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Abstract

How to learn discriminative video representation from
unlabeled videos is challenging but crucial for video anal-
ysis. The latest attempts seek to learn a representation
model by predicting the appearance contents in the masked
regions. However, simply masking and recovering ap-
pearance contents may not be sufficient to model tempo-
ral clues as the appearance contents can be easily recon-
structed from a single frame. To overcome this limitation,
we present Masked Motion Encoding (MME), a new pre-
training paradigm that reconstructs both appearance and
motion information to explore temporal clues. In MME,
we focus on addressing two critical challenges to improve
the representation performance: 1) how to well represent
the possible long-term motion across multiple frames; and
2) how to obtain fine-grained temporal clues from sparsely
sampled videos. Motivated by the fact that human is able to
recognize an action by tracking objects’ position changes
and shape changes, we propose to reconstruct a motion
trajectory that represents these two kinds of change in the
masked regions. Besides, given the sparse video input, we
enforce the model to reconstruct dense motion trajectories
in both spatial and temporal dimensions. Pre-trained with
our MME paradigm, the model is able to anticipate long-
term and fine-grained motion details. Code is available at
https://github.com/XinyuSun/MME.

1. Introduction

Video representation learning plays a critical role in
video analysis like action recognition [15,32,79], action lo-
calization [12,81], video retrieval [4,82], videoQA [40], etc.
Learning video representation is very difficult for two rea-
sons. Firstly, it is extremely difficult and labor-intensive to
annotate videos, and thus relying on annotated data to learn
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video representations is not scalable. Also, the complex
spatial-temporal contents with a large data volume are diffi-
cult to be represented simultaneously. How to perform self-
supervised videos representation learning only using unla-
beled videos has been a prominent research topic [7, 13,49].

Taking advantage of spatial-temporal modeling using a
flexible attention mechanism, vision transformers [3, &, 25,

, 53] have shown their superiority in representing video.
Prior works [5, 37, 84] have successfully introduced the
mask-and-predict scheme in NLP [9,23] to pre-train an im-
age transformer. These methods vary in different recon-
struction objectives, including raw RGB pixels [37], hand-
crafted local patterns [75], and VQ-VAE embedding [5], all
above are static appearance information in images. Based
on previous successes, some researchers [64,72,75] attempt
to extend this scheme to the video domain, where they mask
3D video regions and reconstruct appearance information.
However, these methods suffers from two limitations. First,
as the appearance information can be well reconstructed in
a single image with an extremely high masking ratio (85%
in MAE [37]), it is also feasible to be reconstructed in the
tube-masked video frame-by-frame and neglect to learn im-
portant temporal clues. This can be proved by our ablation
study (cf. Section 4.2.1). Second, existing works [64,75]
often sample frames sparsely with a fixed stride, and then
mask some regions in these sampled frames. The recon-
struction objectives only contain information in the sparsely
sampled frames, and thus are hard to provide supervision
signals for learning fine-grained motion details, which is
critical to distinguish different actions [3, &].

In this paper, we aim to design a new mask-and-predict
paradigm to tackle these two issues. Fig. 1(a) shows two key
factors to model an action, i.e., position change and shape
change. By observing the position change of the person, we
realize he is jumping in the air, and by observing the shape
change that his head falls back and then tucks to his chest,
we are aware that he is adjusting his posture to cross the bar.
We believe that anticipating these changes helps the model
better understand an action.
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Figure 1. Illustration of motion trajectory reconstruction for Masked Motion Encoding. (a) Position change and shape change over
time are two key factors to recognize an action, we leverage them to represent the motion trajectory. (b) Compared with the current
appearance reconstruction task, our motion trajectory reconstruction takes into account both appearance and motion information.

Based on this observation, instead of predicting the ap-
pearance contents, we propose to predict motion trajectory,
which represents impending position and shape changes,
for the mask-and-predict task. Specifically, we use a dense
grid to sample points as different object parts, and then track
these points using optical flow in adjacent frames to gener-
ate trajectories, as shown in Fig. 1(b). The motion trajectory
contains information in two aspects: the position features
that describe relative movement; and the shape features that
describe shape changes of the tracked object along the tra-
jectory. To predict this motion trajectory, the model has to
learn to reason the semantics of masked objects based on
the visible patches, and then learn the correlation of objects
among different frames and try to estimate their accurate
motions. We name the proposed mask-and-predict task as
Masked Motion Encoding (MME).

