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MPTV: Matching Pursuit-Based Total Variation
Minimization for Image Deconvolution

Dong Gong , Mingkui Tan , Qinfeng Shi, Anton van den Hengel , and Yanning Zhang

Abstract— Total variation (TV) regularization has proven
effective for a range of computer vision tasks through its
preferential weighting of sharp image edges. Existing TV-based
methods, however, often suffer from the over-smoothing issue
and solution bias caused by the homogeneous penalization.
In this paper, we consider addressing these issues by applying
inhomogeneous regularization on different image components.
We formulate the inhomogeneous TV minimization problem as
a convex quadratic constrained linear programming problem.
Relying on this new model, we propose a matching pursuit-based
total variation minimization method (MPTV), specifically for
image deconvolution. The proposed MPTV method is essentially a
cutting-plane method that iteratively activates a subset of nonzero
image gradients and then solves a subproblem focusing on
those activated gradients only. Compared with existing methods,
the MPTV is less sensitive to the choice of the trade-off parameter
between data fitting and regularization. Moreover, the inho-
mogeneity of MPTV alleviates the over-smoothing and ringing
artifacts and improves the robustness to errors in blur kernel.
Extensive experiments on different tasks demonstrate the supe-
riority of the proposed method over the current state of the art.

Index Terms— Total variation, image deconvolution, matching
pursuit, convex programming.

I. INTRODUCTION

MANY image restoration tasks can be formulated as an
inverse problem, which allows the recovery of the latent

image x from a measured image y. The imaging model can
be formulated as:

y = Ax + n, (1)
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where x ∈ R
n denotes the latent image, y ∈ R

n denotes
the measured image, A ∈ R

n×n is a linear operator which
models the measurement process, and n ∈ R

n is an addi-
tive noise vector. Directly recovering x from model (1) is
an ill-posed problem, because there are usually too many
solutions. A proper prior or regularizer for x is important for
reducing the ill-posedness of the problem. Given y and A, and
assuming n is sampled from i.i.d. Gaussian white noise, image
restoration can be achieved by solving the following for x:

min
x

1

2
�y − Ax�2

2 + λ�(x), (2)

where �(·) is the regularizer on x, and λ > 0 is a trade-off
parameter. Many kinds of regularizer �(·), such as the total
variation (TV) norm [1], wavelet frame-based sparse priors [2]
and Gaussian mixture models [3], have been proposed to han-
dle different image restoration tasks, e.g. denoising, inpainting
and deconvolution. In this paper, we focus on one particular
task, namely, non-blind image deconvolution.

For image deconvolution [4], [5], the matrix A in model (1)
and (2) represents a convolution matrix, with an embedded
blur kernel (a.k.a. point spread function, PSF) k. The degen-
erate image y is usually modeled by

y = x ∗ k + n,

where ∗ denotes the 2D convolution operator. Non-blind
deconvolution seeks to recover x from the blurred image
y given a known blur kernel k (and thus A). The prob-
lem is ill-posed and non-trivial to address. The practical
importance of the problem has motivated significant research
attention [4], [6]–[8]. In particular, TV regularized methods
have been intensively exploited and have demonstrated great
success in image deconvolution [1], [9]–[11].

The TV-based model was first proposed by Rudin et al. [1]
for image denoising [4], [9], [12]. It has subsequently
been applied to a variety of other tasks including
deconvolution [4], [13], [14], super-resolution [15], and
inpainting [16]. By assuming that the image gradients are
sparse, TV-based methods reflect the tendency of clear, sharp
images towards piecewise smoothness. Although �0-norm
regularization can be applied to promote sparse solution
directly, the resultant optimization problem is difficult to
solve due to its non-convexity. In practice, �1-norm or
�2,1-norm based TV regularization is more commonly
used [4], [11]. In this paper, we consider the �2,1-norm based
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isotropic TV norm [1]:

�TV(x) = �Dx�2,1 =
∑n

i=1
� [(Dvx)i , (Dhx)i ] �2, (3)

where D = [DT
v ,DT

h ]T, and Dv ∈R
n×n and Dh ∈R

n×n denote
the first-order difference matrices in vertical and horizontal
directions, respectively. � · �2,1 denotes the �2,1-norm. Specif-
ically, [(Dvx)i , (Dvx)i ] denotes a 1-by-2 vector concatenating
the i -th element of Dvx and Dhx.

A variety of TV-based methods for reducing the impact of
both image noise and blur have been devised. These methods
tend to suffer from a common set of deficiencies, however.
Firstly, the homogeneous penalty may cause over-smoothing
of high-frequency image components (such as edges and
corners). Secondly, due to the regularization bias [17]–[19]
rooted in the specific �1-norm or �2,1-norm, it is difficult to
select an appropriate trade-off hyper-parameter λ to achieve a
solution that has sparse gradients and suffers less bias issue.
Thirdly, existing TV-based deconvolution methods are usually
sensitive to errors or noise in k (i.e. A), and this often causes
heavy ringing artifacts in the latent image x [20], [21]. For
existing TV methods, it is non-trivial to achieve a balance
between suppressing artifacts and preserving image details.

In this paper, we propose a matching pursuit algorithm,
called MPTV, for solving TV regularization based image
deconvolution. The paper extends our conference paper [22]
where we addressed the generalized lasso problem. The new
contributions of this paper are summarized as follows.

• We reformulate the TV minimization problem as a
quadratically constrained linear programming (QCLP)
problem and then propose a matching pursuit algorithm
called MPTV to address the resultant problem. Instead
of focusing on all the image gradients at the beginning,
we iteratively invoke the most beneficial gradient subset,
followed by solving a subproblem constrained on selected
subsets only.

• The proposed MPTV method is able to alleviate the
over-smoothing issue while yielding a solution with
sparse gradients due to the matching pursuit like opti-
mization strategy. Compared to existing methods, MPTV
can help to reduce the solution bias. Moreover, the pro-
posed optimization scheme also helps to improve the
robustness of the method to noise and/or errors in A.
In particular, for the task of image deconvolution, MPTV
helps to suppress the ringing artifacts and recover the
image details.

• Many TV-based methods require an extensive and often
imprecise selection of hyper-parameters to balance the
sparsity and the fitness to observation. This issue can be
significantly alleviated in the proposed MPTV method
due to the new formulation and optimization strategy,
particularly the early stopping strategy that will be intro-
duced. In other words, MPTV is less sensitive to the
selection of the regularization parameter.

The remainder of this paper is organized as follows.
In Section II, we review related work in TV models and image
deconvolution. In Section III, we introduce our matching pur-
suit based TV minimization (MPTV) algorithm and discuss the

details, including stopping conditions, parameter setting, and
convergence analysis. Empirical studies on various datasets are
presented in Section V. We conclude in Section VI.

II. NOTATION AND RELATED WORK

A. Notation

Let A = [Ai, j ] ∈ R
m×n and v = [v1, . . . , vn]T ∈ R

n

denote a matrix and a vector, receptively, where T denotes
the transpose of a vector/matrix. Let 0 and 1 be vectors with
all zeros and all ones, respectively, and let I denote the identity
matrix. Let Ai or Ai be a matrix indexed for some purpose,
and let vi or vi be a vector indexed for some purpose.

Given a vector v, let diag(v) be a diagonal matrix with diag-
onal elements equal to the vector v, and �v�p be the �p-norm.
Let � denote the element-wise (Hadamard) product, ⊗ denote
the Kronecker product and supp(v) denote the support set of v.
Given a positive integer n, let [n] = {1, . . . , n}. Given any
index set T ⊆ [n], let Tc be the complementary set of T, i.e.
Tc = [n] \T, and card(T) be the cardinality of T. For a vector
v ∈ R

n , let vi denote the i -th element of v, and vT denote the
subvector indexed by T. For a matrix A, let AT denote the
columns of A with indeces in T.

B. Total Variation Models

Total variation regularization has been the subject of
much attention over the past two decades, not least due to
its effectiveness in image processing [4], [12], compressive
sensing [9] and machine learning tasks [22], [23]. Considering
the piecewise smooth property of images, Rudin et al. [1]
proposed the TV regularizer for image denoising. Following
that, many variants of the original TV regularizer have been
extensively studied. Beside the isotropic TV model proposed
in [1], anisotropic TV has also been wildly explored [4], [9].

