 to 16, we find that the performance of our pro-
posed method is not significantly affected, it still can
achieve competitive performance against TSA, BR, CC and
RF-PCT in terms of the ranking-based metrics.

4.2.6 Parameter Sensitivity and Training Time

In this experiment, we investigate the influences of the num-
ber of trees K on the classification performance of
ML-FOREST. We vary the values of K from 1 to 50. We try lin-
ear kernel, radial basis kernel, and polynomial kernel for
SVM with their hyper-parameters selected using cross-vali-
dation. The accuracy results of ML-FOREST using different
kernel functions against different number of trees K on the
medical and scene data sets can be found in Table 18. When
the number of trees increases, the accuracy of the ML-FOREST

algorithm increases. The learning performance can be sig-
nificantly enhanced when the ensemble has sufficient base
learners. We can see from Table 18 that the performance of
ML-FOREST does not have significant difference with
different kernel functions.

We also evaluate the robustness of ML-FOREST against
two parameters: the purity threshold � and the SVM

penalty C. The values 2�5, 2�3, . . . 2 were considered for
C and 0.4 to 0.9 for �. The 3D graph in Fig. 5 shows
how the accuracy of ML-FOREST varies against different
values of � and C. The accuracy of ML-FOREST increases
when the value of � increases and meanwhile the value
of C decreases. We observe that the accuracy is degraded
when � is small. In this case, a number of irrelevant clas-
ses with confidences larger than � are included within
the predicted labels, and thus the performance degrades
drastically. In this sense we randomly selected � in the
range ð0:9; 0:95Þ to set � with a large value. The results
on other data sets are similar. We also find that the per-
formance of ML-FOREST will decrease if the penalty C is
either too large or too small. In our experiment, we used

the value C ¼ 2�5 as the default setting.
We also report the training times of each algorithm (see

Table 17). The experiments are conducted on an Intel Xeon
2.4 GHz machine with 128 GB RAM running Windows
Server 2012. The results show that PCT is the fastest
method. The RF-PCT algorithm is implemented using
multi-thread programming, and it ranks 2nd in terms of
training time. Tree based learning methods, such as ML-FOR-

EST and HOMER, have the longest training time. HOMER is

Fig. 3. The average ranks diagrams for the bipartition-based measures: (a) hamming loss, (b) accuracy, (c) precision, (d) recall, (e) F1-score,
(f) subset accuracy, (g) macro-precision, (h) macro-recall, and (i) macro-F1.

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2677

mainly due to the high computational cost in tuning the
parameters of the model, while ML-FOREST is due to the high
computational cost in learning multiple tree classifiers. The
ML-FOREST algorithm is easy to be parallelized and thus the
running time can be significantly improved in case using

multi-thread parallel mechanism on computer with multi-
core processors.

5 CONCLUSION

In this paper, we have presented a new multi-label classifi-
cation method, called ML-FOREST, to build an ensemble clas-
sifier. In ML-FOREST, we construct a set of hierarchical trees
that are able to automatically exploit the label correlation,
and develop a label transfer mechanism which identifies
the relevant labels hierarchically.

ML-FOREST models the label dependency as a hierarchi-
cal scheme and performs the multi-label classification as
a hierarchical decision process. As a result, ML-FOREST

attains more discriminating ability than the first-order
multi-label classification methods which simply transform
a multi-label problem into multiple separate and indepen-
dent binary problems. Experimental results show that the
proposed tree ensemble method is highly competitive to
the state-of-the-art multi-label classification algorithms.
Several works remain to be investigated in our future
work:

1) ML-FOREST is a hierarchical tree ensemble algorithm
to model the label dependency. Instead of using the
linear SVM as base classifier in the hierarchy, utiliz-
ing some probabilistic base classifier (such as Bayes-
ian approach) might fit more to estimate the
conditional probability distribution pðyjxÞ. This sug-
gests one way to extend ML-FOREST.

Fig. 4. The average ranks diagrams for the ranking-based measures:
(a) one-error, (b) coverage, (c) ranking loss, and (d) average precision.