Moreover, to help the model learn fine-grained motion
details, we further propose to interpolate the motion trajec-
tory. Taking sparsely sampled video as input, the model is
asked to reconstruct spatially and temporally dense motion
trajectories. This is inspired by the video frame interpo-
lation task [77] where a deep model can reconstruct dense
video at the pixel level from sparse video input. Differ-
ent from it, we aim to reconstruct the fine-grained motion
details of moving objects, which has higher-level motion
information and is helpful for understanding actions. Our
main contributions are as follows:

» Existing mask-and-predict task based on appearance
reconstruction is hard to learn important temporal
clues, which is critical for representing video content.
Our Masked Motion Encoding (MME) paradigm over-
comes this limitation by asking the model to recon-
struct motion trajectory.

* Our motion interpolation scheme takes a sparsely sam-
pled video as input and then predicts dense motion tra-
jectory in both spatial and temporal dimensions. This
scheme endows the model to capture long-term and
fine-grained motion clues from sparse video input.

Extensive experimental results on multiple standard video
recognition benchmarks prove that the representations
learned from the proposed mask-and-predict task achieve
state-of-the-art performance on downstream action recog-
nition tasks. Specifically, pre-trained on Kinetics-400 [10],
our MME brings the gain of 2.3% on Something-Something
V2 [34], 0.9% on Kinetics-400, 0.4% on UCF101 [59], and
4.7% on HMDBS51 [44].

2. Related Work

Self-supervised Video Representation Learning. Self-
supervised video representation learning aims to learn dis-
criminative video features for various downstream tasks in
the absence of accurate video labels. To this end, most
of the existing methods try to design an advanced pretext
task like predicting the temporal order of shuffled video
crops [78], perceiving the video speediness [7, | 3] or solv-
ing puzzles [43,49]. In addition, contrastive learning is also
widely used in this domain [14, 16,36,41,46,54,57,68,69],
which constrains the consistency between different aug-
mentation views and brings significant improvement. In
particular, ASCNet and CoCLR [36, 41] focus on min-
ing hard positive samples in different perspectives. Op-
tical flow has also been proven to be effective in captur-
ing motion information [70, 76]. Besides, tracking video
objects’ movement is also used in self-supervised learn-
ing [17,18,65,73,74]. Among them, Wang et al. [74]
only utilizes the spatial encoder to extract frame appearance
information. CtP framework [65] and Siamese-triplet net-
work [73] only require the model to figure out the position
and size changes of a specific video patch. Different from
these methods, our proposed MME trace the fine-grained
movement and shape changes of different parts of objects
in the video, hence resulting in a superior video representa-
tion. Tokmakov et al. [63] utilize Dense Trajectory to pro-
vide initial pseudo labels for video clustering. However, the
model does not predict trajectory motion features explicitly.
Instead, we consider long-term and fine-grained trajectory
motion features as explicit reconstruction targets.
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Figure 2. Overview of Masked Motion Encoding (MME). Given a sparsely sampled video, we first divide it into several patches and
randomly mask out some of them. And then, we feed the remaining patches to a ViT encoder to extract video representation. Last, a
lightweight ViT decoder is involved to predict the content in the masked region, i.e., a motion trajectory containing position changes and

shape changes of moving objects.

Mask Modeling for Vision Transformer. Recently, BEiT
and MAE [5, 37] show two excellent mask image modeling
paradigms. BEVT [72] and VideoMAE [64] extend these
two paradigms to the video domain. To learn visual rep-
resentations, BEVT [72] predicts the discrete tokens gener-
ated by a pre-trained VQ-VAE tokenizer [56]. Nevertheless,
pre-training such a tokenizer involves an unbearable amount
of data and computation. In contrast, VideoMAE [64] pre-
train the Vision Transformer by regressing the RGB pixels
located in the masked tubes of videos. Due to asymmetric
encoder-decoder architecture and extremely high masking
ratio, model pre-training is more efficient with VideoMAE.
Besides, MaskFeat [75] finds that predicting the Histogram
of Gradient (HOG [21]) of masked video contents is a
strong objective for the mask-and-predict paradigm. Exist-
ing methods only consider static information in each video
frame, thus the model can speculate the masked area by
watching the visible area in each frame independently and
failed to learn important temporal clues (cf. Section 3.1).
Different from the video prediction methods [35,51,58,60]
that predict the future frames in pixel or latent space, our
Masked Motion Encoding paradigm predicts incoming fine-
grained motion in masked video regions, including position
changes and shape changes.

