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Matching Pursuit LASSO Part I: Sparse Recovery
Over Big Dictionary
Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract—Large-scale sparse recovery (SR) by solving -norm
relaxations over Big Dictionary is a very challenging task. Plenty
of greedy methods have therefore been proposed to address big SR
problems, but most of them require restricted conditions for the
convergence.Moreover, it is non-trivial for them to incorporate the
-norm regularization that is required for robust signal recovery.

We address these issues in this paper by proposing aMatching Pur-
suit LASSO (MPL) algorithm, based on a novel quadratically con-
strained linear program (QCLP) formulation, which has several
advantages over existing methods. Firstly, it is guaranteed to con-
verge to a global solution. Secondly, it greatly reduces the compu-
tation cost of the -norm methods over Big Dictionaries. Lastly,
the exact sparse recovery condition of MPL is also investigated.

Index Terms—Sparse recovery, compressive sensing, LASSO,
matching pursuit, big dictionary, convex programming.

I. INTRODUCTION

S PARSE RECOVERY (SR), also known as sparse represen-
tation or sparse reconstruction, has been widely required in

many applications, such as signal processing, data mining and
machine learning [1]–[4]. Sparse recovery is a fundamental ele-
ment of the recently developed compressive sensing theory [1],
[5]–[7]. Sparse recovery has also been widely applied to many
image processing tasks, such as image restoration [8], [9], image
super-resolution [10], and so on. In the machine learning area,
SR has been successfully applied in robust face recognition [2],
human gait recognition [11], subspace clustering [12], [13], dic-
tionary learning [14], [15] and feature learning [16], [17].
Mathematically, given the observation of an un-

known -sparse signal from an underdetermined linear
measurement system , SR seeks to recover from
by solving an -norm minimization problem:

(1)
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where denotes the mea-
surement matrix or dictionary with atoms and de-
notes the th atom, denotes the additive noise, and

denotes the -norm of a vector. Problem (1) in general
is NP-complete [18], [5], [19]. Therefore, practitioners usually
seek to solve its -norm convex relaxations [20]–[22]:

(2)

where the set is determined by the noise structure with
[23]. Here, represents the noiseless con-

straint set, denotes the -norm noise con-
straint set, and the set corresponds
to the Dantzig selector [24]. Studies in [5], [25] have shown
that a -sparse signal can be exactly recovered by solving (2)
provided that satisfies the restricted isometry property (RIP)
conditions: For a dictionary and an integer , we
define the -restricted isometry constant to be the
smallest number such that

(3)

for all with [5]. The RIP recovery conditions of
-norm relaxations have been thoroughly studied by many re-

searchers [1], [5], [25], [23]. For instance, studies in [23] show
that if satisfies , the solution to (2) can recover
the -sparse signals exactly.

A. Existing -Norm Methods for Sparse Recovery

During the last decade, many efforts have been made to effi-
ciently solve -norm convex relaxed problems. Basically, the
alternating direction method (ADM) or augmented Lagrange
multiplier (ALM) method is often used to solve problem (2)
with noise constraint set [31]. In practice, the following
LASSO problem is more widely studied in many applications
[26], [21], [27]–[32]:

(4)

where denotes the regularization parameter.
Many algorithms have been proposed to address the non-

smooth LASSO problem. An interior-point method is proposed
in [33], and a gradient projection (GPSR) method was subse-
quently proposed by transforming LASSO into a quadratic pro-
gramming problem [27]. A proximal gradient (PG) method is
proposed to solve (4) based on a shrinkage-threshold operator
[34]. To speed up the PG, a fast iterative shrinkage-threshold al-
gorithm (FISTA) (also known as the accelerated proximal gra-
dient method) is proposed in [29]. Recently, to tackle large-scale
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SR problems, coordinate descent methods have been well ex-
ploited [35], [36]. For instance, an elegantly designed parallel
coordinate descent method, referred to as Shotgun, has been de-
veloped to improve the efficiency through parallel computation
[37]. Another recent work, S-L1, uses a screening test to pre-
dict the atoms with zero weights and adopts random projec-
tions to reduce the computational cost [38]. Homotopy algo-
rithms that try to find a full path of solutions have been well
studied for solving the LASSO problem [21], [30], [32]. For
example, in [21], a solution-path based algorithm, which is re-
ferred to as least-angle regression (LARS), is proposed. More
recently, a novel proximal gradient homotopy (PGH) method
has been proposed in [32], [39]. By gradually decreasing the
regularization parameter from an initial guess , homotopy
methods solves a series of strongly convex subproblems, thus a
geometric convergence rate can be maintained the optimization
of each subproblem [32]. PGH has shown state-of-the-art per-
formance compared to the other methods above. Recently, ac-
tive-set methods have also been proposed to solve (4) [40]–[43].
Active-set methods iteratively include one active variable that
violates the Lagrangian duality condition into an active set [40],
and then solve a subproblem w.r.t. active variables only.
Themajor computational burden of the abovemethods occurs

as a result of repetitive calculations of and , where
[27], [32]. Since both and take

time, solving the -norm relaxations over big dictionary is very
challenging [2], [44], [45]. For example, for active-set methods,
at least times are needed to compute [43]. When is
large, solving large-scale problems would be very expensive.
The -norm regularization may also suffer from the solution

bias issue [27]. For LASSO, the sparsity of the optimal solu-
tion is determined by the regularization [21], [34]. In gen-
eral, a large is required to induce more sparse solutions [34],1

which may, however, incur solution bias [27]. In particular, if
, none of the atoms will be selected, i.e.,

[33]. To reduce the solution bias, one may prefer to set a small
value to , but the solution may be no longer sparse. In sum-
mary, the sparsity and unbiased solution cannot be achieved si-
multaneously via -norm regularization.