TABLE 18
The Accuracy of ML-FOREST Using Different Kernel Functions

Against Different Number of TreesK on the Medical
and Scene Data Sets

Data set Kernel 1 5 10 20 50

medical
linear 0.696 0.728 0.734 0.743 0.751

radial basis 0.719 0.719 0.728 0.737 0.742
polynominal 0.729 0.732 0.738 0.744 0.747

scene
linear 0.608 0.705 0.717 0.718 0.719

radial basis 0.585 0.714 0.718 0.718 0.718
polynominal 0.609 0.612 0.710 0.715 0.719

Fig. 5. The accurate of ML-FOREST with respects to the threshold � and
penalty C parameters.

2678 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

2) Tsoumakas et al. [22] show that a hierarchical multi-
label classifier model can be very efficient on the
tasks with a large number of labels if clustering tech-
nique is considered to organize the labels in growing
the tree. It is interesting to apply Tsoumakas’s idea
to ML-FOREST approach.

3) In practice, the acquired multi-label data set can be
imbalanced and noisy, and thus the hierarchical tree
can be imbalanced, which may degrade the generali-
zation performance. Therefore, it is important to con-
sider this challenging problem in the future.

ACKNOWLEDGMENTS

M. Tan is the corresponding author. The authors would like
to thank the reviewers for their useful and constructive sug-
gestions. They also thank Prof. Huaqing Min and Dr.
Yuguang Yan for their contributions towards the revision of
this work. This research was supported by the Guangzhou
Key Laboratory of Robotics and Intelligent Software under
Grant No. 15180007, the National Natural Science Founda-
tion of China (NSFC) under Grant No. 61005061, the
Guangdong Natural Science Foundation under Grant No.
2016A030313479, and the Fundamental Research Funds for
the Central Universities under Grant Nos. D215048w and
2015ZZ029, and HKRGC CRF C1007-15GF and HKRGC
GRF HKBU 12302715.

REFERENCES

[1] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers, “Statistical
topic models for multi-label document classification,” Mach.
Learn., vol. 88, no. 1/2, pp. 157–208, 2012.

[2] J. Nam, J. Kim, E. L. Menc�ıa, I. Gurevych, and J. F€urnkranz,
“Large-scale multi-label text classification–revisiting neural
networks,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery
Databases, 2014, pp. 437–452.

[3] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li, “Multi-
instance multi-label learning,” Artif. Intell., vol. 176, no. 1,
pp. 2291–2320, 2012.

[4] K.-C. Chou, “Some remarks on predicting multi-label attributes in
molecular biosystems,” Mol. Biosystems, vol. 9, no. 6, pp. 1092–
1100, 2013.

[5] X. Xiao, P. Wang, W.-Z. Lin, J.-H. Jia, and K.-C. Chou, “iAMP-2L:
A two-level multi-label classifier for identifying antimicrobial
peptides and their functional types,” Anal. Biochemistry, vol. 436,
no. 2, pp. 168–177, 2013.

[6] Y.-Y. Xu, F. Yang, Y. Zhang, and H.-B. Shen, “An image-based
multi-label human protein subcellular localization predictor
(ilocator) reveals protein mislocalizations in cancer tissues,” Bio-
inf., vol. 29, no. 16, pp. 2032–2040, 2013.

[7] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Matrix
completion for weakly-supervised multi-label image classi-
fication,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1,
pp. 121–135, Jan. 2015.

[8] F. Sun, J. Tang, H. Li, G.-J. Qi, and T. S. Huang, “Multi-label image
categorization with sparse factor representation,” IEEE Trans.
Image Process., vol. 23, no. 3, pp. 1028–1037, Mar. 2014.

[9] M. Liu, Y. Luo, D. Tao, C. Xu, and Y. Wen, “Low-rank multi-
view learning in matrix completion for multi-label image clas-
sification,” in Proc. 29th AAAI Conf. Artif. Intell., 2015,
pp. 2778–2784.

[10] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int. J. Data Warehousing & Min., vol. 3, no. 3,
pp. 1–13, 2007.

[11] S. Huang, Y. Yu, and Z. Zhou, “Multi-label hypothesis reuse,” in
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min.,
2012, pp. 525–533.

[12] K. Dembczynski, W. Waegeman, W. Cheng, and E. H€ullermeier,
“On label dependence in multi-label classification,” in Proc. Work-
shop. Learn. Multi-Label Data, 2010, pp. 5–12.

[13] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Hierarchical classi-
fication: Combining bayes with SVM,” in Proc. 23rd Int. Conf.
Mach. Learn., 2006, pp. 177–184.

[14] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Min., 2010, pp. 999–1008.

