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Abstract

Unlike traditional LASSO enforcing sparsity on the variables,
Generalized LASSO (GL) enforces sparsity on a linear trans-
formation of the variables, gaining flexibility and success in
many applications. However, many existing GL algorithms
do not scale up to high-dimensional problems, and/or only
work well for a specific choice of the transformation. We
propose an efficient Matching Pursuit Generalized LASSO
(MPGL) method, which overcomes these issues, and is guar-
anteed to converge to a global optimum. We formulate the
GL problem as a convex quadratic constrained linear pro-
gramming (QCLP) problem and tailor-make a cutting plane
method. More specifically, our MPGL iteratively activates a
subset of nonzero elements of the transformed variables, and
solves a subproblem involving only the activated elements
thus gaining significant speed-up. Moreover, MPGL is less
sensitive to the choice of the trade-off hyper-parameter be-
tween data fitting and regularization, and mitigates the long-
standing hyper-parameter tuning issue in many existing meth-
ods. Experiments demonstrate the superior efficiency and ac-
curacy of the proposed method over the state-of-the-arts in
both classification and image processing tasks.

Introduction
Learning with sparsity-inducing norms has gained much
success in many applications including medical data anal-
ysis (Tibshirani and Wang 2008), image processing (Rudin,
Osher, and Fatemi 1992), feature selection (Tan, Tsang, and
Wang 2014) and so on. One efficient way to enforce spar-
sity on the variables is to use the �1-norm as LASSO (Tibshi-
rani 1996) instead of the �0-norm. Since then, many methods
have been proposed to enforce some additional constraints
(Huang, Zhang, and Metaxas 2011; Kim and Xing 2010;
Tibshirani et al. 2011) to improve the results. A group of
methods among them is called generalized LASSO (Tibshi-
rani et al. 2011), which promotes the sparsity of the vari-
ables after a linear transformation (Liu, Yuan, and Ye 2013)
instead of the variables themselves. The choice of such a
transformation represents the property of the variables to be
desired, and often depends on the application.
Generalized LASSO. Let x ∈ R

n denote the target variable
and D ∈ R

l×n be a linear transformation operator. A natural
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way to seek x with sparsity on Dx is as follows (Liu, Yuan,
and Ye 2013),

min
x

f(x) + λ‖Dx‖0, (1)

where f : Rn → R is a loss function (sometimes known as
data fitting term) depending on the application, ‖·‖0 denotes
the �0-norm regularizer, and λ ≥ 0 is known as the trade-off
hyper-parameter between the data fitting and the regulariza-
tion. By letting A ∈ R

m×n be a designing matrix, y ∈ R
m

be a response vector, n ∈ R
m be a vector of Gaussian noise,

and assuming a linear regression model y = Ax + n, a
typical choice of f is f(x) = 1

2‖y − Ax‖22, which will be
used throughout the rest of the paper. Since problem (1) is
NP-hard, a convex relaxation is widely used:

min
x

1

2
‖y −Ax‖22 + λ‖Dx‖1, (2)

which is referred to as Generalized LASSO (Tibshirani et al.
2011). D depends on the application, and reflects the desir-
able behaviors of the variables. Some well-known applica-
tions and choices of D are:
• 1-dimensional total variation (TV) model (Rudin, Osher,

and Fatemi 1992) where D ∈ R
(n−1)×n and

D = Q(TV) =

⎡
⎢⎣

−1 1 0 . . . 0
0 −1 1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . −1 1

⎤
⎥⎦ . (3)

Such a D penalizes the absolute differences in adjacent
coordinates of x.

• Fused LASSO (FL) (Tibshirani et al. 2005), which solves
minx

1
2‖y−Ax‖22+λ1‖x‖1+λ2‖Qx‖1, and can be re-

written as problem (2) with D = [λ1

λ IT, λ2

λ Q(TV)T]T,
a concatenation of an identity matrix and the TV matrix
Q(TV). Note that if letting D = I, the problem reduces
to the classical LASSO problem.