B. Existing Greedy Methods for Sparse Recovery

In contrast to -norm methods, orthogonal matching pursuit
(OMP) is widely applied to solve (1) [47]–[54]. However,
it is computationally expensive when is large. To improve
the scalability, many greedy methods with faster convergence
speed have been proposed, such as the compressive sampling
matching pursuit (CoSaMP) [55], subspace pursuit (SP) [56],
iterative hard thresholding (IHT) [57], accelerated iterative hard
thresholding (AIHT) [58], [59], orthogonal matching pursuit
with replacement (OMPR) [60] and so on. These methods seek
to recover a -sparse signal using greedy iterative procedures,
and rely on the knowledge of the ground-truth sparsity . In
general, much fewer calculations of are needed in these

1The selection of the regularization parameter (i.e., the model selection
problem) depends on the structure of the noises [46], which is beyond the scope
of this paper. In [32], is suggested, where denotes the addi-
tive noises and . Since is usually unknown, in [27],
is tested.

methods. As a result, they are more attractive when solving
large-scale SR problems [60]. The convergence and sparse
recovery conditions of these algorithms in terms of the RIP
constant have been well studied [55], [56], [60]. For example,
CoSaMP, SP, AIHT and OMPR can recover any -sparse signal
provided that and

, respectively [59], [60]. However, there are two
major disadvantages of these methods.
Firstly, since the restricted recovery conditions are also their

corresponding convergence assertions, the convergence of these
methods might not be guaranteed if the restricted conditions
are violated. Indeed the RIP conditions might not be satisfied
in real-world applications [61]–[64]. For example, in sparse re-
covery based face recognition [2], [31], images from the same
person might be so highly correlated that the RIP condition may
not be satisfied, and these methods may not converge.2

Secondly, for many greedy methods, their performance de-
pends on a proper estimation of the unknown ground-truth spar-
sity , denoted by . If is smaller than , none of these
methods can recover the -sparse signal. On the contrary, if
is too large, the efficiency and recovery performance of these
methods may degrade. Nevertheless, in practice, it is usually
non-trivial to determine , which restricts the application of
these methods.
Essentially, the first issue is caused by atom replacement in-

volved in the algorithms. For a highly coherent dictionary, the
optimal -sparse solution may not be unique [62], [61], and
the active atom set may change frequently due to the atom re-
placement. As a result, these methods may not converge [55],
[56], [60]. By incrementally including a set of new atoms, some
greedy variants avoid the atom replacement, such as the regu-
larized OMP (ROMP) [65], -OMP [66], [67], stagewise weak
gradient pursuits (or SWCGP for short) [68]and stagewise OMP
(StOMP) [69]. In -OMP, denotes the number of atoms se-
lected per iteration. For -OMP, a tight RIP condition has been
investigated in [67], i.e., . However, this con-
dition will become very restricted when is large. For StOMP
and SWCGP, the number of newly added atoms is determined
by a thresholding scheme.
Recently, several works have shown that linear dependencies

(or high coherence) in a dictionary are permitted and beneficial
[61]–[64], [70]. In [64], the redundancy issue is addressed by
an extension of OMP, i.e., -OMP algorithm. Moreover, some
other works extend classical greedy methods, such as CoSaMP,
SP and IHT, to handle coherent dictionaries [61]–[63]. Lastly,
a new family of pursuit algorithms have been proposed for the
cosparse analysis model that is an interesting alternative to the
standard SR [71]. However, in these methods, the estimation of
is still required.

C. Our Contributions

An efficient Matching Pursuit LASSO (MPL) algorithm is
developed to solve large-scale SR problems based on a quadrat-
ically constrained linear program (QCLP) reformulation of
LASSO. The core contributions of this paper are summarized
as follows:

2An illustration can be found in Section V.A.
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• The convergence ofMPL on non-RIP problems is justified.
Moreover, we show that, under mild RIP conditions, the
objective value decreases linearly in MPL.

• Unlike most existing greedy methods that rely on a good
estimation of the ground-truth sparsity , MPL only needs
to estimate a conservative parameter . Compared to , it
is much easier and more flexible to adjust .

• MPL is guaranteed to recover any -sparse signals under
the RIP condition for a small positive .

• MPL includes OMP and active-set methods as special
cases, but significantly reduces their computational cost.
We also show that StOMP [69] and SWCGP [68] can be
considered as special algorithms that solve a variant of the
proposed QCLP problem.