To alleviate the optimization difficulties caused by the
non-differentiability of TV models, some approximate TV
models have been proposed, e.g. smooth TV [24] and
Huber-norm based TV [25]. To preserve the sparse nature of
the image gradients, the �0-norm based TV regularizer was
proposed for edge-preserving image editing tasks [26] and
blur kernel estimation [27]. Motivated by the �1 − �2-norm in
compressive sensing, Lou et al. [11] proposed a weighted dif-
ference of anisotropic and isotropic TV regularizers to alleviate
the over-smoothing incurred by classical TV methods. For
these methods, achieving acceptable performance is critically
dependent on careful turning of hyper-parameters. In fact,
due to the bias nature in regularization, it is non-trivial to
reduce bias issue while pursing sparsity. To handle differ-
ent types of noises, different data fitting functions are also
studied. Classical TV models [1], [4] use �2 loss to fit the
Gaussian noise in observation. To improve the robustness of
the model to outliers, non-smooth loss functions, including �1
loss [28], [29], �∞ loss [30] and �0 loss [12], have been used
to handle Laplacian noise, uniform noise and impulse noise,
respectively.

Various optimization strategies for TV regularized problems
have also been extensively investigated. Rudin et al. [1] mini-
mize the TV model using a gradient projection method, which,
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converges slowly due to the non-smoothness of the problem.
Osher et al. [31] proposed an iterative regularization method
based on Bregman distance minimization for solving the
TV based image restoration problem. Burger [32] discussed
a series of Bregman distance based approaches for inverse
problems and pointed out that the Bregman iteration scheme is
beneficial for alleviating the bias caused by the TV regularizer.
In the past two decades, many other techniques have been
proposed to accelerate convergence, including the primal-dual
interior point method [24], the splitting Bregman method [9],
the half-quadratic formulation based method [4], and alternat-
ing direction multiplier methods [10]. Specifically, to handle
the spatially inhomogeneous structural and textural informa-
tion in the image, some approaches proposed to use spatially
varying constraints with the TV regularization [33], [34].
Gilboa et al. [33] proposed a variational framework for image
denoising, in which spatially varying constraints are used for
different image local areas. In [34], a spatially dependent
parameter selection scheme is proposed to achieve spatially
adaptive TV regularization for image restoration.

C. Image Deconvolution

Abundant studies have been conducted on (non-blind)
image deconvolution, starting from the classical ones includ-
ing Wiener filter and Richadson-Lucy (RL) algorithms [6].
Based on the piecewise smooth property of natural images
and statistical studies of image gradients, many methods
perform image deconvolution by preserving significant edges
or sparse gradients. To this end, a series of TV based
methods have been extensively exploited [4], [11], [12]. Addi-
tionally, in [36], an iterative reweighed least square (IRLS)
has been used to achieve excellent results by encourag-
ing the piecewise smooth property in image deconvolution.
Krishnan and Fergus [7] proposed to perform image decon-
volution using a hyper-Laplacian prior. Moreover, instead
of preserving sparse gradients, many other methods also
perform well by relying on patch similarity [37], kernel
similarity [38], progressive multi-scale deconvolution [39],
group based sparse representation [40], or stochastic
optimization [41].

Besides the empirically designed models above, some
methods have been proposed to learn models for image
deconvolution [3], [42]–[45]. The generative prior learning
methods [3], [46] focus on learning image priors/regularizers
(e.g. a Gaussian Mixture Model based prior in [3]) from a set
of clear and sharp images, which usually leads to non-convex
problems and time-consuming optimization. For the sake of
computational efficiency, some discriminative learning based
methods [42]–[44] learn the deconvolution models (e.g. a con-
volutional neural network based model [43]) relying on pairs
of sharp and blurred images. The learning based deconvolution
methods are effective to utilize more information from training
examples than the empirically designed approaches. However,
suffering from limited flexibility on the model design, existing
learning based methods [42], [43] often require customized
training for specific blur kernels or noise, which limits their
practicability.

In practice, image deconvolution results often suffer from
wave-like ringing artifacts, especially in regions near strong
edges. This issue may be caused by the unavoidable error
in blur kernel estimation [20], the Gibbs phenomenon [47],
the zero values in the frequency spectrum of the blur
kernel [21] and/or the mismatch between the data and
the model (e.g. non-conforming noise, saturation) [48], [49].
To reduce these artifacts in deconvolution, Yuan et al. [39]
performed the Richardson-Lucy algorithm in a residual inter-
and-intra-scale scheme with edge-preserving bilateral filters.
Shan et al. [20] proposed to combin a smoothness constraint
with the �1-norm regularizer. Mosleh et al. [21] proposed
a post processing method to detect and suppress ringing
based on frequency analysis. Some methods tried to avoid
artifacts using more accurate imaging models and data fitting
terms [29], [48], [49].

III. MATCHING PURSUIT TOTAL VARIATION

FOR IMAGE DECONVOLUTION

In this section, we present a matching pursuit based TV
minimization method for non-blind image deconvolution.

A. A QCLP Reformulation of TV Model

Image deconvolution is rendered more challenging by the
ill-posed nature of the problem and the noise in both the
blurred image and the estimated blur kernel. With the TV
regularizer introduced in (3), the clear and sharp image can
be recovered by solving the following classic TV-norm regu-
larized optimization problem:

min
x

1

2
�y − Ax�2

2 + λ�TV(x), (4)

where �TV(x) = �Dx�2,1 = ∑n
i=1 � [(Dvx)i , (Dhx)i ] �2.

In problem (4), the TV regularizer treats all elements in x
homogeneously. Although the �2,1-norm is used for inducing
sparsity on image gradients, it tends to shrink the large ele-
ments in image gradients towards zero [19]. As a result, while
the TV regularizer in (4) favors a piecewise smooth solution,
it may incur over-smoothing deconvolution results [11] due to
the bias issue [18], [19]. We thus consider minimizing the total
variation value by explicitly detecting and only preserving the
sparse nonzero gradients, while suppressing the insignificant
components. In this way, we can maintain the significant
high-frequency elements in the image and suppress the noise.
To illustrate the above issue, we show an example for 1D
signal deconvolution in Fig. 1. This experiment shows that
minimizing TV with active gradient detection can reduce
the regularization bias significantly, and thus alleviates the
over-smoothness and increases estimation accuracy accord-
ingly.

To explicitly detect the sparse nonzero image gradients in
image deconvolution, we will formulate the TV model with
a new binary vector to indicate the nonzero gradients, which
will be estimated with the image simultaneously. Firstly, we
introduce z = [zT

v , zT
h ]T ∈ R

2n to denote the concatenation
of the gradients of two directions, namely Dvx and Dhx.
To find the most significant image gradients which contribute
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Fig. 1. Deconvolution results on a 1D signal example. (a) The blurred signal y is generated by blurring the sharp signal xgt with the blur kernel k. In (b) and
(c), the results from left to right are generated by solving the TV regularized model using ADMM [35] (TV-ADMM), solving problem (6) using the proposed
MPTV method (κ = 1), and solving problem (6) using ADMM given the support of the ground truth signal xgt, respectively. (c) shows the gradients of the
recovered signal in (b). In each case, λ = 0.01.

the most to the quality of image deconvolution, we introduce
two binary vectors τv ∈ {0, 1}n and τh ∈ {0, 1}n to indicate
the nonzero ones in Dvx and Dhx, respectively. We further
define τv = τh � τ , since each term in the �2,1-norm based
TV regularizer consists of two elements over vertical and
horizontal directions, e.g. (Dvx)i and (Dhx)i shown in (3).
We then let τ̃ = [τT, τT]T indicate the nonzero components
in Dx via (z � τ̃ ). To induce the sparsity, we impose an
�0-norm constraint �τ�0 ≤ κ . For simplicity, let � = {τ |τ ∈
{0, 1}n, �τ�0 ≤ κ} be the feasible domain of τ .

With the introduction of τ and the auxiliary variable z,
we propose to address the following TV-norm regularized
problem:

min
τ∈� min

x,ξ ,z

1

2
�ξ�2

2 + λ
∑n

i=1
� [(zv )i , (zh)i ] �2

s.t.ξ = y − Ax, Dx = z � τ̃ , (5)

where (zv )i and (zh)i denote the i -th elements of zv and zh ,
respectively. The constraint �τ�0 ≤ κ explicitly constrains the
sparsity of gradients via Dx = z � τ̃ , leading to an image x
with sparse Dx and a small total variation.