• Generalized fused LASSO (GFL) (Xin et al. 2014), which
extends the TV model using a graph. Let G = (V,E)
be a graph with vertices V and edges E, where each
vertex corresponds to an element of the variable x. The
graph-guided TV-norm is defined as

∑
(i,j)∈E |xi − xj |.

In the matrix form like (3), the k-th edge (i, j) corre-
sponds to the k-th row of the matrix Q(G) ∈ R

|E|×n
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with Q(G)k,i = 1, Q(G)k,j = −1, and other elements as
0. Problem (2) with D = [λ1

λ IT, λ2

λ Q(G)T]T is referred
to as a GFL problem.

Due to the flexibility and generality of the Generalized
LASSO (GL), it has attracted much attention recently. Un-
like traditional LASSO, solving GL efficiently on high-
dimensional data is very challenging. A few attempts have
been made to improve the efficiency of GL, but requires spe-
cific form of the D to work well (Tibshirani et al. 2011;
Liu, Yuan, and Ye 2010; Xin et al. 2014). Furthermore, due
to the regularization bias (the choice of the trade-off hyper-
paramter) rooted in the �1-norm, achieving a sparse and un-
biased solution simultaneously via solving (2) is very diffi-
cult (Zhang and Huang 2008; Zhang 2010; Tan, Tsang, and
Wang 2014). To tackle these issues, we propose an efficient
Matching Pursuit algorithm for Generalized LASSO prob-
lem (MPGL). The core contributions of this paper are sum-
marized as follows:

• We formulate the GL problem as a QCLP problem for
the first time, and propose a matching pursuit algorithm
to solve it. Instead of handling all elements in Dx, our
method iteratively identifies the most advantageous subset
of nonzero elements in Dx, and solves a subproblem fo-
cusing on only the subset. This not only reduces the com-
putational complexity substantially, but also reduces the
impact of the noise and corruption in the data.

• We transform the subproblem into an equivalent but an
easier optimization problem, which helps to improve the
optimization speed by a few orders of magnitudes.

• Many sparsity-inducing norms based methods suffer from
the extensive selection of the parameter λ to achieve a
sparse solution whilst fits the data well. Due to iterative
nature of our method, an early stopping can be applied,
which makes the proposed method easier to achieve a
sparse solution that fits the data well.

• Unlike many previous methods which only work well on
specific choices of D, the proposed method can handle
more general GL problems with different D’s.

Related Studies

The GL problem for the general formulation of D was first
defined and summarized in (Tibshirani et al. 2011). Before
that, there had been a range of studies for important special
cases such as the Fused LASSO (FL) problem (Tibshirani
et al. 2005), the TV regularizer (Rudin, Osher, and Fatemi
1992) and trending filtering (Kim et al. 2009).

One particularly popular special case of (2) is the fused
LASSO problem. Tibshirani et.al. (Tibshirani et al. 2005)
proposed the first algorithm for FL based a two-phase ac-
tive set algorithm labelled SQOPT. This approach does
not scale to high-dimensional problems guided by general
graph, however. Friedman et.al. (Friedman et al. 2007) then
derived a pathwise coordinate descent algorithm for a spe-
cial case of FL with A = I, which has no guarantee of an
exact solution. Following that, a faster path algorithm was
proposed based on max flow subroutines (Hoefling 2010).
In (Liu, Yuan, and Ye 2010), an efficient algorithm based

on fast iterative shrinkage-thresholding (FISTA) was pro-
posed, but this approach is not applicable to the general for-
mulation of the problem. Wang et.al. (Wang, Fan, and Ye
2015) proposed a screening rule based method to accelerate
the optimization. For some specific problems with a piece-
wise smooth and non-sparse solution, the TV regularizer is
widely used (Rudin, Osher, and Fatemi 1992). Wang et.al.
(Wang et al. 2008) solved an approximately relaxed prob-
lem for fast image restoration.