The rest of this paper is organized as follows. In Section II,
we present the QCLP formulation for LASSO. We then present
the MPL algorithm in Section III. The convergence and sparse
recovery condition of MPL are detailed in IV. Some numer-
ical studies are given in Section V. We conclude this work in
Section VI.

II. A QCLP FORMULATION FOR SPARSE RECOVERY

A. Notations, Definitions, and Preliminaries

Throughout the paper, we denote the transpose of a vector/
matrix by the superscript as a zero vector and
as a diagonal matrix with diagonal entries equal to . In addi-
tion, and denote the -norm and -norm, respec-
tively. For a function , the gradient and subgradient of

at are denoted by and , respectively. For
a sparse vector , let the calligraphic letter

be its support, be the subvector
indexed by , and be the complementary set of , i.e.,

. Given an index set ,
let denote the columns of regarding . Furthermore, let

represent the element-wise product of two matrices
and . Lastly, we define the restricted eigenvalue (RE) condi-
tion, restricted condition number and restricted set as follows.
Definition 1: [28], [52], [4] Given an integer , a matrix
is said to satisfy the RE Condition at sparsity level , if there

exist positive constants and such that

(5)

(6)

In addition, the restricted condition number is defined as

(7)

There are many types of matrices that satisfy the RE condi-
tion [72]. Actually, the RE condition is less restrictive than the
RIP condition [28]. For a matrix that satisfies RIP condition, we
immediately have and
at the sparsity level .
Definition 2: Restricted Set [73]: Given an index set and a

positive number , the restricted set is defined as
, where denotes the complemen-

tary set of .

The property of the restricted set is also known as the re-
stricted nullspace property, which is very important in analyzing
-norm methods [72].

B. A QCLP Reformulation for LASSO

A very high dimensional sparse signal over a big dictionary
can easily be recovered by solving a small-scale optimization
problem w.r.t. the detected support atoms, if we can detect its
supports [60]. Motivated by this computational advantage, we
introduce a support selection vector to detect the
active atoms by , where the th atom will be selected
if and only if . However, there are two remaining diffi-
culties: Firstly, does not necessarily induce sparse solutions;
Secondly, in general, the target sparsity is unknown in ad-
vance. To address these difficulties, we impose a sparsity con-
straint . Here, is assumed to be several times smaller
than , and we do not have to estimate it accurately. Rather than
estimating directly, we estimate instead, which would be
much easier than setting .
With the introduction of , we present a new model for SR.

For simplicity, let be the
domain of . Let be the regression error, we
consider solving an alternative model to formulation (4):

(8)

In problem (8), even though we have explicitly imposed the
sparsity constraint , the sparsity-induced regulariza-
tion (i.e., the -norm regularization) is important for the robust
signal recovery, specifically for the protection from noise [74].
Equally, although LASSO itself can induce sparse solutions, the
explicit sparsity constraint is still necessary and im-
portant for the purpose of de-biasing with a small [27]. Note
that a small is preferable for de-biasing, though it may incur
non-sparse solutions. In the extreme case, if , we achieve
a special case of :

(9)

In problems (8) and (9), there are feasible 's in

, and the task of the optimization is to find the BEST from
the feasible set that minimizes the regression loss . The op-
timal solutions to (8) and (9) may not be unique. In fact, since

, two different 's may exist that produce the same objec-
tive values. Nevertheless, due to the many 's, solving the two
problems is very difficult. To make them tractable, we make the
following transformations.
Proposition 1: By introducing dual variables to the

constraint regarding the inner minimization
problem, problem (8) can be reformulated as

(10)

Let be the optimal solution to (8), then if .
The proof can be found in Appendix A.
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Due to the constraint is bounded.
Without loss of generality, we define a compact set
as the domain of , where is a large number such that the
optimal solution always exists in . For convenience, we
define a feasible compact domain for w.r.t. each as

and

(11)

Recall that is convex and compact. According to the minimax
inequality (5.46) in [75], we have

(12)

According to (12), problem is a
lower bound to the non-convex problem in (10). Moreover, it
is a convex relaxation to (10). To see the convexity, we can
formulate it as a QCLP problem by introducing a new variable

[76].

(13)

For each , the inequality in (13) defines a

quadratic constraint w.r.t. . Since contains

elements, there are constraints involved in problem (13),
making it intractable even for medium size and .

III. MATCHING PURSUIT FOR LASSO

Problem (13) can be considered as a special case of the semi-
infinite programming (SIP) problem that has infinite number
of constraints [77]. To solve the SIP problem, a central cut-
ting plane (CCP) algorithm has been developed [78], [77], and
has been shown to have great computational advantages when
solving problems of many constraints. Therefore, in this paper,
we seek to address problem (13) by adapting the CCP algorithm
in [77], which is presented in Algorithm 1.

Algorithm 1 Central cutting plane method for solving (13).

1: Initialize , and find the most-violated .
2: Let and .
3: Solve the following master problem:

(14)

4: Let be the solution of (14). If the stopping
condition is achieved, stop.