To simplify the computation of
∑n

i=1 � [(zv )i , (zh)i ] �2, we
define binary matrices Ci ∈ {0, 1}2×2n,∀i ∈ [n] to select both
(zv )i and (zh)i , ∀i ∈ [n] from z via multiplication between Ci

and z, i.e. Ci z. As an example, there is Ci z = [(zv )i , (zh)i ]T.
In each Ci , the i -th and (i + n)-th elements on the two rows,
respectively, are 1, and the rest are 0. Then, the �2,1-norm
in problem (5) can be rewritten as

∑n
i=1 �Ci z�2. Moreover,

we introduce a new vector d to represent z, and let its
subvectors di = Ci z,∀i ∈ [n]. Then, we can obtain an
equivalent formulation of problem (5):

min
τ∈� min

x,ξ ,z,d

1

2
�ξ�2

2 + λ
∑n

i=1
�di�2

s.t. ξ = y − Ax, Dx = z � τ̃ ,

di = Ci z, ∀i ∈ [n]. (6)

In problem (6), the integer κ reflects our rough knowledge
of the sparsity of Dx. Note that there are |�| = ∑κ

i=0

(n
i

)

feasible τ ’s in �. Problem (6) tends to find the optimal τ from
� to minimize the objective in (6). Even though the sparsity
constraint �τ�0 ≤ κ explicitly induces sparsity in image
gradients, the regularizer λ

∑n
i=1 �di�2 is still necessary for

the robust recovery of z due to possible noise in y. Meanwhile,
benefiting from the sparsity constraint and the optimization
scheme that will be introduced, a small λ can be used to
reduce the bias induced by the regularization [50], [51], which
is beneficial in alleviating over-smoothness.

Unfortunately, problem (6) is a mixed integer programming
problem, and thus hard to address. We consider a convex
relaxation to this problem. To achieve this, we first introduce
the following proposition.

Proposition 1: By deriving the dual form of the inner
minimization problem in (6) w.r.t. x, ξ , z and d given fixed
τ ∈ �, problem (6) can be transformed into

min
τ∈�max

α
− 1

2
�α�2

2 + αTy

s.t. ATα = DTβ,

τi�β i�2 ≤ λ, β i = Ciβ, ∀i ∈ [n]. (7)

where α ∈ R
n, βv ∈ R

n, βh ∈ R
n, β = [βT

v ,β
T
h ]T are the

Lagrangian dual variables. For any τ ∈ �, α∗ = ξ∗ at the
optimum of the inner problem.
The proof can be found in the supplementary material.

From Proposition 1, α∗ equals to the fitting error ξ∗.
Without loss of generality, we assume α ∈ A = [−l, l]n ,
where l is a sufficiently large positive number and A is a
compact domain. Based on (7), the feasible domain of α w.r.t.
each τ is Aτ = {α|ATα = DTβ, τi�β i�2 ≤ λ,∀i ∈ [n],α ∈
[−l, l]n}. Note that, according to the constraints in (7), all
Aτ ’s share the same β. We further define

φ(α, τ ) = 1

2
�α�2

2 − αTy, α ∈ Aτ . (8)

By applying the minimax inequality in [52], we have

min
τ∈� max

α∈A
−φ(α, τ ) ≥ max

α∈A
min
τ∈�−φ(α, τ ). (9)
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Algorithm 1: Cutting-Plane for the QCLP Problem (10)
Input: Observation y, A, parameter λ.

1 Initializing α0 = y − (1 ⊗ (
∑n

i=1 yi/n)), and τ0 = 0;
2 Set �0 = ∅ and t = 1;
3 while Stopping conditions are not achieved do
4 Find the τt corresponding to the most violated con-

straint based on αt−1;
5 Set �t = �t−1 ∪ {τt };
6 Solve the subproblem corresponding to �t :

min
α∈A,θ∈R

θ, s.t. φ(α, τ )− θ ≤ 0,∀τ ∈ �t , (11)

obtaining the solution αt . Let t = t + 1;

According to (9), maxα∈A minτ∈�−φ(α, τ ) is a lower bound
of problem (7) and it is a convex problem. By introducing
a new variable θ ∈ R, maxα∈A minτ∈�−φ(α, τ ) can be
equivalently written as a quadratically constrained linear
programming (QCLP) problem [53]:

min
α∈A,θ

θ, s.t. φ(α, τ ) ≤ θ, ∀τ ∈ �, (10)

which is a convex relaxation of problem (7). Note that each
feasible τ corresponds to a constraint. Note that there are
T = ∑κ

i=0

(n
i

)
elements in �. In other words, problem (10)

has exponentially many constraints, which makes it difficult
to address directly.

B. Optimization of the QCLP TV Model

Though there are exponentially many constraints in (10),
most of them are inactive at the optimum, since only a
subset of components are relevant in fitting the observation.
Accordingly, we seek to address problem (10) using a cutting-
plane method [50], [54] as shown in Algorithm 1. Instead
of handling all constraints at the same time, Algorithm 1
iteratively finds the active constraints and then solves a sub-
problem (11) with the selected active constraints only.

Algorithm 1 involves two main steps: finding the most vio-
lated constraints and the subproblem optimization step. Since
each τ ∈ � corresponds to a constraint, in the t-th iteration,
we find the most active τt based on αt−1 and add it into the
active constraint set �t , which is initialized as an empty set ∅.
Then we update αt by solving the subproblem (11) with the
constraints defined in �t . The algorithm terminates when the
stopping conditions are achieved.

As will be shown later, in each iteration t , the activated τt

indicates at most κ nonzero elements in Dvx and Dhx.
Activating the most active τt is equivalent to finding κ indices
of the corresponding nonzero elements, which can be recorded
in an index set Ct ⊆ [n], i.e. Ct = supp(τt ). For convenience,
we define an index set St = ∪t

i=1Ci to record the indices
indicated by all τ ’s in �t . As shown in Section III-C, due to
the difficulty of directly solving the subproblem (11) w.r.t. the
dual variable α [50], [55], we will investigate an efficient way
to solve the subproblem w.r.t. to the primal variable x instead.

C. Solving QCLP Subproblem in Primal Form

In each iteration of Algorithm 1, after updating the active
constraint set, we address subproblem (11) with a subset of
activated τ ’s in �t . Although the number of constraints in (11)
is significantly smaller than the original problem (10), directly
optimizing it w.r.t. the dual variable α is not easy [50], [55].
However, considering that the activated τ ’s in �t indicate
only a subset of nonzero elements in z and Dx, we will
transform problem (11) to an equivalent problem (w.r.t. the
primal variables x) that can be solved much faster [22], [55].

Recall that St ⊆ [n] is defined to record the indices of the
nonzero elements indicated by τ ’s in �t , and τ̃ = [τT, τT]T ∈
{0, 1}2n in (5) is defined to indicate nonzero elements in Dx ∈
R

2n . For convenience, we extend the definition of St for τ to
a notation S̃t for τ̃ , i.e. , for an St , there is S̃t = St ∪ (St + n)
and (St +n) = {i |i = j +n, j ∈ St }. Armed with the definition
of S̃t , we transform problem (11) into problem (12) w.r.t. the
primal variables x and zS̃t

as shown in Proposition 2.
Proposition 2: Let S = ∪t

i=1Ci . Assume there is no over-
lapping element among Ci ’s, problem (11) can be addressed
by solving

min
x,zS̃

1

2
�y − Ax�2

2 + λ
∑

i∈S
�CiS̃zS̃�2

s.t. (Dx)S̃ = zS̃, (Dx)S̃c = 0. (12)

Additionally, the optimal value of α∗ under problem (11) can
be recovered by α∗ = ξ∗ where ξ∗ = y − Ax∗.
The proof can be found in the supplementary material. In (12),
the subscript t of S̃t is omitted for simplifying the represen-
tation.

Proposition 2 implies that activating τ ’s in the QCLP
problem in (10) corresponds to activating a subset of nonzero
image gradients in the TV minimization problem in primal,
which are indexed by St . The nonzero gradients activated in
each iteration of Algorithm 1 are recorded in Ct .

In problem (12), only a subset of image gradients
(i.e. DxS̃ and zS̃) indicated by S̃ can be nonzero, the constraint
(Dx)S̃c = 0 thus reduces the uncertainty of the problem,
making the optimization easy. We will introduce an efficient
alternating direction method of multipliers (ADMM) based
algorithm to handle subproblem (12) in Section IV.

D. Finding the Most Violated Constraint

In each iteration of Algorithm 1, we need to find the most
active τ within a large number of elements in � based on the
updated αt−1 and the corresponding β.

At the optimum of problem (10), the following condition
should hold for all τ ’s:

ATα = DTβ, τi�β i�2 ≤ λ, ∀i ∈ [n]. (13)

Given an α and β, a subvector β i with the larger �β i�2 (and
τi = 1) violates the optimality condition (13) the more. In this
sense, the most active τ indicates the largest number of �β i�2
with the largest values. Due to the constraint �τ�0 ≤ κ , with
a given β , we construct the most active τ by finding the κ
largest �β i�2, and then setting the corresponding τi to 1 and
the rest to 0.
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Algorithm 2: Finding the Most Violated Constraint
Input: α, κ , A and regularizer parameter r .