Recently, some methods were proposed for solving the
general problem. In (Tibshirani et al. 2011), a dual path al-
gorithm was proposed for the GL problem with any formu-
lation of D, which however tends to be slow on large-scale
problems. Xin et.al. (Xin et al. 2014) proposed to solve the
GFL problem based on the FISTA and a parametric flow
algorithm. An augmented alternating direction methods of
multipliers algorithm (Zhu 2016) was proposed for GL.

Formulation
Notation. Let A = [Ai,j ] ∈ R

m×n and v = [v1, ..., vn]
T ∈

R
n denote a matrix and a vector, respectively, where T de-

notes the transpose of a vector/matrix. Let 0 and 1 be vec-
tors with all zeros and all ones, respectively, and let I de-
note the identity matrix. Let vi or vi be a vector indexed
for some purpose. Given a vector v, let diag(v) be a diago-
nal matrix with diagonal elements equal to the vector v, and
‖v‖p be the �p-norm. Let � denote the element wise prod-
uct. Given a positive integer n, let [n] = {1, ..., n}. Given
any index set T ⊆ [n], let Tc be the complementary set of T,
i.e. Tc = [n] \ T. For a vector v ∈ R

n, let vi denote the i-th
element of v, and vT denote the subvector indexed by T.

QCLP Formulation for Generalized LASSO 1

To handle the non-smooth and non-separable regularizer
‖Dx‖1, we introduce an auxiliary variable z ∈ R

l to re-
place Dx. To identify the nonzero components in Dx w.r.t.
to the response vector y, we introduce a binary index vec-
tor τ ∈ {0, 1}l to scale z by (z � τ ). Regarding the goal
to induce sparsity in Dx, we impose an �0-norm constraint
‖τ‖0 ≤ κ, and constrain Dx = z�τ in our model. For sim-
plicity, let Λ = {τ |τ ∈ {0, 1}l, ‖τ‖0 ≤ κ} be the feasible
domain of τ . Let ξ = y−Ax represent the regression error.
We consider solving the generalized LASSO by addressing

min
τ∈Λ

min
x,ξ,z

1

2
‖ξ‖22 + λ‖z‖1

s.t. ξ = y −Ax, Dx = (z� τ ).

(4)

In (4), the integer κ reflects a rough knowledge of the spar-
sity of Dx, and there are |Λ| = ∑κ

i=0

(
n
i

)
feasible τ ’s in

Λ. Problem (4) tends to find an optimal τ from Λ, which
minimizes the regression loss ‖ξ‖22 by constraining x. Note
that the optimal τ according to (4) might not be unique.

Problem (4) is a mixed integer programming problem,
thus it is hard to solve. We address it by relaxing it to a con-
vex QCLP (Pee and Royset 2011) problem:

min
α∈A,θ∈R

θ, s.t. φ(α, τ ) ≤ θ, ∀τ ∈ Λ, (5)

1All the proofs can be found in the supplementary materials.
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where φ(α, τ ) = − 1
2‖α‖22 +αTy,α ∈ Aτ and A = ∩Aτ

with Aτ = {α|ATα = DTβ, ‖diag(τ )β‖∞ ≤ λ,α ∈
[−h, h]n}. Here α and β refer to the Lagrangian dual vari-
ables w.r.t. the two constraints in (4), respectively.

Cutting Planes for the QCLP Problem

Problem (5) is essentially a QCLP problem with T =∑κ
i=0

(
n
i

)
constraints since there are T elements in Λ, which

makes the problem difficult to address directly. However,
most of the constraints in (5) are inactive at the optimum,
if only a subset of nonzero components in Dx are relevant
in fitting the observation y. Accordingly, we seek to address
problem (5) using a cutting plane method (Mutapcic and
Boyd 2009; Tan et al. 2012) as shown in Algorithm 1.

Instead of handling all constraints simultaneously, we it-
eratively find the most-violated constraint and add it into an
active constraint set Λt which is initialized as an empty set
∅. Then we solve subproblem (6) using the active constraints
in Λt. In the following, we will discuss how to find the most
violated constraint and solve subproblem (6).