3. Proposed Method

We first revisit the current masked video modeling task
for video representation learning (cf. Section 3.1). Then,
we introduce our masked motion encoding (MME), where
we change the task from recovering appearance to recover-
ing motion trajectory (cf. Section 3.2).

3.1. Rethinking Masked Video Modeling

Given a video clip sampled from a video, self-supervised
video representation learning aims to learn a feature en-
coder fen.(-) that maps the clip to its corresponding fea-
ture that best describes the video. Existing masked video
modeling methods [64, 75] attempt to learn such a feature

encoder through a mask-and-predict task. Specifically, the
input clip is first divided into multiple non-overlapped 3D
patches. Some of these patches are randomly masked and
the remaining patches are fed into the feature encoder, fol-
lowed by a decoder fg..(+) to reconstruct the information in
the masked patches. Different works aim to reconstruct dif-
ferent information (e.g., raw pixel in VideoMAE [64] and
HOG in MaskFeat [75]).

However, the existing works share a common character-
istic where they all attempt to recover static appearance in-
formation of the masked patches. Since an image with a
high masking ratio (85% in MAE [37]) can be well recon-
structed [37,75], we conjecture that the masked appearance
information of a video can also be reconstructed frame by
frame independently. In this sense, the model may focus
more on the contents in the same frame. This may hinder
the models from learning important temporal clues, which
is critical for video representation. We empirically study
this conjecture in the ablation study (cf. Section 4.2.1).

3.2. General Scheme of MME

To better learn temporal clues of a video, our MME
changes the reconstruction content from static appearance
information to object motion information, including posi-
tion and shape change of objects. As shown in Fig. 2,
a video clip is sparsely sampled from a video and is di-
vided into a number of non-overlapped 3D patches of size
t x h x w, corresponding to time, height, and width. We
follow VideoMAE [64] to use the tube masking strategy,
where the masking map is the same for all frames, to mask
a subset of patches. For computation efficiency, we follow
MAE [37] to only feed the unmasked patches (and their po-
sitions) to the encoder. The output representation together
with learnable [MASK] tokens are fed to a decoder to re-
construct motion trajectory z in the masked patches. The
training loss for MME is

L= |zi—al, (1

i€l
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where z is the predicted motion trajectory, and Z is the index
set of motion trajectories in all masked patches.

Motivated by the fact that we humans recognize actions
by perceiving position changes and shape changes of mov-
ing objects, we leverage these two types of information to
represent the motion trajectory. Through pre-training on
MME task, the model is endowed with the ability to ex-
plore important temporal clues. Another important char-
acteristic of the motion trajectory is that it contains fine-
grained motion information extracted at raw video rate.
This fine-grained motion information provides the model
with a supervision signal to anticipate fine-grained action
from sparse video input. In the following, we will introduce
the proposed motion trajectory in detail.

3.3. Motion Trajectory for MME

The motion of moving objects can be represented in
various ways such as optical flow [27], histograms of op-
tical flow (HOF) [45], and motion boundary histograms
(MBH) [45]. However, these descriptors can only represent
short-term motion between two adjacent frames. We hope
our motion trajectory represents long-term motion, which
is critical for video representation. To this end, inspired by
DT [66], we first track the moving object in the following
L frames to cover a longer range of motion, resulting in a
trajectory T, i.e.,

T:(ptapt+la"' 7Pt+L)7 (2)

where p; = (x,y;) represents a point located at (z, y;)
of frame ¢, and (-, ) indicates the concatenation operation.
Along this trajectory, we fetch the position features z” and
shape features z° of this object to compose a motion trajec-
tory z, i.e.,

z = (2P, 2z°). 3)

The position features are represented by the position tran-
sition relative to the last time step, while the shape features
are the HOG descriptors of the tracked object in different
time steps.