1 Recover β from α by solving problem (14);
2 Let β i = Ciβ and calculate gi = �β i�2,∀i ∈ [n];
3 Initialize τ = 0, and find the κ largest gi ’s;
4 Set τi corresponding to the κ largest gi ’s to 1;
5 Form C, and return τ and C.

However, we cannot directly obtain the solution of the dual
variables α and β, since the optimization of subproblem (11)
is achieved by solving the problem in (12) w.r.t. the primal
variable x, as introduced in Section III-C. Thus, in each itera-
tion, after solving the subproblem in primal (i.e. problem (12)),
we firstly recover α from the solution x via α = ξ = y − Ax,
and then reconstruct β based on the equality constraint ATα =
DTβ in (14). Recall that α ∈ R

n and β = [βT
v ,β

T
h ]T ∈ R

2n .
It is thus highly ill-posed to recover β from α by solving the
linear system ATα = DTβ. We use the standard �2-norm based
regularizer �β�2

2 to alleviate the ill-posed nature. Relying on
the �2-norm based regularizer, we can obtain a closed-form
solution of β efficiently, which simplifies the optimization.
We thus try to obtain β approximately by solving:

min
β

1

2
�DTβ − ATα�2

2 + r

2
�β�2

2, (14)

where r > 0 is a penalty parameter. Even though D is a
concatenation of two parts, i.e. D = [DT

v ,DT
h ]T, we can still

efficiently solve (14) using Fast Fourier Transforms (FFTs)
(see details in the supplementary material). Then we can easily
obtain β i ,∀i ∈ [n] based on β i = Ciβ. For convenience,
we define a vector g, where gi = �β i�2.

In the t-th iteration of Algorithm 1, with the recovered β,
we can find the most active τt . As introduced in Section III-B,
in practice, we recode the κ indices indicated by τt into a set
Ct , i.e. Ct = supp(τt ) and let St = ∪t

i=1Ci record the indices
of the all activated τ ’s. In general, once an element has been
activated and added into St−1, it is unlikely to be activated
again and selected in Ct in the subsequent iterations. However,
if the subproblem is not solved accurately, some of the
activated elements may have large values of gi (i.e. �β i�2) and
be activated again. To avoid overlapping components among
Ct in practice, we form Ct from [n] \ St−1. The algorithm
for finding the most violated constraint is summarized in
Algorithm 2.

E. Matching Pursuit for Minimizing TV Model

Based on Proposition 2 and Algorithm 2, we can implement
our algorithm in primal form as summarized in Algorithm 3,
which is referred as the matching pursuit total varia-
tion (MPTV) algorithm. In each iteration of Algorithm 3,
we recover the dual variables α and β as well as find the most
active τt (relying on Algorithm 2), and then record all indices
indicated by the activated τ ’s into St . As shown in Fig. 2 (h),
the nonzero gradients are activated according to the gt (i.e.
�β i�2,∀i ∈ [n]), in which the elements with the largest values
indicate the most significant gradients in the image. During

Algorithm 3: MPTV for Image Deconvolution
Input: Observation y, parameter λ and ρ.

1 Initialize x0 = 1 ⊗ (
∑n

i=1 yi/n), α0 = y − Ax0, S0 = ∅;
2 Set iteration index t = 1;
3 while Stopping conditions are not achieved do
4 Finding the most violated constraint: Find the most

active τt based on αt−1 via Algorithm 2, and record the
corresponding indices into Ct ;

5 Let St = St−1 ∪ Ct ;
6 Subproblem optimization: Solve subproblem (12) via

the ADMM in Algorithm 4, obtaining xt . Let αt =
y − Axt , and let t = t + 1;

the iterations, the image x is recovered based on the gradually
activated gradients (indicated by St ). Since no τ is involved at
the initial stage, e.g. S0 = ∅, we initialize x via solving (12)
given S = ∅, i.e. letting x0 = 1 ⊗ (

∑n
i=1 yi/n).

Refinement for S. To boost the robustness of the MPTV
algorithm for real-world images in practice, we can take
several additional simple steps in Algorithm 3 to refine the S,
which ensures we can make a conservative estimate of the
image pixels. To conduct refinement in 2D image coordinates,
we define a 2D map M with M(i, j) = 1 for (i, j) ∈ S and
0 for others, where by a slight abuse of notation, we let S

denote the locations of activated components in 2D coordinate
system. Firstly, we perform a binary morphology dilation
after an erosion operation, such that M = (M � Re) ⊕ Rd ,
where � and ⊕ denote the binary erosion and dilation,
respectively. The structuring elements for both Re and Rd are
disks with radius 3. This step helps to remove isolated active
components in S. Fewer artifacts thus arise from fragmented
active components. Since the ideally sharp edges rarely appear
in real-world images, this step does not remove the useful and
significant structures while removing the isolated components.
Secondly, similar to [49], to improve robustness for natural
images and alleviate the visible boundaries between the active
and inactive components, we blur the mask M slightly using a
Gaussian filter with standard deviation 3 pixels. After refining
the M, we update S by recording the indices of the nonzero
elements of M in S. Note that the above operations are not
necessary for images with ideally sparse gradients.

F. Setting of Parameter κ

The integer κ parameter controls the number of activated
gradients in each iteration. In general, a large κ can decrease
the iteration number of MPTV algorithm, and a very small κ
helps to prevent activating too many gradient components.
Thus, the value of κ may affect the quality of the recovered
image. A sensitive study of κ is conducted in Section V-B.3.
To balance between the efficiency and the performance,
we here provide a strategy for setting κ .

Recall that κ reflects a rough knowledge of the support
of Dvx and Dhx together, that is, K = card(supp(Dvx) ∪
supp(Dhx)). As K is unknown, we first reconstruct β0 from
the initialization α0, then obtain g0 by letting g0

i = �β0
i �2 and
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Fig. 2. An example for the MPTV method that is presented in Algorithm 3. (a) Input blurred image and blur kernel containing estimation error. (b) Ground
truth image. (c) and (d) Results of TV-ADMM and the proposed MPTV, respectively. (e) and (f) show the convergence of TV-ADMM and MPTV. MPTV
converges to a result with higher PSNR and SSIM values. (g) Intermediate results of MPTV, xt in Algorithm 3, corresponding to the green dots in (e) and
(f). (h) shows intermediate gt in MPTV, corresponding to the xt in (g). Note that MPTV is terminated after 6 iterations.

normalize g0 as g0/�g0�2. Following the thresholding strategy
in previous work [22], we set κ as the number of of elements
in g0 larger than ζ�g0�∞. In practice, ζ ≥ 0.6 works well for
image deconvolution.

G. Solution Bias and Early Stopping

In general TV based image deconvolution, many existing
methods are sensitive to the choice of the λ and face a dilemma
– a too big a λ produces a solution with sparse gradients
and helps to resist noise, but underfits the data and causes
over-smoothness in the recovered image, while a small λ fits
the observation well but reduces the regularization strength and
may result in an estimate which suffers from ringing artifacts
and/or noise. As a result it is often necessary to intensively
search for an appropriate λ for a specific observation by con-
sidering the trade-off between the regularization strength and
the solution bias. This is often impractical and inconvenient
for users without specific knowledge. Due to the nature of
our optimization scheme, we bypass this dilemma to a large
degree, by proposing an early stopping condition below.

Recall that the MPTV algorithm incrementally activates the
nonzero elements in Dx, the value of �TV(x) increases from
0 iteratively. By defining ψ(x) = �y − Ax�2

2 + λ�TV(x),
the algorithm will be stopped when

|ψ(xt−1)− ψ(xt )|/ψ(x0) ≤ ,

where  is a tolerance variable.
A too small  may lead to too many iterations and activate

too many τ ’s due to the noise in y, resulting in a non-sparse
solution. We thus use an early stopping condition with a
relatively large  = 1 ×10−3 (and maximum iteration number
as 7) to prevent MPTV from too many iterations, which helps
to obtain a solution x with small total variation, i.e. small
�TV(x), and sparse gradients. Since the early stopping strategy
helps to ensure the sparsity of image gradients, we thus can
use a relatively small λ to reduce the regularization bias in

solution. As a result, MPTV performs well for a wide range of
λ, which saves a lot of computational cost for hyper-parameter
tuning (see Fig. 6). The sensitive study of  can be found in
Section V-B.3.