Algorithm 1: Cutting Planes for the QCLP Problem (5)

Input: Observation y, A, λ, and initialization of α0.
1 Initialize τ0 = 0. Set Λ0 = ∅ and t = 1;
2 while Stopping conditions are not achieved do

3 Find the most violated τt based on αt−1;
4 Set Λt = Λt−1 ∪ {τt};
5 Solve the subproblem corresponding to Λt

min
α∈A,θ∈R

θ, s.t. φ(α, τ )− θ ≤ 0, ∀τ ∈ Λt, (6)

obtaining the optimal solution αt. Let t = t+ 1.

Finding the Most Violated Constraint

We now seek to find the most active τ (which corresponds to
the most violated constraint) from a large number elements
in Λ. At the optimum of problem (5), the following condi-
tion should hold for all τ ’s:

‖diag(τ )β‖∞ ≤ λ,ATα = DTβ. (7)

In each iteration of Algorithm 1, with an updated and
fixed α, we will find the value of β using the constraint
ATα = DTβ as the cue. It is ill-posed to recover β from
α by solving the linear system DTβ = ATα directly. Thus
we try to obtain β approximately by solving:

min
β

1

2
‖DTβ −ATα‖22 +

r

2
‖β‖22, (8)

where ‖β‖22 is added to reduce the ill-posedness and r ≥
0 is a penalty parameter. Note that (8) has a closed-form
solution. We can obtain β efficiently. In general, a conjugate
gradient algorithm with r = 2 works well.

As shown in (7), any |βi| > λ violates the optimality con-
dition, and the largest |βi| violates the condition the most.
Due to the constraint ‖τ‖0 ≤ κ, we find the κ largest |βi|,

then set the corresponding τi to 1 and the rest to 0 to con-
struct the most active τ . In practice, we record the κ in-
dices into a set Ct, i.e. Ct = support(τt). Furthermore, let
St = ∪t

i=1Ci record the indices of all activated constraints.
To avoid overlapping components among Ct, we form Ct

from [n] \ St−1. The algorithm for finding the most violated
constraint is summarized in Algorithm 2.

Algorithm 2: Finding the Most Violated Constraint
Input: α, κ, A and regularizer parameter r.

1 Calculate β by solving problem (8);
2 Initialize τ = 0;
3 Find the κ largest |βi|’s, and set corresponding τi to 1;
4 Form C and return τ and C.

Fast Optimization of Subproblem (6)
The number of the constraints is greatly reduced in the sub-
problem (6) compared to the original problem (5). Now we
show how to utilize the relationship between the active con-
straints and the indices of the active components in Dx and
z, to transfer problem (6) to an equivalent problem (w.r.t. the
primal variables x and zS) that can be solved much faster.
Proposition 1. Let S = ∪t

i=1Ci. When there are no over-
lapping elements among Ci’s, problem (6) can be addressed
by solving

min
x,zS

1

2
‖y −Ax‖22 + λ‖zS‖1

s.t. (Dx)S = zS, (Dx)Sc = 0.
(9)

Additionally, the optimal value of α∗ under problem (6) can
be recovered by α∗ = ξ∗ where ξ∗ = y −Ax∗.

The new subproblem (9) facilitates the usage of an alter-
nating direction method of multipliers (ADMM) (Boyd et
al. 2011). More specifically, we iteratively update the primal
and dual variables of the augmented Lagrangian function of
(9). By introducing a dual variable γ ∈ R

l and a positive
penalty parameter ρ > 0, and letting subvectors γS and γSc

be the dual variables w.r.t. the two constraints, respectively,
we obtain the augmented Lagrangian for (9) as follows:

L(x,z
˜S
,γ) =

1

2
‖y −Ax‖22 + λ‖zS‖1 + γT

S((Dx)S − zS)

+ γT
Sc(Dx)Sc +

ρ

2
‖(Dx)S − zS‖22 + ρ

2
‖(Dx)Sc‖22.