5: Find a new most-violated constraint .
6: Set . If , that is, is
an infeasible solution to (13). Let .

7: Let and go to Step 3.

In Algorithm 1, instead of solving (13) with all constraints,
we iteratively find the most-violated constraint and add it
into an active constraint set , and then solve a much reduced
master problem in (14) with active constraints only. Finding
the most-violated constraint is referred to as the worst-case
analysis, and the initial active constraint set is set to be an
empty set . In problem (14), is strictly greater than the

objective value of (13). Moreover, the number of constraints
in (14) monotonically increases as increases, thus will
monotonically decrease. In the following subsections, we will
present the details of the worst-case analysis, master problem
optimization, and stopping conditions.

A. Worst-Case Analysis

The worst-case analysis is to find the most active constraint
w.r.t. from a huge number of candidates. Let , at
the optima of (13), the following condition must hold:

(15)

Apparently, any atom with will violate the above
optimality condition, and the atoms with the largest vio-
late the condition the most. Since , we can choose the
atoms with the largest to construct the most active con-

straint. To obtain the most active , we can set the entries of
w.r.t. the largest to 1, and the rests to 0. Essentially, we

only need to record the indices of the atoms into a set , i.e.,
.

Let record the indices of atoms selected up to the th it-
eration, i.e., . In general, once an atom
is added into , it is unlikely to be selected in the following
steps. However, if we do not solve the master problem accu-
rately, some of the selected atoms may have large value of ,
thus they might be chosen again. To avoid this, we choose the
atoms from to form . In this way, there will
be no overlapping element among 's, where .
The worst-case analysis above is akin to the matching step in

greedy methods [55], [60], [52]. Moreover, we will show that
Algorithm 1 actually addresses the original LASSO problem
(see Lemma 2). In this sense, hereafter we refer to Algorithm
1 as Matching Pursuit LASSO or MPL for short.

B. MPL in Primal

After updating , we tend to solve (14), which is referred
to as the master problem optimization. Let be the index set
of atoms selected by and be the number of active
constraints. Although the number of constraints is greatly re-
duced, it is still not easy to solve problem (14) w.r.t. directly,
especially when is very large. However, since problem (14)
involves only a small set of active atoms, faster optimization
might be achieved w.r.t. the primal variable .
Proposition 2: Suppose there are no overlapping elements

among 's and , problem (14) can be addressed by
solving a LASSO problem w.r.t. atoms in :

(16)

Furthermore, the optimal dual variable of problem (14) can
be recovered by .
The proof can be found in Appendix B.
Based on Proposition 2, MPL can immediately be imple-

mented in the primal form, and is depicted in Algorithm 2. Due
to the relation , we can still conduct the worst-case
analysis even if we address the master problem in primal form.
Note that since no involved at the initial stage, we initialize

. Correspondingly, we have .
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Algorithm 2 MPL in primal.

1: Initialize . Let .
2: while (The stopping condition is not achieved) do
3: Conduct the worst-case analysis: Let ;
choose the largest (where )
and record their indices in ; let .

4: Initialize (warm-start) and .
5: for do
6: Update using PG or CGD rules.
7: Break if the stopping conditions are achieved.
8: end for.
9: Set and . Let .
10: end while

MPL involves two layers of loops. The outer loop is corre-
sponding to that in Algorithm 1, and the inner loop is w.r.t. the
master problem optimization. To distinguish the two kinds of
loops, we use as the outer loop index and as the inner loop
index. Correspondingly, we denote the outer iteration variable
by and the inner iteration variable by . To accelerate the
convergence, we initialize forwarm-start for each
inner loop.
Any existing -norm solver can be adopted to solve problem

(16). When , we use the PG algorithm [34]. When ,
we apply the conjugate gradient descent (CGD) method. For
convenience, let us define

(17)

(18)

Basically, PG iteratively minimizes the following local
quadratic approximation of at a fixed point :

where is a positive number. A close solution for this problem
exists which relies on a soft-thresholding operator:

. Let be the point at the th iteration
and , the minimizer of
can be calculated by [34]. Therefore, the basic
updating rule of PG is:

(19)

where is referred to as the
generalized gradient, and is adjusted by a line search [34]. By
applying the line search, we have the following bound w.r.t. the
objective improvement of each outer iteration.
Lemma 1: Let be the point at the th

iteration, and be the index set obtained by the worst-case
analysis, where for . With proper line search,
we have:

The proof can be found in Appendix C.