Tracking objects using spatially and temporally dense
trajectories. Some previous works [2, 18, 19,24] try to use
one trajectory to represent the motion of an individual ob-
ject. In contrast, DT [66] points out that tracking spatially
dense feature points sampled on a grid space performs bet-
ter since it ensures better coverage of different objects in
a video. Following DT [066], we use spatially dense grid
points as the initial position of each trajectory. Specifically,
we uniformly sample K points in a masked patch of size
t x h x w, where each point indicates a part of an object. For
each point, we track it through temporally dense L frames
according to the dense optical flow, resulting in K trajecto-
ries. In this way, the model is able to capture spatially and

temporally dense motion information of objects through the
mask-and-predict task.

As a comparison, the reconstruction contents in exist-
ing works [64, 75] often extract temporally sparse videos
sampled with a large stride s > 1. The model takes as
input a sparse video and predicts these sparse contents for
learning video representation. Different from these works,
our model also takes as input sparse video but we push
the model to interpolate motion trajectory containing fine-
grained motion information. This simple trajectory interpo-
lation task does not increase the computational cost of the
video encoder but helps the model learn more fine-grained
action information even given sparse video as input. More
details about dense flow calculating and trajectory tracking
can be found in Appendix.

Representing position features. Given a trajectory T con-
sisting of the tracked object position at each frame, we are
more interested in the related movement of objects instead
of their absolute location. Consequently, we represent the
position features with related movement between two adja-
cent points Ap; = pyy1 — Pt L.e.,

zp = (Aptv"'vApbl»Lfl), (4)

where z” is a L x 2 dimensional feature. As each patch
contains K position features, we concatenate and normalize
them as position features part of the motion trajectory.

Representing shape features. Besides embedding the
movement, the model also needs to be aware of the shape
changes of objects to recognize actions. Inspired by
HOG [21], we use histograms of oriented gradients (HOG)
with 9 bins to describe the shape of objects.

Compared with existing works [64, 75] that reconstruct
HOG in every single frame, we are more interested in the
dynamic shape changes of an object, which can better rep-
resent action in a video. To this end, we follow DT [66] to
calculate trajectory-aligned HOG, consisting of HOG fea-
tures around all tracked points in a trajectory, i.e.,

ZS = (HOG(pt)7...,HOG(pt+L,1)), (5)

where HOG(+) is the HOG descriptor and z° is a L x 9
dimensional feature. Also, as one patch contains K trajec-
tories, we concatenate K trajectory-aligned HOG features
and normalize them to the standard normal distribution as
the shape features part of the motion trajectory.

4. Experiments

Implementation details. We conduct experiments on
Kinetics-400 (K400), Something-Something V2 (SSV2),
UCF101 and HMDBS51 datasets. Unless otherwise stated,
we follow previous trails [64] and feed the model a
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Method Backbone Pre-train Label Epoch Frames GFLOPs Param. Acc.@1
TimeSformer [8] ViT-B IN-21K v 15 8 196x1x3 121M 59.5
ViViT-L [3] ViT-L IN-21K+K400 v 35 16 3992 x 3 x4 31IM 65.4
Motionformer [53] ViT-B IN-21K+K400 v 35 16 370 x1x3 109M 66.5
SlowFast [29] ResNet-101 K400 v 196 8+32 106 x 1 x 3 53M 63.1
MViT [26] MViT-B K400 v 100 64 455 x 1 x 3 3™ 67.7
SVT [57] ViT-B IN-21K+K400 x 20 8+64 196 x1x3 121M 59.6
LSTCL [68] Swin-B K400 x 200 16 360x5x1 88M 67.0
BEVT [72] Swin-B K400+DALL-E x 150 32 282x1x3 88M 67.1
VIMPAC [62] ViT-L HowTol00M+DALLE x 100 10 N/Ax10 x 3  307M 68.1
VideoMAE [64] ViT-B SSv2 x 400 16 180x2x3 87M 67.6
VideoMAE [64] ViT-B SSv2 X 800 16 180x2x3 87M 69.3
VideoMAE [64] ViT-B K400 X 800 16 180x2x3 87M 68.2
MME (Ours) ViT-B SSv2 X 400 16 180x2x3 87M 69.2
MME (Ours) ViT-B SSv2 X 800 16 180x2x3 87™M 70.0
MME (Ours) ViT-B K400 X 400 16 180x2x3 87M 69.3
MME (Ours) ViT-B K400 X 800 16 180x2x3 87M 70.5