Let k denote the iteration index. The ADMM method for
solving problem (9) is summarized in Algorithm 3, which
carries out the following steps at each iteration:
Step 1 Compute zk+1

S with fixed xk and γk by solving:

min
zS

λ‖zS‖1 + ρ

2
‖(Dxk)S − zS +

1

ρ
γk
S‖22, (10)

which has a unique closed-form solution. Let μ =
(Dxk)S+

1
ργ

k
S. We can obtain the solution of (10) relying on

a soft-thresholding operator zk+1
S = Sλ/ρ(μ), where the i-

th component of zk+1
S is calculated by zk+1

Si = Sλ/ρ(μ)i =

1936



sign(μi)max{|μi| − λ
ρ , 0}. To simplify the representation,

we define a temporary variable z′ ∈ R
l, and let z′S = zk+1

S
and z′Sc = 0.
Step 2 Update xk+1 by solving minx L(x, z

k+1
S ,γk) w.r.t. x:

min
x

1

2
‖y −Ax‖22 +

ρ

2
‖Dx− z′ +

1

ρ
γk‖22, (11)

which is quadratic in x. The minimizer can be achieved
from the normal equation

[
ATA+ ρ(DTD)

]
x = ATy +

ρDT(z′− 1
ργ

k), which can be solved efficiently by a conju-
gate gradient algorithm.
Step 3 Update the dual variable γ:

γk+1 = γk + ρ(Dxk+1 − z′). (12)

Algorithm 3: ADMM for Solving Subproblem (9)
Input: Observation y, parameter λ and ρ, initialization

of image x0, index set St.
1 Initialize γ0 = 0. Set iteration number as k = 0;
2 while Stopping conditions are not achieved do

3 Compute zk+1
S by solving (10);

4 Generate z′ by letting z′S = zk+1
S and z′Sc = 0;

5 Compute xk+1 by solving problem (11);
6 Update γk+1 according to (12), and let k = k + 1;

Matching Pursuit for Generalized LASSO

Based on Proposition 1 and Algorithm 3, we implement
our algorithm in the primal form as in Algorithm 4, which
is referred to as matching pursuit for generalized LASSO
(MPGL). Due to α∗ = ξ∗ and ξ∗ = y−Ax∗, we can recon-
struct the dual variable and find the most violated constraint
even though the subproblem is solved in its primal form. In
Algorithm 4, since no τ is involved at the initial stage, e.g.
S0 = ∅, we initialize x0 via solving (9) given S = ∅. For
example, for the fused LASSO problem, x0 = 0.

Algorithm 4: Matching Pursuit for Generalized
LASSO.

Input: Observation y, parameter λ and ρ.
1 Initialize x0, α0=y−Ax0, S0= ∅, iteration index t=0;
2 while Stopping conditions are not achieved do
3 Find the most violate constraint via Algorithm 2,

and record the corresponding indices into Ct+1;
4 Let St+1 = St ∪ Ct+1;
5 Subproblem optimization: Solve subproblem (9)

via the ADMM in Algorithm 3, obtaining xt+1.
Let αt+1 = y −Axt+1, and t = t+ 1;

The complexity of MPGL mainly includes two parts:
1) Finding the most violated constraint needs to calculate
ATα and solve problem (8), thus these take O(nm + nl)
complexity. Fortunately, MPGL only needs to conduct this

step several times. 2) Solving the subproblem in (9) takes
O(nm+ nl) complexity, dominated by Step 2 in Algorithm
3. Since only a small set of active elements are involved, it
converges much faster than that with all the elements.

Setting of Parameter κ

In general, a very large κ can decrease the iteration num-
ber of MPGL, and a very small κ helps to prevent the non-
support elements being selected. To achieve the balance be-
tween efficiency and performance, we seek to provide a
strategy for the setting of κ. Recall that κ reflects a rough
knowledge of the support number in Dx, i.e. K = ‖Dx‖0.
As K is unknown, we first obtain a β0 via solving problem
(8) with the initialization α0. Following the strategy in (Tan,
Tsang, and Wang 2015), we set κ as the number of elements
in β0 larger than ζ‖β0‖∞. In practice, ζ ≥ 0.5 works well.