When , problem (16) is reduced to a least square regres-
sion problem. In this case, we can adopt the CGD method in-
stead, where the step size can be cheaply calculated by an exact
line search [79]. Note that, if (or ),
problem (16) is strongly convex w.r.t. . The following the-
orem indicates that, both PG and CGD converge linearly under
this condition.
Theorem 1: ([79], [34]) At the th iteration of MPL, if

or , then both PG and CGD converge
linearly. Specifically, let be the adjustment parameter
in the line search of PG, be the sequence generated by PG
or CGD, be the minimizer of (16) and be the optimal
function value, then satisfies

(20)

where is the inner iteration index,
is for CGD and

is for PG.
Since the condition number increases w.r.t. , the

factor increases w.r.t. for both PG and CGD. Therefore,
the warm-start in Algorithm 2 is particularly important to ac-
celerate the convergence speed when is large. Moreover,
for CGD is smaller than that of PG, thus it is a better choice
when . If the inner loop stops after iterations, we have

and , which implies

(21)

However, this relation does not tell us how much the objective
will decrease since is unknown.
In practice, it might be expensive to achieve an exact solution

to the master problem. To avoid this, we can stop the inner layer
loops once the master problem is sufficiently minimized.We use
the following stopping criterion for the inner layer loop:

(22)

where denotes the tolerance. In Theorem 3, we will demon-
strate that a solution satisfying this condition is sufficient with
proper .

C. Parameter Setting of

In general, MPL with a larger needs fewer calculations
, which is essential for reducing the overall complexity.

However, a large may incur the problem of adding non-sup-
port atoms and a large condition number of the master problem.
To avoid these issues, should be sufficiently small. Although
we can set , it is computationally very expensive when
is large. In principle, if is known, one can set , with

being suggested. When is unknown, we propose the
following two strategies.
Recall that SR might recover a -sparse signal with

non-adaptive measurements for dictionaries that sat-
isfy the RIP conditions [1], [5], [25]. Motivated by this obser-
vation, we can set for RIP dictionaries by

(23)
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where is the ceiling function, and is suggested. This
setting of is simple. However, it is not adaptive to general
dictionaries.
Another method is motivated by the thresholding strategy

used in SWCGP [68]. Let and , we
count the number of atoms satisfying

(24)

where , and then let be this number. Obviously, if
is very small, can be very large. In practice, we suggest setting

. If , we have , and MPL is reduced to the
active-set method. Note that once is set at the initialization
stage in MPL, it will be fixed, which is different from that in
SWCGP [68] and StOMP [69].

D. Early Stopping and Debiasing

Recall that, in practice, we may use a small to reduce the
solution bias. For instance, one can set , and then MPL
is reduced to the -OMP algorithm [67]. On the other hand, for
any , a natural stopping condition for MPL is

(25)

Since , when is arbitrarily small, MPL will stop at a
point where (where denotes the ground-
truth noise). In this case, the solution is no longer sparse, and
the over-fitting problem will also arise.
To address these issues, we need to stop MPL earlier, thus we

stop it if the following conditions are achieved:

(26)

where and are pre-determined parameters. We also use
the relative function value difference to stop MPL if

(27)

where is the function value difference between the th
and th iteration, is a small tolerance and denotes the initial
objective value. Since , the stopping condition
becomes .
The above early stopping criteria are not applicable to many

standard LASSO methods, such as GPSR [27], FISTA [29] and
PGH [32]. Since a small cannot induce sparse solutions, the
debiasing cannot be directly achieved through these methods.
The active-set method in [40], [42] adopts similar optimization
strategies to MPL, thus the above early stopping criteria can be
also applied. For many greedy methods, such as CoSaMP [55]
and SP [56], the criterion in (27) is not applicable since these
methods may not converge for general problems.

IV. PERFORMANCE ANALYSIS

In this section, we study the complexity and convergence of
MPL, and its performance guarantees on the sparse recovery.

A. Complexity of MPL

The complexity of MPL mainly includes two parts:
1) The worst-case analysis that needs to calculate of
each outer iteration takes time complexity;

2) The inner master problem optimization w.r.t. variables
takes complexity only.

On big dictionaries, the calculation of dominates the
overall complexity. As previously mentioned, most of the ex-
isting -methods need to calculate and many times.
Therefore, in general they are expensive over big dictionaries.
In contrast, MPL only needs to compute times. It
is worth mentioning that, when tackling many signals simulta-
neously, the overall complexity of MPL can be further reduced
to using a batch mode scheme, which can be
found in Part II [80].
Remark 1: By fixing and solving the master problem

exactly, MPL includes the active methods (e.g., [40], [41], [43])
and OMP [47] as special cases for and , respec-
tively.
Note that both OMP and active-set methods need to compute
at least times, which takes cost. Therefore, they

are expensive when dealing with big dictionaries. In MPL, we
have used a fixed for each constraint in the QCLP problem
(13); however, a changeable is also applicable. In other words,
we can adaptively set different for different outer iterations.
If we adopt the thresholding strategies used in SWCGP and
StOMP, this leads to the following remark.
Remark 2: SWCGP [68] and StOMP [69] address the QCLP

problem with an adaptive , where .
The thresholding rule in StOMP is not applicable to general

dictionaries [69], [68]. Moreover, it is expensive for StOMP
to deal with large-scale problems since it solves the master
problem exactly. SWCGP performs only one iteration w.r.t. the
inner loop [68]. Accordingly, the master problem may not be
sufficiently optimized. As a result, many non-active atoms may
be mistakenly included, and more iterations may be required to
converge. Consequently, the cost will increase.