H. Discussions on Ringing Suppression by MPTV

As is outlined above, the deconvolution results often suffer
from ringing artifacts in flat areas and near strong edges
(Fig. 2 (c)), which may be caused by errors in the blur kernel
estimate [20], the Gibbs phenomenon [47], etc, as discussed
in Section II-C. The classical TV based model, unfortunately,
is inadequate for avoid the undesired ringing artifacts.

For the deconvolution process given a fixed blur kernel k
and corresponding convolution matrix A, an image x̃ contain-
ing ringing artifacts often lies in a domain X̃ = {x | x =
x̂+r, �̂x−x∗�2 ≈ 0, �Ar�2 ≈ 0}, where x∗ denotes the ground
truth image, and r is an error term for artifacts. An artifact term
r corresponding to medium frequency ripples [49] lies close to
A’s nullspace. Since for any x̃ ∈ X̃, there is �y − Ax̃�2 ≈ 0,
a solution only minimizing the �2-norm based data fidelity
term is very likely in X̃. In the conventional model (5),
the strength of the TV regularizer is only controlled by the
parameter λ. Although a large weight of the TV regularizer can
suppress the potential ringing artifacts, it also over smooths the
significant edges and textures in the recovered image [4], [21].
When λ is not large enough, minimizing the TV based
objective cannot produce images with sparse gradients and
leads to results lying in X̃ with visible ringing. It is hard to
find an accurate solution with less ringing artifacts only by
tuning the parameter λ.

Instead of directly optimizing the objective in (2), MPTV
gradually activates the most significant gradients according
to the fitting errors as shown in Fig. 2. As shown in [47],
the ringing artifacts are less significant in the fitting error,
due to the smaller magnitudes. The possible artifacts can be
naturally suppressed by the gradient activation step and the



1858 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

early stopping condition. Thus, benefiting from the optimiza-
tion scheme, the proposed MPTV can suppress the ringing
artifacts without the need of large λ. Recall that MPTV can
also produce the desired sparse gradients with a small λ, which
is consistent with that for ringing suppression. The example
in Fig. 2 and the experimental results in Section V demon-
strate that by selectively, and inhomogeneously, activating the
appropriate gradients the intended effect of the regularizer can
be maintained without causing the unwanted ringing.

I. Convergence Analysis

Similar to the analysis in [22] and [55], it can be proved that
the θ ’s generated through progressive iterations of Algorithm 1
increase monotonically. As a result, the following proposition
shows that MPTV converges to a global solution of (10).

Proposition 3: Let {(αt , θt )} be the sequence generated by
Algorithm 1. If the most violated constraint finding problem
and subproblem (11) can be solved, the sequence {(αt , θt )}
will converge to an optimal solution of problem (10).

The proof can be found in the supplementary file.
In practice, we may use an early stopping to prevent MPTV

from activating too many constraints, which will help to obtain
images with sparse gradients.

IV. EFFICIENT OPTIMIZATION OF SUBPROBLEM (12)

In MPTV algorithm (i.e. Algorithm 3), after updating St ,
we need to solve the subproblem (12). To handle the equality
constraints, we apply the alternating direction method of
multipliers (ADMM) [52] which can be up to a few orders of
magnitude faster than solving (11) directly [55]. Specifically,
we iteratively update the primal and dual variables of the
augmented Lagrangian function [35] of (12). Let subvectors
γ S̃ and γ S̃c be the dual variables w.r.t. the two constraints,
respectively. By introducing a dual variable γ ∈ R

2n and a
positive penalty parameter ρ > 0, we obtain the augmented
Lagrangian for (12):

L(x, zS̃, γ ) = 1

2
�y − Ax�2

2 + λ
∑

i∈S
�CiS̃zS̃�2

+ γ T
S̃
((Dx)S̃ − zS̃)+ γ T

S̃c(Dx)S̃c

+ ρ

2
�(Dx)S̃ − zS̃�2

2 + ρ

2
�(Dx)S̃c�2

2. (15)

Then, we can solve for x by iteratively minimizing L(·) w.r.t.
x and zS̃, and updating γ . Let k denote the iteration number.
Applying ADMM, we carry out the following steps at each
iteration:

Step 1: Compute zk+1
S̃

with fixed xk and γ k by solving:

min
zS̃

λ
∑

i∈S

�CiS̃zS̃�2 + ρ

2
�(Dxk)S̃ − zS̃ + 1

ρ
γ k

S̃
�2

2, (16)

which has an unique closed-form solution. For ∀i ∈ S, let
μi = CiS̃(Dxk + 1

ρ γ k). We can obtain the solution of (16) by
a two-dimensional shrinkage [4] for ∀i ∈ S:

CiS̃zk+1
S̃

= max

{
�μi�2 − λ

ρ
, 0

}
μi

�μi�2
, ∀i ∈ S, (17)

Algorithm 4: ADMM for Solving Subproblem (12)
Input: Observation y, parameter λ and ρ, initialization of

image x0, index set St .
1 Initialize β0 = 0. Set iteration number as k = 0;
2 while Stopping conditions are not achieved do
3 Compute zk+1

S̃
according to (17);

4 Generate z� by letting z�̃
S

= zk+1
S̃

and z�̃
Sc = 0;

5 Compute xk+1 by solving problem (18);
6 Update γ k+1 according to (20);
7 If the stopping condition is achieved, stop;
8 Let k = k + 1;

where a convention 0 · (0/0) = 0 is followed. Following
this, for convenience, we define a temporary variable z� =
[z�T
v , z�T

h ]T, and let z�̃
S

= zk+1
S̃

and z�̃
Sc = 0.

Step 2: Update xk+1 by solving minx L(x, zk+1
S̃

, γ k) w.r.t. x:

min
x

1

2
�y − Ax�2

2 + ρ

2
�Dx − z� + 1

ρ
γ k�2

2, (18)

which is quadratic in x. Let ν = [νT
v , ν

T
h ]T where νv = z�

v −
1
ρ γ k

v and νh = z�
h − 1

ρ γ k
h . The minimizer can be recovered

from the normal equation:
[
ATA + ρ(DTD)

]
x = ATy + ρDTν. (19)

Under the periodic boundary condition, we can obtain the
solution via FFTs [4]:

xk+1=F−1

(
F(A)F(y)+ρ(F(Dv)F(νv )+F(Dh)F(νh))

F(A)F(A)+ρ(F(Dv )F(Dv )+F(Dh)F(Dh))

)
,

where F(·) and F−1(·) denote the Fourier transform and
the inverse transform, respectively, F(·) denotes the complex
conjugate of F(·), and the multiplication and division are all
component-wise operators.

Step 3: Update the dual variable γ :

γ k+1 = γ k + ρ(Dxk+1 − z�). (20)

The ADMM method for solving problem (12) is summa-
rized in Algorithm 4. As shown in Proposition 2, the dual
variable can be recovered by α∗ = ξ∗ = y − Ax∗.

Stopping conditions of Algorithm 4. For Algorithm 4
applied in solving subproblem (12), by defining ϕ(x) =
�y − Ax�2, the algorithm is stopped when

|ϕ(xt−1)− ϕ(xt)|/ϕ(x0) ≤ in,

where in is a tolerance value. This stopping condition is
adapted from [9]. In practice, a sufficiently small in is enough
to find the most-violated constraint. We suggest setting in =
0.001 and the maximum iteration to 100. To avoid the possible
early stopping issue in ADMM at the very beginning iterations,
we can let the algorithm be stopped only after a minimal
number of iterations.
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Fig. 3. (a) Blur kernels (PSFs) for generating synthetic data. #1: 25 × 25
Gaussian blur kernel with standard derivation 1.6; #2: 15×15 disk blur kernel;
#3: 11 × 11 linear motion blur with length 15 and angle 45◦; #4-#8: Motion
blur kernel from Levin et al. ’s dataset [56] (squared kernels with side length
19, 15, 27, 21 and 23). All blur kernels are padded as same size for better
illustration. (b) An example of the synthetic image with sparse gradients,
where kernel #6 is used.

V. EXPERIMENTS

In this section, we evaluate the performance of our method
against the state-of-the-art image deconvolution methods on
both synthetic data and real-world images. To make a compre-
hensive study of the proposed method, we consider different
types of blur kernels (PSFs) and images. We will also study
the sensitivity of the MPTV algorithm to noises, blur level
and different parameter settings, and demonstrate its ability
to suppress ringing artifacts. All experiments are conducted
using MATLAB on a desktop computer with an Intel Core
i5 CPU with 8GB of RAM. We use brute-force search for the
parameters to obtain the best performance for every method.