Table 1. Comparison with state-of-the-arts on Something-Something V2. Our MME outperforms the previous best method. Remark-
ably, MME show better transferability ability (transfer from K400 to SSv2) compared with VideoMAE.

Method Backbone Pre-train Label Epoch Frames GFLOPs Param. Acc.@1
TimeSformer [8] ViT-B IN-21K v 15 8 196x1x3 121M 78.3
Motionformer [53] ViT-B IN-21K v 35 16 370x10x3 121M 79.7
Motionformer [53]  ViT-HR IN-21K v 35 16 959x10x3  382M 81.1
VIMPAC [62] ViT-L HowTol00M+DALLE x 100 10 N/Ax10 x 3  307M 77.4
SVT [57] ViT-B IN-21K+K400 x 20 8+64 196 x1x3 121M 78.1
BEVT [72] Swin-B K400+DALL-E x 150 32 282x1x3 88M 76.2
BEVT [72] Swin-B IN21K+K400+DALL-E x 150 32 282x1x3 88M 80.6
LSTCL [68] Swin-B K400 x 200 16 360x5x1 88M 81.5
OmniMAE [33] ViT-B IN1K+K400 x 1600 32 180x5x%x3 87M 80.6
VideoMAE [64] ViT-B K400 x 1600 16 180x5x%x3 87M 80.9
ST-MAE [28] ViT-B K400 x 1600 16 180x7x3 87M 81.3
MME (Ours) ViT-B K400 x 1600 16 180x7x3 87M 81.8

Table 2. Comparison with state-of-the-arts on Kinetics-400. Our MME outperforms the previous best method.

224 %224 16-frame clip with strides 4 and 3 for K400 and
SSV2 respectively. We use vanilla ViT-Base [25] as the
backbone in all experiments. As for the motion trajectory,
we set the trajectory length to L = 6 and the number of
trajectories in each patch to K = 4. Our models are trained
on 16 NVIDIA GeForce RTX 3090 GPUs. Note that for all
the ablation studies, we use a smaller pre-training dataset
and reduce the input patches of fine-tuning to speed up the
experiments, details can be found in Appendix.

4.1. Comparisons with State-of-the-arts

Fine-tuning. On the temporal-heavy dataset SSv2, we
conduct experiments using two settings, namely in-domain
pre-training (i.e., pre-train and fine-tune on the same
dataset) and cross-domain pre-training (i.e., pre-train and
fine-tune on different datasets). In Tab. 1, we have two
main observations. 1) Our MME significantly performs

better than previous state-of-the-arts VideoMAE [64] on
both in-domain and cross-domain settings. Specifically, un-
der cross-domain settings (transferring from K400 to SSv2)
with 800 epochs, our MME outperforms it by 2.3%, increas-
ing the accuracy from 68.2% to 70.5%. 2) Our MME per-
forms better under cross-domain setting compared with in-
domain setting, which is contrary to the existing observation
on VideoMAE [64] and ST-MAE [28]. We attribute it to
our masked motion encoding pretext task that helps models
focus more on learning temporal clues instead of learning
domain-specific appearance information (e.g., color, light-
ing). The learned temporal clues are more universal across
different domains for video representation. This also shows
the potential for taking advantage of larger datasets for pre-
training, which we leave for future work.