Early Stopping and Solution Bias

Many existing methods are very sensitive to the choice of λ
and face a dilemma – a too big λ produces a sparse solution,
but underfits the data; a too small λ fits the data well, but in-
duces a rather dense solution contradicting the prior knowl-
edge of the data. They often have to intensively search for a
proper λ. This is impractical for the large real world prob-
lems, which are time consuming even for running the exper-
iment once. Due to the nature of our optimization scheme,
we can bypass the dilemma to a large degree, by proposing
an early stopping condition below.

Recall that only κ nonzero elements in Dx are activated in
each iteration of MPGL, the value of ‖Dx‖1 increases from
0 gradually. By defining g(x) = 1

2‖y − Ax‖22 + λ‖Dx‖1,
the algorithm can be stopped using the relative function
value difference:

[
g(xt−1)− g(xt)

]
/g(x0) ≤ ε, where ε is

a small tolerance value.
The early stopping condition helps to obtain a sparse

Dx, thus our method works very well for a large range
of λ, which significantly reduces the expenses for hyper-
parameter tuning. In practice, we may choose a small λ to
reduce the risk of biased solution.

Convergence Analysis

Before providing the convergence analysis, we first give the
following lemma.

Lemma 1. Let (α∗, θ∗) be the global optimal solution of
(5), and {θt}Tt=1 be a sequence of θ obtained in the iterations
in Algorithm 1, where T = |Λ| denotes the possibly max-
imum iteration number. As the iteration index t increases,
{θt} is monotonically increasing. And there is θt ≤ θ∗.

Based on Lemma 1, the following theorem shows that
MPGL converges to a global solution of (5).

Theorem 1. Let T = |Λ| ≤ ∞, and {αt, θt}Tt=1 be the se-
quence generated by Algorithm 1. Assume that both the most
violated constraint finding problem and the subproblem (6)
in Algorithm 1 can be addressed. Algorithm 1 terminates at
the t-th iteration after a finite number of iterations with a
global optimal solution {αt, θt}.
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Experiments

We conduct the experiments on both synthetic data and
real-world data to verify the effectiveness of our algorithm
(MPGL). We implement the main scheme of MPGL in Al-
gorithm 4 in Matlab, and that of the Algorithm 3 in C++
with a mex-file interface. All the experiments are performed
on an Intel i5 CPU with 8G RAM.

As discussed before, there has been some algorithms for
GL or some special cases of that, such as FL or GFL. In the
experiments, we compare the proposed MPGL with follow-
ing state-of-the-art GL algorithms:

• SLEP (Liu et al. 2009; Liu, Yuan, and Ye 2010): A pack-
age implemented in C and Matlab for 1-dimensional FL.

• “genlasso” (Tibshirani et al. 2011): A package imple-
mented in R for GFL, which is limited to the cases n ≤ m.

• fGFL (Xin et al. 2014): An algorithm for GFL, which is
implemented in C++ and Matlab.

• CVX (Grant, Boyd, and Ye 2008): A general convex op-
timization package, which can be adapted for GL.

Experiments on Synthetic Data

We first investigate the efficiency of the proposed method
on synthetic data under two settings: FL and GFL guided
by a general graph. We tested on the problem with different
dimensions: n = 102, 103, 5× 103, 8× 103, 104, and 1.5×
105. For each n, we first generate a Gaussian random matrix
A ∈ R

m×n with m = n , and a Gaussian noise vector
n ∈ R

m from N(0, σ2I) with σ = 0.05. Then we generate
the ground truth x∗ ∈ R

n in which x∗
i = 0.5, ∀i ∈ {n/2 −

n/20, ..., n/2 + n/20} and x∗
i = 0 for others and let y =

Ax∗ + n. For FL, we let D = [IT,Q(TV)T]T. For GFL,
we generate a graph G = {V,E} with V = [n] and 2.2× n
randomly sampled edges in E, and let D = [IT,Q(G)T]T.
In this experiment, we fix the parameter λ in (2) as 0.005
and test all algorithms on the data with different values of n.