B. Convergence of MPL

In this subsection, we discuss the convergence of MPL.
Firstly, MPL converges to an optimal solution of problem (13).
Theorem 2: (Lemma 3.1 and Theorem 3.1 in [77]) The se-

quence generated in Algorithm 1 converges to 0.
Moreover, there exists , such that is feasible for (13) and
Algorithm 1 stops in the th iteration with to be an optimal
solution of (13).
The proof can be adapted from [77]. It is worth mentioning

that the above convergence property does not rely on any re-
stricted conditions, that is, MPL converges on non-RIP dictio-
naries.
Now we demonstrate that the accumulation point of sat-

isfies the optimality conditions of LASSO if the early stopping
is not applied.
Lemma 2: Let be the accumulation point of gener-

ated by MPL, then is also an optimal solution to (4). More-
over, let denote the support of the ground-truth and

, if , where , then satis-
fies the restricted set condition, namely

, where .
The proof can be found in Appendix D.
In the following, we further show that MPL decreases the ob-

jective value exponentially under restricted conditions. Without
loss of generality, we assume MPL stops when ,
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where is properly chosen. Let and be the optimal
function value and regression error of the LASSO problem, re-
spectively, be the support of . Assuming , we
have the following theorem.
Theorem 3: Suppose is properly chosen. If

, where , and there
exists an such that , and the inner loop of
MPL stops when (22) is satisfied, MPL linearly decreases in
objective values if , namely , where

is a constant.
The proof can be found in Appendix E.
When is arbitrarily small or , without early

stopping, MPL will stop at a point which is over-fitted. To ad-
dress this, we can stop MPL early based on condition (26) or
(27), thus MPL will never reach to the optimal solution of
LASSO. Instead, it will approach to , where and denote the
ground-truth -sparse vector and additive noise, respectively.
Theorem 4: Suppose and

(where ). Suppose the inner loop of
MPL stops when (22) is satisfied, and there exists an integer

such that , MPL linearly decreases in
objective values for , namely , where

is a constant.
The proof can be found in Appendix F.
When and , Theorem 4 improves the results of

OMP in [81], where the exponential convergence of OMP has
been revealed under more restricted conditions.

C. Sparse Signal Recovery Guarantees

The condition for exact sparse recovery is important for
signal processing, and is usually expressed in terms of RIP
constant. Based on Lemma 2, we obtain the following recovery
condition for MPL without early stopping, i.e., MPL converges
to the LASSO solution.
Theorem 5: Given , suppose the ground-truth noise

satisfies , where , and MPL stops without
early stopping. Let , where denotes a ground-
truth -sparse signal and denotes the accumulation point of
MPL. Let , where

and . If the restricted isometry
constant satisfies , where

, we have

A simplified bound follows that .
The proof can be found in Appendix G.
According to Theorem 5, to recover a -sparse signal, we

must select such that (where ). When
, we must have and , which corre-

sponds to the noiseless case. By the definition of in Theorem
5, when , we shall have and . That
is, for the noiseless case, MPL will recover a -sparse signal if

and .
On the contrary, if , we will have and

, which implies and .
In this case, the recovery of tends to be impossible in theory.

Fig. 1. Objective value evolutions of various greedy methods on a non-RIP
problem. For MPL, the numbers in brackets denote the value of . The objective
value at the 9th iteration for MPL is .

In particular, if setting , even for the noiseless case, MPL
cannot guarantee to recover a -sparse signal.
These observations highlight the importance of -norm reg-

ularization, though a large may incur biased solution. In prac-
tice, with the early stopping, MPL with a small (such as OMP
which is a special case of MPL when ) still has promising
sparse recovery performance. In the future, we will investigate
the recovery conditions of MPL with a small value of (in-
cluding ) for general cases when early stopping is applied.

V. NUMERICAL STUDIES

A. Convergence on Non-RIP Dictionaries

To demonstrate this property, we design a synthetic non-RIP
problem and compare the performance of SP, CoSaMP, AIHT,
OMPR and the proposed MPL method.3 We first generate a
Gaussian random matrix , and then simply set

(in Matlab notation). Since there
are repeated columns, the RIP condition of does not hold [63].
Moreover, we generate a 40-sparse ground truth by letting

and . Subsequently, is pro-
duced by without noise. The objective values and the
objective gap between iterations of several greedy methods are
reported in Fig. 1, where we calculate . For
the baseline methods, the numbers in the brackets of the legend
record the value of . Since is the best es-
timation of ; while overestimates . From Fig. 1, only
the proposed MPL method achieves a global solution (where

) after 9 iterations. As shown in Fig. 1, AIHT
and CoSaMP(75) achieve a local minimum only; while the rest
of the baselines cannot converge on this synthetic problem.

B. Convergence to LASSO Solution

According to Lemma 2, MPL essentially addresses LASSO
through a greedy procedure. To demonstrate this, following

3The C++ source codes of MPL and the compared methods are available at:
http://www.tanmingkui.com/mpl.html.
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Fig. 2. Convergence of different methods on a sparse signal , where . According to (23), we set a base , and
study MPL with and , respectively. According to (24), we study MPL with and , respectively. (a) Objective values for

. (b) Objective values for .