A. Experimental Settings

1) Synthetic Dataset Generation: Three synthetic datasets
are generated based on sharp images x∗ belonging to three
different types – images with sparse gradients, text images
with near sparse gradients and natural images. We use a set
of different blur kernels to construct different A’s. For each
A we generate the blurry testing images y’s by the imaging
model (1) y = Ax∗+n, where n denotes the additive Gaussian
white noise with noise level1 0.3% unless stated otherwise. All
synthetic blurry images in these three datasets are generated
using a set of different blur kernels (PSFs), including the
Gaussian blur kernel, disk blur kernel, linear motion blur
kernel and motion blur kernels with different sizes from Levin
et al. [56] dataset as shown in Fig. 3 (a). A nonperiodic
boundary condition [57] is used for imitating the real blurred
image. We will discuss more details of the datasets in the
following.

2) Evaluation Metrics: Since we have the ground truth for
synthetic datasets, we use the peak-signal-noise-ratio (PSNR)
and structural similarity index (SSIM) [58] as the metric.

3) Comparison With Other Algorithms: We compare the
proposed MPTV method with several state-of-the-art com-
petitors for image deconvolution, including the methods by
promoting sparsity on image gradients (such as e.g. FTVd [4],
L0-Abs [59], WDTV [11], IRLS [36], hyper-Laplacian prior
based method [7] and L0TV [12]), and other methods
(e.g. BM3D [37] and a kernel similarity based method [38]).

1An image y with (100×σ)% Gaussian noise is generated by adding noise
with zero mean and standard derivation σ for image Ax∗ with [0, 1] intensity
range.

Moreover, we also compare with a TV-ADMM method
by minimizing the isotropic TV model using ADMM
method, which is a direct baseline of the proposed
method.

B. Experiments on Synthetic Image With Sparse Gradients

Recall that the proposed MPTV is based on the identifica-
tion of non-zero subsets of the sparse gradient. We thus first
evaluate the performance of the proposed method on an image
with sparse gradients.

Fig. 3 (b) shows a 256 × 256 sharp image with sparse
gradients for synthesizing blurred testing images. We perform
image deconvolution using different methods and record the
averaged values of PSNR and SSIM with 8 different kernels
in Table I. From Table I, the proposed MPTV performs the
best in terms of PSNR and SSIM. Here, the execution time of
MPTV for handling a 256 × 256 image is within 1 second.

1) Sensitivity Study on Noise: Based on the synthetic data
above, we conduct a noise level sensitivity study for the
proposed MPTV. We first generate two blurred images, one
with the Gaussian blur kernel (#1 in Fig. 3 (a)) and the other
with a motion blur kernel (#6 in Fig. 3 (a)), and then add
Gaussian noise with noise with levels varying from 1% to
10% with interval 1% to the two blurred images. Fig. 4 records
the PSNR and SSIM values of different methods, which show
that the performance of many previous methods decreases as
noise level increases. The performance of MPTV is high and
stable since the cutting-plane optimization method restricts the
elements of Dx corresponding to the inactive τ to be zero.

2) Sensitivity Study on Blur Level: The deconvolution task
becomes more difficult as the level of blur increases. In order
to test the robustness of the various methods to increasing blur
level, we generate synthetic images using both the Gaussian
and linear motion blur kernels, as they exhibit a natural
parametrization for this purpose. We thus generate 8 squared
Gaussian blur kernels where the side lengths range from 15
to 85 pixels with an interval of 10, and standard derivations
1.6, 3, 5 and 7, and 8 linear motion blur kernels with 45◦ angle
and lengths from 7 to 63 with an interval of 8. Fig. 5 shows
that the performance of all methods decreases with increasing
blur level for both Gaussian and motion blur. Nevertheless,
the proposed MPTV performs the best for all blur levels.

3) Sensitivity Study on Parameters: Firstly, we conduct a
sensitivity study for the parameter λ. MPTV with a proper
λ achieves solutions with high accuracy and less regularizer
bias. Due to the cutting-plane method and the early stopping
strategy, MPTV is not sensitive to the value of λ. In this exper-
iment, we primarily compare MPTV with the TV-ADMM
method that shares a similar problem formulation and the
same implementation details apart from the binary indicator τ

and the cutting-plane based optimization scheme. We perform
deconvolution using the two methods given 20 λ’s with values
from 1 × 10−5 to 0.96 × 10−3 with an interval of 5 × 10−5,
and record the average PSNR and SSIM values of all testing
images in Fig. 6. According to evaluation based on both PSNR
and SSIM, the proposed MPTV method is more robust to the
setting of λ and outperforms the TV-ADMM for all λ’s, which
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TABLE I

COMPARISON ON THE SYNTHETIC IMAGE WITH SPARSE GRADIENTS (PSNR/SSIM)

Fig. 4. Study of noise sensitivity. PSNR and SSIM of the deconvolution results are evaluated for the blurry images contaminated by Gaussian noise with
increasing noise level. (a) and (b) Results on the blurry images with Gaussian blur. (c) and (d) Results on the blurry images with motion blur.

Fig. 5. Blur level sensitivity study of various methods. PSNR and SSIM of the deconvolution results for 8 blurry images contaminated by Gaussian blur or
linear motion blur with increasing blur level. (a) and (b) Results on the images blurred by the Gaussian PSFs. (c) and (d) Results on the images blurred by
the linear motion PSFs.

Fig. 6. Sensitivity study of parameter λ. The deconvolution results of
TV-ADMM and MPTV with varying λ are evaluated and compared. (a) Eval-
uation based on PSNR. (b) Evaluation based on SSIM.

proves the effectiveness of the proposed MPTV formulation
and the cutting-plane based optimization method.

In the second experiment, we study the sensitivity of the
parameter κ for MPTV. The PSNR values of the image
results and the corresponding κ are reported in Fig. 7 (a).
The same stopping condition described in Section III-G is

Fig. 7. Sensitivity studies of κ and  for MPTV. PSNR of the deconvolution
results with different values for the parameters are shown. (a) Sensitivity of κ .
(b) Sensitivity of the stopping condition parameter . In (b), the x axis is scaled
for visualization.

used for different κ’s (from 64 to 512). From Fig. 7 (a),
a proper κ helps to prevent MPTV from activating too many
or too less nonzero gradients, resulting in high-quality results.
If κ is too small, MPTV may not activate enough nonzero
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TABLE II

QUALITATIVE COMPARISON ON TEXT IMAGES WITH NEAR SPARSE GRADIENTS (PSNR/SSIM)

TABLE III

QUALITATIVE COMPARISON ON NATURAL IMAGES (PSNR/SSIM)

Fig. 8. An example of the results on synthetically blurred natural images. The blurred image y is generated using the sharp image cameraman and the
#6 blur kernel in Fig. 3 (a). (a) Ground truth sharp image x∗. (b) Input blurred image y. (c)-(l) Deconvolution results of different methods in comparison.

elements in a limited number of iterations. When κ increases,
the performance slightly degrades.

In the third experiment, we study the influence of the
parameter  on the performance of MPTV. Different  values
result in different iteration numbers. Fig. 7 (b) records the
PSNR values with 8 different ’s from 1 × 10−5 to 5 × 10−2.
As shown in Fig. 7 (b), MPTV works robust to a wide range
of . When  is large enough, e.g.  = 1 × 10−3 in Fig 7 (b),
the early stopping helps MPTV to produce images with sparse

gradients and satisfactory quality. A too small  leads to too
many iterations and thus activates too many nonzero gradients,
which slightly degrades the performance.

C. Quantitative Studies on Text Images

A text image often contains near sparse gradients and
represents an important class of real images. We thus study the
performance of MPTV on text images using a dataset contain-
ing 14 ground truth text images and 8 kernels (in Fig. 3 (a)).
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Fig. 9. Study of sensitivity to the error in the blur kernel estimate. Blur kernels with increasing noise level are given for deconvolution. PSNR and SSIM
of the deconvolution results are evaluated for 7 blurry images contaminated by Gaussian blur or motion blur. (a) and (b) Results on the images blurred by
Gaussian blur kernel. (c) and (d) Results on the images blurred by the motion blur kernel.

Fig. 10. Experimental results on real text image. (a) Input blurred image y and blur kernel k estimated using the method in [60]. (b)-(j) Deconvolution
results of different methods. The results using TV2 in (h) are estimated using the method in [60]. We show the intermediate results during the iterations of
the proposed MPTV in (k) and (l). (k) gt for activating gradients. (l) Intermediate xt . In this example, MPTV terminates after 6 iterations.