[15] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learning for multi-
label classification,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Min., 2008, pp. 668–676.

[16] J. Dem�sar, “Statistical comparisons of classifiers over multiple
data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[17] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recog., vol. 37, no. 9, pp. 1757–
1771, 2004.

[18] M. Zhang and Z. Zhou, “ML-KNN: A lazy learning approach to
multi-label learning,” Pattern Recog., vol. 40, no. 7, pp. 2038–2048,
2007.

[19] G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, and H. Zhang, “Correlative
multi-label video annotation,” in Proc. 15th Int. Conf. Multimedia,
2007, pp. 17–26.

[20] S. Zhu, X. Ji, W. Xu, and Y. Gong, “Multi-labelled classification
using maximum entropy method,” in Proc. 28th Annu. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., 2005, pp. 274–281.

[21] W. Cheng and E. H€ullermeier, “Combining instance-based learn-
ing and logistic regression for multilabel classification,” Mach.
Learn., vol. 76, no. 2/3, pp. 211–225, 2009.

[22] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,”
in Proc. ECML/PKDD’08 Workshop Min. Multidimensional Data,
2008, pp. 30–44.

[23] C. Vens, J. Struyf, L. Schietgat, S. D�zeroski, and H. Blockeel,
“Decision trees for hierarchical multi-label classification,” Mach.
Learn., vol. 73, no. 2, pp. 185–214, 2008.

[24] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for
multi-label classification,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Min., 2008, pp. 381–389.

[25] A. Clare and R. King, “Knowledge discovery in multi-label phe-
notype data,” in Proc. 5th Eur. Conf. Princ. Data Min. Knowl. Discov-
ery, 2001, pp. 42–53.

[26] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for
large multi-class tasks,” Adv. Neural Inf. Process. Syst., vol. 23,
no. 1, pp. 163–171, 2010.

[27] J. Deng, S. Satheesh, A. C. Berg, and F. Li, “Fast and balanced:
Efficient label tree learning for large scale object recognition,” in
Proc. Adv. Neural Inf. Proc. Syst., 2011, pp. 567–575.

[28] G. Madjarov and D. Gjorgjevikj, “Hybrid decision tree architec-
ture utilizing local SVMs for multi-label classification,” in Proc.
7th Int. Conf. Hybrid Artif. Intell. Syst., 2012, pp. 1–12.

[29] B. Fu, Z. Wang, R. Pan, G. Xu, and P. Dolog, “Learning tree
structure of label dependency for multi-label learning,” in
Proc. 16th Pacific-Asia Conf. Adv. Knowl. Discovery Data Min.,
2012, pp. 159–170.

[30] W. Bi and J. T. Kwok, “Multi-label classification on tree-and dag-
structured hierarchies,” in Proc. 28th Int. Conf. Mach. Learn., 2011,
pp. 17–24.

[31] F. De Comit�e, R. Gilleron, and M. Tommasi, “Learning multi-label
alternating decision trees from texts and data,” in Proc. 3rd
MLDM Int. Conf. Mach. Learn. Data Min. Pattern Recog., 2003,
pp. 251–274.

[32] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction of
clustering trees,” in Proc. 15th ICML Int. Conf. Mach. Learn., 1998,
pp. 55–63.

[33] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, “Multi-label
learning with millions of labels: Recommending advertiser bid
phrases for web pages,” in Proc. 22nd Int. Conf. World Wide Web,
2013, pp. 13–24.

[34] J. Read, A. Puurula, and A. Bifet, “Multi-label classification with
meta-labels,” in Proc. IEEE Int. Conf. Data Min., 2014, pp. 941–946.

[35] D. Kocev, C. Vens, J. Struyf, and S. D�zeroski, “Tree ensembles for
predicting structured outputs,” Pattern Recog., vol. 46, no. 3,
pp. 817–833, 2013.

[36] G. Madjarov, D. Gjorgjevikj, and S. D�zeroski, “Two stage architec-
ture for multi-label learning,” Pattern Recog., vol. 45, no. 3,
pp. 1019–1034, 2012.

[37] W. Cheng, E. H€ullermeier, and K. J. Dembczynski, “Bayes optimal
multilabel classification via probabilistic classifier chains,” in Proc.
27th Int. Conf. Mach. Learn., 2010, pp. 279–286.