In Tab. 2, our MME also achieves state-of-the-art per-
formance on another large-scale dataset K400 with a gain
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Method Backbone Pre-train UCF101 HMDBS5I
XDC 1] R(2+1)D 1G65M 94.2 67.1
GDT [52] R(2+1)D 1G65M 95.2 72.8

CVRL [54] R50 K400 92.9 67.9
CORP; [39] R50 K400 93.5 68.0
pBYOL [30] R50 K400 94.2 72.1
VideoMAE [64] ViT-B K400 96.1 73.3
MME (Ours) ViT-B K400 96.5 78.0

Table 3. Comparison with state-of-the-arts on UCF101 and
HMDBS51.

of 0.5%. In Tab. 3, we also evaluate the transferabil-
ity of MME by transferring a K400 pre-trained model to
two small-scale datasets, namely UCF101 and HMDBS51.
Our MME achieves a large gain of 4.7% on HMDBS51 and
0.4% on UCF101 compared with VideoMAE. This further
demonstrates the strong ability of MME to learn from the
large-scale dataset and transfer it to a small-scale one.

Linear probing. @ We further evaluate our MME under
liner probing setting on the SSv2 dataset as this dataset
focuses more on the action. We follow SVT [57] to fix
the transformer backbone and train a linear layer for 20
epochs. In Tab. 4, our method significantly outperform pre-
vious contrastive-based method [57] by 10.9% and masked
video modeling methods [64] by 4.9%. These results in-
dicate that the representation learned from our MME task
contains more motion clues for action recognition.

4.2. Ablation Study on Reconstruction Content

In this section, we investigate the effect of different
reconstruction contents, including appearance, short-term
motion, and the proposed long-term fine-grained motion.

4.2.1 Evaluating Appearance Reconstruction

In section 3.1, we conjecture that appearance reconstruction
is finished in each video frame independently. To verify
this conjecture, we corrupt the temporal information of a
video by randomly shuffling its frames. Since the video
frames are randomly permuted, it is hard for a model to
leverage information from other frames to reconstruct the
current frame through their temporal correlation. We mask
90% regions of these videos following VideoMAE [64]. In
Fig. 3 (a), we find that the reconstruction error (i.e., L2 error
between predicted and ground-truth pixel) convergences to
a low value. We also conduct the same experiment using
raw video without shuffling. The model undergoes a similar
convergence process. This demonstrates that the masked
pixels are well reconstructed without temporal information.

To further evaluate whether the model pre-trained on
the appearance reconstruction task (i.e., VideoMAE) can
well capture important temporal clues, we transfer two

Method Backbone Pre-train Acc.@1
TimeSformer [8] ViT-B IN-21K 14.0
SVT [57] ViT-B IN-21K+K400 18.3
VideoMAE [64] ViT-B SSv2 24.3
MME (Ours) ViT-B SSv2 29.2

Table 4. Linear Probing on Something-Something V2.
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(a) Masked video reconstruction error.  (b) Downstream performance.

Figure 3. We perform mask-and-predict pre-training using tem-
poral shuffled videos and raw videos and then transfer them to the
downstream task. (a) Masked appearance (i.e.pixels) is well recon-
structed without temporal information. (b) Our MME outperforms
VideoMAE when both provided temporal information.

VideoMAE models (pre-trained on shuffled videos and raw
videos, respectively) to the downstream action recognition
task. In Fig. 3 (b), these two models perform competi-
tively, indicating that removing the temporal information
from the pre-training videos barely affects the learned video
representation. We speculate this is because the VideoMAE
model pays little attention to temporal information when
performing the appearance reconstruction pre-training task.
As a comparison, our MME paradigm performs signifi-
cantly better than VideoMAE when the temporal informa-
tion is provided for pre-training (64.1% vs.60.9%). Once
the temporal information is removed, MME performs sim-
ilarly with VideoMAE (60.7% vs.60.9). This demonstrates
our MME paradigm takes great advantage of temporal in-
formation in the pre-training phase.

4.2.2 Evaluating Motion Reconstruction

In the following ablations, we separately verify the effec-
tiveness of two proposals of our methods:

Effectiveness of motion trajectory. We compare our mo-
tion trajectory with two appearance reconstruction baselines
and three short-term motion reconstruction baselines.