Here, we perform deconvolution with ground-truth blur ker-
nels. For each blur kernel, we show the averaged PSNR and
SSIM of both input blurred images and the deblurring results
in Table II.2 From the table, MPTV consistently performs
better than state-of-the-art methods. In particular, the results
of MPTV appear sharper than others.

D. Experiments on Natural Images

In this section, we evaluate the proposed MPTV algorithm
and other methods using natural images. We construct a dataset

2The comparison with L0-ABS [59] is absent since the corresponding code
only works on square images.

including 192 blurred natural images from 24 sharp images
and the 8 kernels shown in Fig. 3 (a). Since the gradients
of natural images are much denser, MPTV is required to
activate many gradients to fit the observation, leading to
lower superiority over the comparator methods, as shown
in Table III. Nevertheless, the proposed MPTV performs better
than others in terms of PSNR and SSIM values. Fig. 8
provides a visual comparison which demonstrates that the
latent images estimated by MPTV exhibit sharper edges and
less ringing artifacts than those of its comparators. We also
note that MPTV failed to model some of the subtle textures
in the background due to the binary indicator for the activated
gradients.
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Fig. 11. Experimental results on a real-world image. (a) Input blurred image y and blur kernel k. (b) Deblurring result of the software in [29] is used as
a baseline. (c)-(j) Deconvolution results of different methods. The proposed MPTV recovers more sharp details (see red box) and introduces fewer ringing
artifacts (see blue box).

Fig. 12. Experimental results on a real-world image. (a) Input blurred image y and blur kernel k. (b) Deblurring result of the software in [29] is used as a
baseline. (c)-(j) Deconvolution results of different methods. The results of MPTV with different values for parameter λ are shown in (i) and (j). The results
of MPTV suffer from fewer ringing artifacts (see blue boxes).

1) Sensitivity Study on Blur Kernel Errors: In practice,
the blur kernel for image deconvolution is usually an esti-
mate containing errors, which lead to ringing artifacts [20]
and incur degraded deconvolution performance. We thus here
describe an experiment to study the sensitivity of different
methods to errors in the kernel estimate. Seven 256 × 256
sharp natural images (among the 24 sharp images above) and
two blur kernels (Gaussian blur kernel #1 and motion blur
kernel #6) are used to generate the test data. The ground
truth known blur kernel is applied to each image, and each
kernel then has noise added to form an erroneous blur kernel
estimate which is passed to the various deblurring methods.
The added noise is sampled from Gaussian distribution with

a noise level increasing from 0.2% to 0.5% (with an interval
of 0.05%).

As shown in Fig. 9, the proposed method is more robust
than other algorithms since the cutting-plane of the proposed
MPTV estimates the sharp image by gradually activating
the significant gradients which helps to suppress the ringing
artifacts.

E. Experiments on Real-World Images

We evaluate the performance of MPTV on two kinds of
real-world blurred images, i.e. blurred text images and natural
images. Here, the blur kernels are unknown. For real-world
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image deconvolution, the kernel estimation error is one main
reason causing ringing artifacts [20]. For fair comparison,
we use blur kernels estimated by the method in [60] for all
compared deconvolution methods.

We first report the results on a blurred text image in Fig. 10.
From the figure, the deblurred results of most compared meth-
ods contain significant ringing artifacts and/or over-smooth
strokes. In fact, since these methods usually use a universal
criterion to suppress undesired components, such as threshold-
ing on gradients, they may cause over-smoothness (see Fig. 10
(h)), or fail to suppress artifacts (see Fig. 10 (b)). On the
contrary, the proposed MPTV algorithm can recover sharper
and clearer results by gradually activating significant strokes
to fit the blurred observation (Fig. 10 (k) and (l)).

In Fig. 11, we show the deblurring results on a natural
image containing both subtle textures and flat background.
Although the ringing artifacts caused by the kernel estimation
error are unavoidable, MPTV performs favorably against the
state-of-the-art competitors by alleviating ringing artifacts and
preserving shape details simultaneously. Fig. 12 shows that,
on an image with complex contents, the proposed MPTV can
achieve favorable results than other methods. With a smaller
regularization weight (λ = 0.00005, Fig. 12 (j)), MPTV
recovers much sharper and clearer details but still suppresses
the ringing artifacts to quite a low level.

VI. CONCLUSION

We have proposed a matching pursuit based total variation
minimization method for image deconvolution. By introducing
a binary vector to indicate the significant components in the
image gradients, we formulate the TV minimization problem
as a QCLP problem and solve it via a cutting-plane method.
The proposed algorithm with early stopping helps to reduce the
solution bias, to alleviate over-smoothness, and suppress the
ringing artifacts in the deconvolution results. Comprehensive
empirical studies on many different datasets show the superior
performance of the proposed MPTV over the state-of-the-art
methods.

In the future, we plan to apply the proposed method to a
variety of related image processing tasks, such image super-
resolution. We are also interested to extend the matching
pursuit framework to the wavelet frame based on the models
introduced in [61].

REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
nos. 1–4, pp. 259–268, 1992.

[2] J.-F. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: Total
variation, wavelet frames, and beyond,” J. Amer. Math. Soc., vol. 25,
no. 4, pp. 1033–1089, 2012.

[3] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. ICCV, Nov. 2011, pp. 479–486.

[4] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimiza-
tion algorithm for total variation image reconstruction,” SIAM J. Imag.
Sci., vol. 1, no. 3, pp. 248–272, Aug. 2008.

[5] D. Gong, M. Tan, Y. Zhang, A. van den Hengel, and Q. Shi, “Blind
image deconvolution by automatic gradient activation,” in Proc. CVPR,
Jun. 2016, pp. 1827–1836.

[6] W. H. Richardson, “Bayesian-based iterative method of image
restoration,” J. Opt. Soc. Amer., vol. 62, no. 1, pp. 55–59, Jan. 1972.

[7] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1033–1041.

[8] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and
super-resolution by adaptive sparse domain selection and adaptive regu-
larization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,
Jul. 2011.

[9] T. Goldstein and S. Osher, “The split Bregman method for
L1-regularized problems,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 323–343,
2009.

[10] W. Zuo and Z. Lin, “A generalized accelerated proximal gradient
approach for total-variation-based image restoration,” IEEE Trans. Image
Process., vol. 20, no. 10, pp. 2748–2759, Oct. 2011.

[11] Y. Lou, T. Zeng, S. Osher, and J. Xin, “A weighted difference of
anisotropic and isotropic total variation model for image processing,”
SIAM J. Imag. Sci., vol. 8, no. 3, pp. 1798–1823, 2015.

[12] G. Yuan and B. Ghanem, “l0tv: A new method for image restora-
tion in the presence of impulse noise,” in Proc. CVPR, Jun. 2015,
pp. 5369–5377.

[13] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE
Trans. Image Process., vol. 7, no. 3, pp. 370–375, Mar. 1998.

[14] D. Perrone and P. Favaro, “Total variation blind deconvolution: The devil
is in the details,” in Proc. CVPR, Jun. 2014, pp. 2909–2916.

[15] A. Marquina and S. J. Osher, “Image super-resolution by
TV-regularization and Bregman iteration,” J. Sci. Comput., vol. 37,
no. 3, pp. 367–382, Dec. 2008.

[16] J. Shen and T. F. Chan, “Mathematical models for local nontexture
inpaintings,” SIAM J. Appl. Math., vol. 62, no. 3, pp. 1019–1043, 2002.

[17] C.-A. Deledalle, N. Papadakis, and J. Salmon, “On debiasing restoration
algorithms: Applications to total-variation and nonlocal-means,” in Scale
Space and Variational Methods in Computer Vision. Cham, Switzerland:
Springer, 2015, pp. 129–141.

[18] C.-A. Deledalle, N. Papadakis, J. Salmon, and S. Vaiter, “CLEAR:
Covariant least-square refitting with applications to image restoration,”
SIAM J. Imag. Sci., vol. 10, no. 1, pp. 243–284, 2017.

[19] E.-M. Brinkmann, M. Burger, J. Rasch, and C. Sutour, “Bias reduction
in variational regularization,” J. Math. Imag. Vis., vol. 59, no. 3,
pp. 534–566, 2017.

[20] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” ACM Trans. Graph., vol. 27, no. 3, pp. 15–19, 2008.

[21] A. Mosleh, J. P. Langlois, and P. Green, “Image deconvolution ringing
artifact detection and removal via PSF frequency analysis,” in Proc.
ECCV. Cham, Switzerland: Springer, 2014, pp. 247–262.