Figure 1 shows the comparison of runtime (second in
log scale) and mean squared error (MSE). Furthermore, as
shown in Figure 1(a) and 1(b), the proposed MPGL has the
best efficiency on both the FL and GFL problem. To be fair,
the running time is obtained by terminating the algorithms
when they achieve similar objective values. As the result,
the MSE values recorded in Figure 1(c) and 1(d) of the solu-
tions stay around the same level. Note that because SLEP is
limited for FL, its results on GFL is absent. Moreover, partial
results of CVX and “genlasso” for high dimensional data are
missed because of limitation of memory and running time.

Experiments on Medical Data Classification

In this section, we evaluate the proposed MPGL on a real
medical data classification task. Specifically, least square
loss and fused LASSO regularizer are used for the GL meth-
ods. In this case, each row of A denotes a training sample,
and each element in y denotes the corresponding class label.

The experiments are performed on four real medical
datasets for binary classification:

• ArrayCGH dataset (Stransky et al. 2006) contains array
comparative genomic hybridization profiles of 57 bladder
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Figure 1: Experimental results on synthetic data for FL and
GFL. The runtime is shown in log scale for visualization.

tumor samples and 2,385 features in each sample. Sam-
ples will be classified into 12 samples of Grade 1 and 45
samples of higher grade (2 or 3).

• Leukemia dataset (Golub et al. 1999) consists of gene
expression data for 7,129 genes of 72 samples including
47 samples for acute lymphocytic leukemia and 25 sam-
ples for acute myelogenous leukemia.

• Brain Tumor dataset (Nutt et al. 2003) contains gene
expression data for 12,626 genes of 50 brain tumor sam-
ples (21 classic glioblastomas against 29 non-classic).

• Prostate Cancer dataset (Petricoin et al. 2002) is
obtained by protein mass spectrometry. It consists of
15,154 features of 132 patients (63 healthy against 69
with prostate cancer).

We compare the proposed MPGL method with the above-
mentioned GL methods and support vector machine (SVM)
(Fan et al. 2008) with linear kernel as a supervised learn-
ing baseline. The comparison with “genlasso” is skipped be-
cause the number of samples is smaller than the number of
features (m < n) for all datasets. For each method, the pa-
rameters are tuned for the best performance.

We record the leave-one-out accuracy and the runtime for
one training process in Table 1. Form Table 1, among the
GFL algorithms, the proposed MPGL algorithm achieves
the fastest training speed and comparable or better accuracy
than others. Specifically, the computational costs of MPGL
are lower than SLEP, which is specifically optimized for the
FL problem. Considering the testing accuracy, the GL meth-
ods achieves better results than SVM, benefiting from the
better biological interpretation from ‖Dx‖1 (Tibshirani and
Wang 2008). Moreover, we can observe that the de-biasing
property of MPGL gives a better generalization.

1938



Table 1: Experimental results on medical data. Both GL methods and non-GL methods are considered in comparison.

Type Method ArrayCGH Leukemia Brain Tumor Prostate Cancer
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

non-GL SVM 77.19% 0.0108 83.33% 0.0248 96.00% 0.0297 97.73% 0.1154

GL

CVX 87.72% 1.3213 94.44% 7.1228 98.00% 11.444 98.48% 45.560
SLEP 85.96% 0.5043 93.06% 1.9877 96.00% 3.0616 98.48% 6.5361
fGFL 87.72% 8.4336 47.22% 21.200 98.00% 54.111 94.70% 184.24

MPGL 89.47% 0.2555 95.83% 0.9371 98.00% 2.4868 98.48% 4.0370

Table 2: Experimental results on image deconvolution. Higher PSNR and SSIM values reflect better quality.