* Appearance reconstruction baselines: 1) HOG: pre-
dicting HOG features [2 1] in the middle frame of each
3D patch [75]. 2) Pixel: predicting all the pixels of
each 3D patch [28,37,64].
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Reconstruction content | Acc.@1  Acc.@5
Pixel 61.1 86.6
HOG 61.1 86.9
HOG + Flow 60.9 86.4
HOG + HOF 61.3 86.6
HOG + MBH 61.4 86.8
HOG + Traj. w/o shape 63.5 88.2
Traj. (ours) 64.1 88.4

Table 5. Comparison of different Reconstruction content. Our
motion trajectory outperforms all the other contents.

Reconstruction content  Interpolation | Acc.@1  Acc.@5
HOG X 61.1 86.9
HOG v 60.9 86.8
HOG + MBH X 61.3 86.8
HOG + MBH v 61.4 86.8
Traj. (ours) X 62.2 87.5
Traj. (ours) v 64.1 88.4

Table 6. Effectiveness of trajectory interpolation. Interpolating
the motion trajectory brings significant improvement compared to
the baselines.

¢ Short-term motion reconstruction baselines: 1)
Flow: predicting the dense optical flow map of the
masked patches. 2) HOF: predicting the histogram of
optical flow orientation. 3) MBH: predicting the mo-
tion boundary histogram, which is the second-order lo-
cal statistic of optical flow.

In Tab. 5, two types of appearance reconstruction con-
tents (i.e., Pixel and HOG) perform similarly. Based on the
HOG baseline, predicting additional short-term motion con-
tents brings slight improvement (at least by 0.2%) except
for directly predicting optical flow (decreases by 0.2%). We
suspect that predicting the dense flow map for each pixel is
too hard for a model and thus harms the performance. In-
stead, the histogram version of flow (i.e., HOF and MBH)
help to reduce the prediction ambiguity [75], resulting in
better performance. Furthermore, after adding our slight
variant of motion trajectory (i.e., with position features but
without shape features shown in Eq. (3)), the performance
improves significantly compared to both appearance recon-
struction baselines (by 2.4%) and short-term motion recon-
struction baselines (by 2.1%). On top of this variant, adding
trajectory-aligned shape features further brings additional
gain by 0.6%. Because tracking the trajectory of objects
in multiple frames provides long-term motion compared to
short-term motion reconstruction, we believe the learning
of long-term motion clues is one of the keys to enhancing
video representation.

Effectiveness of trajectory interpolation. In MME, we
feed temporally sparse video to the model and push it to in-
terpolate temporally dense trajectories. We are interested in
whether interpolating appearance (i.e., HOG) or short-term
motion contents (i.e., MBH) benefit learning fine-grained
motion details. To this end, we conduct experiments to pre-
dict dense HOG and MBH, i.e., predicting these features of
all frames within a masked patch even though these frames
are not sampled as input. In Tab. 6, interpolating HOG or
MBH brings little improvement. We suspect this is because
these dense features represent the continuous movement of
objects poorly, as they have not explicitly tracked the mov-
ing objects. In contrast, our temporally dense motion tra-
jectory tracks the object densely, providing temporal fine-
grained information for learning. The trajectory interpola-
tion improves our MME by 1.9%. This result proves that
the learning of fine-grained motion details is another key
to enhancing video representation.

4.3. Ablation Study on MME Design

In this section, we conduct ablation studies to investigate
the effect of different parameters for MME pre-training.

Trajectory length. Trajectory length L indicates how
many frames we track an object for extracting the motion
trajectory. If L = 0, our method degrades to MaskFeat [75],
which only predicts HOG features in the masked patch. In
Tab. 7a, MME achieves the best performance when L = 6.
This is because a longer trajectory provides more motion in-
formation for learning. But if the trajectory is too long, the
drift of flow introduces accumulated noise when tracking
the objects, which harms the performance.

Trajectory density. In our experiments, we spatially dense
track K = 4 motion trajectories. We conduct experiments
to evaluate whether it is necessary to densely track multi-
ple trajectories in a patch. Specifically, we assume only one
object exists in a patch, and thus the 4 trajectories are sim-
ilar. We merge these 4 trajectories as one by averaging or
selecting the most salient one. We then consider the merged
trajectories as the trajectory motion. In Tab. 7c, using dense
trajectories significantly outperform the merged baselines.
We suspect the spatial dense trajectories provide more mo-
tion information for learning.