WU ETAL.: ML-FOREST: A MULTI-LABELTREE ENSEMBLE METHOD FOR MULTI-LABEL CLASSIFICATION 2679

[38] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Mach. Learn., vol. 85, no. 3, pp. 333–
359, 2011.

[39] C. Hsu and C. Lin, “A comparison of methods for multiclass sup-
port vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2,
pp. 415–425, Mar. 2002.

[40] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in clas-
sifier ensembles and their relationship with the ensemble accu-
racy,”Mach. Learn., vol. 51, no. 2, pp. 181–207, 2003.

[41] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton, FL, USA: CRC Press, 2012.

[42] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[43] C. Largeron, C. Moulin, and M. G�ery, “MCut: A thresholding
strategy for multi-label classification,” in Proc. 11th Int. Conf. Adv.
Intell. Data Anal. XI, 2012, pp. 172–183.

[44] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector
machines: Fast SVM training on very large data sets,” J. Mach.
Learn. Res., vol. 6, pp. 363–392, 2005.

[45] G. Tsoumakas, J. Vilcek, L. Spyromitros, and I. Vlahavas,
‘MULAN: A java library for multi-label learning,” J Mach Learn.
Res., vol. 1, pp. 1–48, 2010.

[46] C. Chang and C. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst Tech., vol. 2, no. 3, 2011,
Art. no. 27.

[47] D. F. Schwarz, I. R. K€onig, and A. Ziegler, “On safari to random
jungle: A fast implementation of random forests for high-dimen-
sional data,” Bioinf., vol. 26, no. 14, pp. 1752–1758, 2010.

[48] Y. Ye, Q. Wu, J. Z. Huang, M. K. Ng, and X. Li, “Stratified
sampling for feature subspace selection in random forests for
high dimensional data,” Pattern Recog., vol. 46, no. 3, pp. 769–787,
2013.

[49] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” in Proc. 10th Eur. Conf.
Mach. Learn., 1998, pp. 137–142.

[50] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. D�zeroski, “An exten-
sive experimental comparison of methods for multi-label
learning,” Pattern Recog., vol. 45, no. 9, pp. 3084–3104, 2012.

Qingyao Wu received the BS degree in software
engineering from the South China University of
Technology, and the MS and PhD degrees in
computer science from the Harbin Institute of
Technology, China, in 2007, 2009, and 2013,
respectively. He is currently an associate profes-
sor with the School of Software Engineering,
South China University of Technology, China. He
was a post-doctoral research fellow with the
School of Computer Engineering, Nanyang Tech-
nological University, Singapore, from 2014 to

2015. His current research interests include machine learning, data min-
ing, big data research, and deep learning.

Mingkui Tan received the bachelor’s degree in
environmental science and engineering and the
master’s degree in control science and engineer-
ing from Hunan University, Changsha, China, in
2006 and 2009, respectively, and the PhD degree
in computer science from Nanyang Technological
University, Singapore, in 2014. He is currently
working as a senior research associate with
the School of Computer Science, University of
Adelaide, Australia. His research interests
include compressive sensing, big data learning,
and large-scale optimization.

Henjie Song is a professor with the School of
Software Engineering, South China University of
Technology, China. His research interests include
artificial intelligence, machine learning, and data
mining.

Jian Chen received the BS and PhD degrees in
computer science from Sun Yat-Sen University,
China, in 2000 and 2005, respectively. He is cur-
rently a professor with the School of Software
Engineering (SSE), South China University of
Technology, China. She joined SSE at the South
China University of Technology as a faculty mem-
ber in 2005. Her research interests include data
mining, information retrieval, and recommenda-
tion techniques.

Michael K. Ng received the BSc and MPhil
degrees from the University of Hong Kong, in 1990
and 1992, respectively, and the PhD degree from
the Chinese University of Hong Kong in 1995. He is
the head and chair professor of the Department of
Mathematics, and professor (Affiliate) of the
Department of Computer Science at the Hong
Kong Baptist University. He was a research fellow
of Computer Sciences Laboratory, Australian
National University (1995-1997), and an assistant/
associate professor (1997-2005) at the University

of Hong Kong before joining Hong Kong Baptist University. His research
interests include bioinformatics, data mining, image processing, scientific
computing, and data mining, and he serves on the editorial boards of inter-
national journals. See http://www.math.hkbu.edu.hk/�mng.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2680 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016

http://www.math.hkbu.edu.hk/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