Type Method Cameraman House Lena Pepper
PSNR/SSIM Time (s) PSNR/SSIM Time (s) PSNR/SSIM Time (s) PSNR/SSIM Time (s)

– Input 20.64/0.6268 – 23.64/0.6803 – 23.48/0.6935 – 22.99/0.7057 –
BM3D 25.91/0.7599 1.7405 26.02/0.6535 1.7511 24.69/0.7467 1.7979 22.95/0.6556 1.8921

non-GL FTVd 20.36/0.3597 0.1697 20.17/0.3124 0.1654 19.78/0.3833 0.1765 18.87/0.3424 0.1754
IRLS 25.11/0.8134 2.3217 30.74/0.8353 2.3322 28.88/0.8591 2.3211 29.96/0.8895 2.3018
CVX 22.70/0.7563 1568.0 29.03/0.8279 1673.6 27.83/0.8251 1661.6 28.61/0.8519 1816.7

GL fGFL 26.59/0.8270 1930.2 30.42/0.8343 2078.1 29.65/0.8742 1725.6 30.01/0.8902 1963.2
MPGL 27.25/0.8327 2.2560 31.84/0.8505 2.2732 29.03/0.8691 2.4068 30.41/0.8888 2.2689

x∗ y BM3D FTVd

IRLS CVX fGFL MPGL

Figure 2: Visual quality comparison of image deconvolution
on Cameraman. A local part is enlarged for visualization.
Our result has a clearer background and sharper details than
the others.

Experiments on Image Restoration

In this experiment, we apply the GL to an image restoration
task – image deconvolution, which aims to remove the blur
produced during camera exposure. Let x∗ be an unknown
sharp image in vector form, A be a convolution matrix cor-
responding to blur, the observed blurry image y can be mod-
eled as y = Ax∗+n, where n denotes random noise (Wang
et al. 2008; Gong et al. 2016). Given y and A, the task to re-
cover x is referred to as image deconvolution.

A dataset consisting of four examples is studied, in which
all images are 256 × 256 (n = 65,536). In this experiment,
we consider the motion blur with length 15 and angel 45◦,
and n∼N(0, σ2I) with noise level2 σ= 0.005. Since natu-
ral images are usually piecewise smooth and non-sparse, we
let D represent the 2-dimensional TV (Wang et al. 2008),
where D = [Q(Gv)

T,Q(Gh)
T]T with two graphs Gv and

Gh recording the 2-dimensional neighborhood information
on vertical and horizontal direction, respectively.

2The noise level σ is corresponding to the image in scale [0, 1].

Apart from the GL methods fGFL and CVX, we also
compare MPGL with some non-GL state-of-the-art image
deconvolution methods: BM3D (Dabov et al. 2008), FTVd
(Wang et al. 2008) and IRLS (Levin et al. 2007). We set
λ = 0.001 for GL methods, and use default settings for
other methods. Peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) (Wang et al. 2004) are used to
measure the quality of the results. Note that our implemen-
tation directly performs the convolution to avoid extra com-
putational costs on handling the large matrix A. As shown
in Table 2, compared to other GL methods, the proposed
MPGL achieves comparable or even better image quality
and more than 1,000 times faster computational speed. For
the images with sparse gradients (e.g. images with signif-
icant edges and flat areas), our method can effectively de-
tect the nonzero gradients, achieving significant improve-
ment comparing to previous methods. For the images with
many middle frequency components (e.g. gradually chang-
ing image intensities in Pepper), Dx∗ are much denser,
which makes our method activate many nonzero elements
in Dx to fit the data, leading to less significant improve-
ment. Even so, our method still achieves better or compara-
ble performance. Though BM3D and FTVd have low com-
putational costs, their performances are worse than others
since they assume the periodic boundary condition. Figure 2
shows that our result has more sharp and natural details and
suffers less from the ringing artifacts than others.

Conclusion

We have proposed a matching pursuit method for solving
the generalized LASSO problems efficiently. By introduc-
ing a binary vector to indicate the nonzero elements in Dx,
we formulate the GL as a QCLP problem and solve it via a
cutting plane algorithm. MPGL is guaranteed to converge to
a global optimum. The proposed algorithm with early stop-
ping helps to reduce the solution bias. Unlike many existing
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methods, MPGL can be applied to the general formulation
of GL. Empirical studies on several datasets from different
applications show the superior performance of the proposed
MPGL over comparable state-of-the-art methods.
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