TABLE I
COMPUTATION TIME (IN SECONDS) DIFFERENT METHODS. THE VALUES OF

FOR AND 0.6 ARE 12, 27, 60, RESPECTIVELY

[32], we conduct a sparse recovery experiment from an obser-
vation , where is a Gaussian random
matrix, is a 140-sparse signal and denotes the noise uni-
formly sampled from . PGH [32] and FISTA [29]
are adopted as the baselines. Detailed experimental settings can
be found in the caption of Fig. 2, which records the relative
objective values w.r.t. iterations w.r.t.
and , respectively. Table II records the
time taken by different methods. From Fig. 2 and Table II, MPL
with different 's converges to an optimal solution of LASSO.
Mover, compared with PGH and FISTA, MPL is much faster
with different 's (particularly when is very small).

VI. CONCLUSION

In this paper, we have proposed a Matching Pursuit LASSO
(MPL) algorithm to address large-scale SR problems based on
a QCLP reformulation for LASSO. MPL iteratively adds new
atoms per iteration, thus avoiding the atom replacement or atom
deletion that is required in many greedy algorithms, such as
CoSaMP [55] and SP [56]. As a result, the convergence of MPL
over non-RIP dictionaries is guaranteed. Our convergence anal-
ysis shows that, MPL can even converge linearly with a properly
chosen under mild RIP conditions. Unlike many greedy algo-
rithms, such as CoSaMP, MPL does not need to specify an exact
estimation of the target sparsity. Typically, setting is much
simpler than the estimation of sparsity.
Due to the -norm regularization, MPL can recover -sparse

signals if the restricted isometry constant satisfies
. More importantly, MPL greatly improves the effi-

ciency of existing -norm methods by reducing the calcula-
tions of matrix-vector products. Last but not least, due to the

optimization scheme of MPL, a batch-mode MPL can be devel-
oped to vastly speed up sparse recovery with many signals. The
batch-mode MPL as well as more numerical comparisons with
existing methods will be presented in Part II [80].

APPENDIX A
PROOF OF PROPOSITION 1

Note that . For any , we have
,

where . By introducing Lagrangian multipliers
to the equality constraint , the

Lagrangian function of the inner problem is:

Given a fixed is a convex function
w.r.t. , and the strong duality for this problem holds [26]. We
minimize w.r.t. and , respectively:

To obtain the minimum of w.r.t. , we set the
derivative of w.r.t. to , where we obtain

at the optimality. Substituting these equations into
, we arrive at (10). This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

To complete the proof, we introduce the following lemma.
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Lemma 3: In the th iteration of Algorithm 1, let
, problem (14) can be solved by the

following minimax problem:

(28)

Proof: By introducing the dual variable and to
the constraint, the Lagrangian function of problem (14) is

. Setting the gradient of with respect to and
to zeros, we get the optimal dual variables and

satisfying . Therefore, we
have and . From the complementary
condition, holds. Moreover, we can exchange the
order of max and min operators using minimax Theorem [82].
Finally, let , and we complete the proof.
Nowwe complete the proof by showing that the dual problem

of (16) is (28). Recall that there is no overlapping element
among 's. Since is a constant and , problem
(28) can be simplified as:

(29)

Let be the regressor regarding . By assumption, we
have and .
Therefore, problem (16) can be rewritten as:

(30)

By introducing the dual variable to the constraint
, the Lagrangian function becomes

To derive the dual form, we minimize w.r.t.
and :

We then can verify that (29) is the Lagrangian dual of (30).
In particular, we have by at the
optimality. This completes the proof.

APPENDIX C
PROOF OF LEMMA 1

Proof: From the worst-case analysis, is guaran-
teed; otherwise, the th atom will not be selected.
Recall that the master problem is w.r.t. subvariables in-

dexed by . For any given , we redefine
, and

.
Let be the generalized gradient w.r.t. . For any point
, let and , the following property

holds for the generalized gradient [34].

(31)

Let be the solution (or approximate solution) to the master
problem at the th iteration. Then holds, where

if we solve the master problem exactly. At the
iteration, by warm start, we have and

, where . Let and
, by (31), we have

With proper line search, in the first iteration of PG,

holds [34]. Since , we have

. Finally, since ,
we have

. By eliminating the positive
term , we complete the proof.

APPENDIX D
PROOF OF LEMMA 2

Proof: First, from the proof of Proposition 1, at the op-
timality of LASSO, we have with .
Let be the support of , then we have and

.
ForMPL, let denote the set of selected atoms and denote

the complementary set regarding . On these selected atoms,
as from Theorem 2, we have and
, where denotes the support of regarding the master
problem, and denotes the complementary set regarding .
Furthermore, since we stop MPL when , we have

regarding the non-selected atoms indexed by
. Accordingly, the accumulation point of MPL is a KKT point

of LASSO.
Let be the ground truth and be the optimal solution to

(4) by MPL. At the optimality of (4), we have

(32)

Due to the convexity of
. Together with (32), we obtain



736 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 3, FEBRUARY 1, 2015

Suppose , where , we have

Thus, we have , thus
. Let . For

. This completes the proof.