Trajectory normalization. Due to the irregular distribution
of motion and shape information in the video, the trajectory
values in different patches vary a lot. To help the model bet-
ter model the trajectory, we adopt the patch norm method to
normalize the trajectory values in each patch into a standard
normal distribution, as has also been done in MAE [37].
The mean and variance are calculated by all K = 4 trajecto-
ries in a patch. Tab. 7b shows the effectiveness of adopting
the patch norm.
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Length Acc.@1 Acc.@5 Setting Acc.@1 Acc.@5 Trajectory density Acc.@1  Acc.@5
L=4 63.2 88.0 w/o patch norm. 62.1 87.44 Dense 64.1 88.4
L=6 64.1 88.4 Sparse (Max) 60.2 86.3
L=8 633 88.0 pjpaschinor gl Lt Sparse Mean)  61.8 87.1

(a) Effect of trajectory length.

(b) Effect of trajectory normalization.

(c) Effect of trajectories density.

Stride  Acc.@1  Acc.@5 Ratio Type Acc.@l Acc.@5 Type Depth FLOPs  Acc.@l  Acc.@5
s=4 629 87.7 90% Tube 627 87.8 Joint | 51G 64.1 88.4
s=3 641 88.4 70% Tube  64.1 88.4 2 355G 634 88.3
s=2 63.5 88.3 40%  Tube 61.3 86.9 1 56G 63.4 88.4
s=1 62.7 87.7 40%  Cube 61.2 86.9 Sep. 2 65G 63.3 88.0

(d) Effect of sampling stride.

(e) Effect of spatial masking.

(f) Effect of decoder. Sep. means two decoders.

Table 7. Pre-training details. We explore the detailed setting of our MME pre-training. The default entry is marked in gray .

Sampling stride. In order to control the difficulty of inter-
polating the motion trajectory, we ablate different temporal
sampling strides leading to different levels of the sparse in-
put video. With a medium sampling stride (s = 2), our
MME achieves the best performance. We also found that
the performance decreases when the input video shares the
same stride as the dense motion trajectory (s = 1). One
possible reason is that it is difficult for the model to antici-
pate fine-grained motion details in this case.

Spatial masking strategy. We ablated study different spa-
tial masking strategies and ratios in Tab. 7e. We start from
the default setting of MaskFeat [75] that uses a cube mask-
ing strategy with a 40% masking ratio, then we increase the
masking ratio and adopt the tube masking strategy proposed
by VideoMAE [64]. Using tube masking with a medium
masking ratio (70%) performs the best.

Decoder setting. We use several transformer blocks as de-
coder to reconstruct motion trajectory. We ablate different
architectures of the decoder in Tab. 7f. Using a slight de-
coder with 1 transformer block performs the best, with the
lowest computational cost. Increasing the depth of the de-
coder or using two parallel decoders to separately predict
the position and shape features introduces more computa-
tional cost but brings little improvement.

4.4. Visualization Results

We visualize the predicted motion trajectory in Fig. 4.
The model is able to reconstruct the spatial and temporally
dense trajectories of different object parts from a tempo-
rally sparse input video. Even without seeing the object in
the current frame (the hand being masked out), the model
is able to locate it through contextual patches and accu-
rately estimate its trajectory. We only visualize the position
changes since our prediction of HOG features has similar
quality to the previous work [75].

@ ) © (d)

Figure 4. Visualization of predicted motion trajectory. Each
column represents (from left to right): (a) Masked frames; (b)
ground truth; (c) prediction; (d) original frame.

5. Conclusion

We present Masked Motion Encoding, a simple mask-
and-predict paradigm that learns video representation by
reconstructing the motion contents of masked regions. In
particular, we reconstruct motion trajectory, which tracks
moving objects densely to record their position and shape
changes. By reconstructing this motion trajectory, the
model learns long-term and fine-grained motion clues from
sparse input videos. Empirical results show that our method
outperforms the state-of-the-art mask-and-predict methods
on Something-Something V2, Kinetics-400, UCF-101, and
HMDB-51 datasets for action recognition.
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