[22] D. Gong, M. Tan, Y. Zhang, A. van den Hengel, and Q. Shi, “MPGL:
An efficient matching pursuit method for generalized lasso,” in Proc.
AAAI Conf. Artif. Intell., 2017, pp. 1934–1940.

[23] J. Wang, Q. Li, S. Yang, W. Fan, P. Wonka, and J. Ye, “A highly scalable
parallel algorithm for isotropic total variation models,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 235–243.

[24] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method
for total variation-based image restoration,” SIAM J. Sci. Comput.,
vol. 20, no. 6, pp. 1964–1977, 1999.

[25] M. Nikolova and M. K. Ng, “Analysis of half-quadratic minimization
methods for signal and image recovery,” SIAM J. Sci. Comput., vol. 27,
no. 3, pp. 937–966, 2005.

[26] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, 2011, Art. no. 174.

[27] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” in Proc. CVPR, Jun. 2013, pp. 1107–1114.

[28] J. Yang, Y. Zhang, and W. Yin, “An efficient TVL1 algorithm for
deblurring multichannel images corrupted by impulsive noise,” SIAM
J. Sci. Comput., vol. 31, no. 4, pp. 2842–2865, 2009.

[29] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion deblur-
ring,” in Proc. Eur. Conf. Comput. Vis. Berlin, Germany: Springer, 2010,
pp. 157–170.

[30] C. Clason, “L∞ fitting for inverse problems with uniform noise,” Inverse
Problems, vol. 28, no. 10, p. 104007, 2012.

[31] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation-based image restoration,” Multiscale
Model. Simul., vol. 4, no. 2, pp. 460–489, 2005.

[32] M. Burger, “Bregman distances in inverse problems and partial differ-
ential equations,” in Advances in Mathematical Modeling, Optimization
and Optimal Control. Cham, Switzerland: Springer, 2016, pp. 3–33.

[33] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Variational denoising of partly
textured images by spatially varying constraints,” IEEE Trans. Image
Process., vol. 15, no. 8, pp. 2281–2289, Aug. 2006.



GONG et al.: MPTV FOR IMAGE DECONVOLUTION 1865

[34] K. Bredies, Y. Dong, and M. Hintermüller, “Spatially dependent regu-
larization parameter selection in total generalized variation models for
image restoration,” Int. J. Comput. Math., vol. 90, no. 1, pp. 109–123,
2013.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[36] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM Trans. Graph.,
vol. 26, no. 3, p. 70, 2007.

[37] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration
by sparse 3D transform-domain collaborative filtering,” Proc. SPIE,
vol. 6812, p. 681207, Mar. 2008.

[38] A. Kheradmand and P. Milanfar, “A general framework for regularized,
similarity-based image restoration,” IEEE Trans. Image Process., vol. 23,
no. 12, pp. 5136–5151, Dec. 2014.

[39] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Progressive inter-scale and
intra-scale non-blind image deconvolution,” ACM Trans. Graph., vol. 27,
no. 3, 2008, Art. no. 74.

[40] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation
for image restoration,” IEEE Trans. Image Process., vol. 23, no. 8,
pp. 3336–3351, Aug. 2014.

[41] L. Xiao, J. Gregson, F. Heide, and W. Heidrich, “Stochastic blind motion
deblurring,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3071–3085,
Oct. 2015.

[42] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Schölkopf, “A machine
learning approach for non-blind image deconvolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013, pp. 1067–1074.

[43] L. Xu, J. S. J. Ren, C. Liu, and J. Jia, “Deep convolutional neural
network for image deconvolution,” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 1790–1798.

[44] U. Schmidt and S. Roth, “Shrinkage fields for effective image restora-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2014, pp. 2774–2781.

[45] D. Gong, Z. Zhang, Q. Shi, A. van den Hengel, C. Shen, and Y. Zhang.
(2018). “Learning an optimizer for image deconvolution.” [Online].
Available: https://arxiv.org/abs/1804.03368

[46] U. Schmidt, Q. Gao, and S. Roth, “A generative perspective on MRFs
in low-level vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2010, pp. 1751–1758.

[47] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with
blurred/noisy image pairs,” ACM Trans. Graph, vol. 26, no. 3, p. 1,
Jul. 2007.

[48] S. Cho, J. Wang, and S. Lee, “Handling outliers in non-blind image
deconvolution,” in Proc. ICCV, Nov. 2011, pp. 495–502.

[49] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and partially
saturated images,” Int. J. Comput. Vis., vol. 110, no. 2, pp. 185–201,
2014.

[50] M. Tan, I. W. Tsang, and L. Wang, “Matching pursuit LASSO Part
I: Sparse recovery over big dictionary,” IEEE Trans. Signal Process.,
vol. 63, no. 3, pp. 727–741, Feb. 2015.

[51] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 4,
pp. 586–597, Dec. 2007.

[52] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[53] E. Y. Pee and J. O. Royset, “On solving large-scale finite minimax prob-
lems using exponential smoothing,” J. Optim. Theory Appl., vol. 148,
no. 2, pp. 390–421, 2011.

[54] K. O. Kortanek and H. No, “A central cutting plane algorithm for convex
semi-infinite programming problems,” SIAM J. Optim., vol. 3, no. 4,
pp. 901–918, 1993.

[55] M. Tan, I. W. Tsang, and L. Wang, “Towards ultrahigh dimen-
sional feature selection for big data,” J. Mach. Learn. Res., vol. 15,
pp. 1371–1429, Apr. 2014.

[56] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” in Proc. CVPR, Jun. 2009,
pp. 1964–1971.

[57] M. Sorel, “Removing boundary artifacts for real-time iterated shrink-
age deconvolution,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 2329–2334, Apr. 2012.

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[59] J. Portilla, “Image restoration through l0 analysis-based sparse optimiza-
tion in tight frames,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Nov. 2009, pp. 3909–3912.

[60] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring text images via
L0-regularized intensity and gradient prior,” in Proc. CVPR, Jun. 2014,
pp. 2901–2908.

[61] L. He and Y. Wang, “Iterative support detection-based split Bregman
method for wavelet frame-based image inpainting,” IEEE Trans. Image
Process., vol. 23, no. 12, pp. 5470–5485, Dec. 2014.

Dong Gong received the B.S. degree in computer
science from Northwestern Polytechnical Univer-
sity, Xi’an, China. He is currently pursuing the
Ph.D. degree with the School of Computer Science,
Northwestern Polytechnical University. He was the
Joint-Training Ph.D. Student with The University of
Adelaide from 2015 to 2016. His current research
interests include machine learning and optimization
techniques and their applications in image process-
ing and computer vision.

Mingkui Tan received the bachelor’s degree in
environmental science and engineering and the mas-
ter’s degree in control science and engineering from
Hunan University, China, in 2006 and 2009, respec-
tively, and the Ph.D. degree in computer science
from Nanyang Technological University, Singapore,
in 2014. From 2014 to 2016, he was a Senior
Research Associate in computer vision with the
School of Computer Science, University of Ade-
laide, Australia. Since 2016, he has been with
the School of Software Engineering, South China

University of Technology, China, where he is currently a Professor. His
research interests include machine learning, sparse analysis, deep learning,
and large-scale optimization.

Qinfeng Shi received the bachelor’s and mas-
ter’s degrees in computer science and technology
from Northwestern Polytechnical University, Xi’an,
China, in 2003 and 2006, respectively, and the Ph.D.
degree in computer science in machine learning
from Australian National University, Canberra, ACT,
Australia, in 2011. He is currently an Associate
Professor with the School of Computer Science, The
University of Adelaide, Adelaide, SA, Australia.

Anton van den Hengel received the B.Sc. degree in
mathematics, the B.L. degree, the M.Sc. degree in
computer science, and the Ph.D. degree in computer
vision from The University of Adelaide in 1991,
1993, 1994, and 2000, respectively. He is currently
a Professor with the University of Adelaide and
the Founding Director of The Australian Centre for
Visual Technologies.

Yanning Zhang received the B.S. degree from the
Dalian University of Technology in 1988 and the
M.S. and Ph.D. degrees from Northwestern Poly-
technical University in 1993 and 1996, respectively.
She is currently a Professor with the School of
Computer Science and Technology, Northwestern
Polytechnical University. She has published over
200 papers in his research fields including ICCV
2011 Best Student Papers. Her research works focus
on signal and image processing, computer vision,
and pattern recognition. She was the Organization

Chair of ACCV 2009 and the Publicity Chair of ICME 2012.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