APPENDIX E
PROOF OF THEOREM 3

To complete the proof, we will use the following notations
and definitions. Let .
Without loss of generality, suppose for a given reg-
ularization parameter . After iterations, . Thus

is at most sparse. We also define two internal
variables and as:

(33)

Here, is determined by the line search. For the convenience
of presentation, we omit the index from hereafter. Let

(34)

The following lemma holds.
Lemma 4: For MPL, at the th iteration, suppose
, we have .

Proof: Note that .

As , based on Lemma 16 in [60], we have

Since , by simple calculation, we
have

(35)

Lemma 5: Let be the index set of the new atoms
obtained from the worst-case analysis at the th iteration,
we have:

Proof: Lemma 5 is a direct consequence of Lemma 1. Typ-
ically, we have .
Since , we complete the proof.
Lemma 6: Let , where is an ap-

proximate solution satisfying , where .
Let be the subgradient of . Divide into
two disjoint sets and such that and

, then the following relation holds:

(36)

(37)

Proof: By definition, ,
according to the definition of , it can be expressed as:

In other words, we have and
.

where and denotes the sign
of vector . Finally, since , it holds that:

This completes the proof.
Theorem 6: Suppose , then at the th iteration,

the following inequality holds:

Proof: Let be the subgradient of and
. In addition, must satisfy the following

approximate optimality condition:

It follows that and
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(38)

For convenience, we drop the superscript of hereafter.
Based on the definition of the subgradient, we have

, and it follows that

For convenience, let . By
assumption, where , then we have:

where the last inequality holds because
. Furthermore, suppose

is small enough such that for
a small , then it follows that:

If , we can simplify the formulation by absorbing into
and get

By letting , we can complete the proof.

Theorem 7: Suppose , then at the th iteration,
we have .

Proof: From Theorem 6, we have

With Lemma 4, it follows that

Theorem 8: Let , we have
where .

Proof: By definition, . If ,

by definition of , we have , which means

Otherwise, if , and we have .
Therefore, the following inequality holds:

In summary, since , we have , where
.

With Lemma 5, we have

Let be the step size obtained by the line search
method at the th iteration, there should exist a and

such that the above relation holds

for each , where . Note that is

decreasing w.r.t. within . In addition,
for all [23]. Therefore, if

and , the following relation holds:

Letting , we complete the proof.

APPENDIX F
PROOF OF THEOREM 4

We study the case when is arbitrarily small or .
Let and denote the ground-truth sparse signal and measure-
ment noise, respectively, that is, . Let be the
support of and . In addition, assume that

, where . By replacing
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with and with , we can complete the proof by
adapting the proof of Theorem 3.

APPENDIX G
PROOF OF THEOREM 5

The proof parallels the results in [23]. Since the parameter
in the Restricted Set should be taken into consideration, some
results and proofs are slightly different from those in [23]. For
completeness, we present the detailed proof. First, we list the
definitions and lemmas needed in the proof.
Definition 3 (Restricted Orthogonality Constant) [23]: If

, the -restricted orthogonality constant is
the smallest number such that

for all and of and respectively, and
have disjoint supports.
Lemma 7: The following monotone relation regarding RIP

constant and ROC constant follows [23]:

(39)

Lemma 8 (Square Root Lifting Inequality) [23]: For any
and positive integers such that is an integer and it

follows that .
Notations. For convenience, we will use the following nota-

tions. Let denote the ground-truth -sparse signal and
. Without loss of generality, assume that
. In addition, given two integers and such that
and [23]. Furthermore, partition

into the following sets:
.

Lemma 9 [23]: For any vector , it satisfies

Lemma 10: Let be defined above, if
we have

where and .

Proof: At first, from Lemma 2, we have
. Since and , then we have

and . By Lemma 9,

Lemma 11: Suppose .
Let , and we have

Proof: At first, we have

At the optimality, we have ,
which implies . Since ,
and , we have

. Therefore, we have

Since , we have
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This completes the proof.
Let , and we have

Note that the square root lifting inequality tells that

Let . If , we have

(40)

Define , where .

Then . Let , then it follows that

(41)

Let . Since can be arbitrarily close to 1, we
have for . Moreover, it follows that

. Let be an integer such that
. Now, can be specified by

Since is increasing when

and decreasing when . By the definition
of in (42), .
Now we show that if

for . Actually, note that

. Let

and . Then we have
. Easily, if

.

Moreover, let

. As is smooth and increasing in
, we have , where .

Since , to make bound (40) valid, we shall have

Inductively, we have

(42)

Easily, we have

(43)

where and . Since and
is increasing in , we can choose .
Obviously, for .
For , we can choose , respectively. Thus

, which implies
.With the same , we have

.
For , we can choose , which implies

. Similarly, with the same ,
we have .
For , we can choose , and [23], which
implies and . Apparently, we can still
choose .
This completes the proof.
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