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Matching Pursuit LASSO Part II: Applications and
Sparse Recovery Over Batch Signals

Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract—In Part I, a Matching Pursuit LASSO (MPL) algo-
rithm has been presented for solving large-scale sparse recovery
(SR) problems. In this paper, we present a subspace search to
further improve the performance of MPL, and then continue to
address another major challenge of SR—batch SR with many
signals, a consideration which is absent from most of previous
-norm methods. A batch-mode MPL is developed to vastly

speed up sparse recovery of many signals simultaneously. Com-
prehensive numerical experiments on compressive sensing and
face recognition tasks demonstrate the superior performance of
MPL and BMPL over other methods considered in this paper,
in terms of sparse recovery ability and efficiency. In particular,
BMPL is up to 400 times faster than existing -norm methods
considered to be state-of-the-art.

Index Terms—Batch mode LASSO, big dictionary, compressive
sensing, face recognition, sparse recovery.

I. INTRODUCTION

W ITH the fast development of compressive sensing
theory [2], sparse recovery (SR) has gained increased

attention recently in the signal processing community [2]–[5]. It
has also become a fundamental element of many other research
areas, such as image processing, computer vision, data mining
and machine learning [6]–[11].
Formally, SR seeks to recover an unknown -sparse signal

from its nonadaptive linear measurement
, where denotes the dictionary,
represents the noise, and each column vector of is

referred to as an atom. To recover from , one need to solve
an -norm minimization problem:

(1)

where denotes the -norm of a vector. Since problem
(1) is NP-complete [2], [12], [13], researchers propose to solve
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its -convex relaxations [3], [14], [15], such as the LASSO
problem [16]–[19]:

(2)

where is a regularization parameter. Regarding problem (2),
many methods have been proposed over the last decade, such
as least-angle regression (LARS) [20], gradient projection for
sparse reconstruction (GPSR) [17], projected gradient (PG)
[21], fast iterative shrinkage-threshold algorithm ({FISTA})
[22], coordinate descent methods [23], proximal gradient ho-
motopy (PGH) method [18], [19]and so on. Interested readers
can refer to Part I and the references therein [1]for a more
comprehensive review.
Existing -norm methods, however, suffer from high com-

putational complexity for large-scale SR problems. More crit-
ically, for problems like batch SR [24], in which many signals
need to be sparsely recovered simultaneously, the computations
will be much more expensive. Here, the batch SR problem is
carried out to solve the following optimization problem:

(3)

where records the measurements of
signals and denotes the -norm of a matrix. The batch
SR problem plays an important role in many applications, such
as face recognition [7], [25], compressive sensing [26], [27],
dictionary learning [28], [29]and so on.

A. Batch SR in Face Recognition

Face recognition by SR has achieved promising performance
recently [17], [25], [30]–[32]. The basic assumption is that, any
testing image lies in a subspace spanned by the training images
of a person [7], [25], [33], thus it can be sparsely represented
by the training images. Here, the training images are formed
as a dictionary , where denotes the number of
pixels or features of a face image, and denotes the number of
training images. The core task of SR based face recognition is
to find the sparse representation of a testing image . However,
directly solving problem (2) is computationally expensive when
is large [7], [25], [33]. To address this, some researchers pro-

pose to reduce the computational cost via dimension reduction,
such as random projections [7]. However, the recognition rates
may also be also affected [10], [25], [33].
Moreover, it is often required to recognize many face im-

ages simultaneously in real-time, which is very challenging
for many SR based methods [33], [34]. To address this, the
authors in [33]suggest directly solving
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(denoted by L2); while the authors in [34]argue that solving
a least square problem
(denoted by L2-L2) achieves more stable performance. For
the L2 method, the optimal solution is , where

denotes the QR decomposition of , and denotes
the pseudo inverse. Similarly, in L2-L2, the optimal solution
is . Accordingly, fast predictions
can be achieved via simple matrix-vector products, since both

and can be computed off-line. How-
ever, the solutions of the two methods are not sparse, and the
recognition performance may be degraded accordingly.

B. Batch SR in Compressive Sensing

Sparse recovery is also a core element of the recently devel-
oped compressive sensing on signal acquisition. In compres-
sive sensing, a signal is allowed to be captured at a rate signif-
icantly lower than the Nyquist rate, if it is compressible or can
be sparsely decomposed under a basis

[3], [26]. To recover the original signal, we need to
solve a sparse recovery problem [26], [27], which might be
very expensive. Moreover, in real-world sensing tasks, such
as in imaging and video sensing [27], [35], it is often neces-
sary to sense a large number of signals simultaneously in real-
time. Therefore, it is critical to efficiently address the batch SR
problem in compressive sensing.

C. Batch SR in Dictionary Learning

Dictionary learning, which aims to find a good dictionary
based on a set of training signals, has recently become increas-
ingly important in many areas, such as signal processing, com-
puter vision and machine learning [24], [29], [36]–[38]. To learn
a good dictionary, many training examples (or signals) are usu-
ally required to be sparsely represented at the same time, leading
to an intolerable cost for dictionary learning. The large-scale
batch SR problem with many signals therefore is a core step of
many dictionary learning algorithms [29], [36].

D. Main Contributions

In Part I of this paper, we has presented a matching pursuit
LASSO (MPL) algorithm in relation to the computational issues
of LASSO over big dictionary. In this paper, we first present a
subspace search to further improve the performance of MPL,
and then continue to address the computational bottleneck cre-
ated by the batch SR problem. The main contributions of this
paper are summarized as follows:
• A subspace exploratory matching is proposed to improve
the performance of MPL. The proposed newmatching pur-
suit scheme takes less than 50 seconds to recover a 600-
sparse signal over dictionaries of one million atoms.

• A batch mode MPL (BMPL), which is absent in many
-norm methods, is presented to address large-scale batch

SR problems.
• We apply BMPL to face recognition tasks on two
well-known face databases, namely Extended YaleB and
AR databases. Comprehensive experiments show that
BMPL achieves comparable or better recognition rates

than baselines with comparable time complexity. Im-
portantly, BMPL is up to 400 times faster than existing
-norm methods considered to be state-of-the-art.

The rest of this paper is organized as follows. In Section II,
we briefly review the MPL algorithm and then propose an im-
proved MPL algorithm with subspace exploratory matching. In
Section III, we describe the batch mode MPL method. Numer-
ical experiments and real-world applications are presented in
Sections IV and V, respectively. Conclusive remarks are given
in Section VI.

II. MATCHING PURSUIT FOR LASSO

Throughout the paper, we denote the transpose of a vector/
matrix by the superscript , as a zero vector and as
a diagonal matrix with diagonal entries equal to . In addition,
let and denote the -norm and -norm of a vector
, respectively. For a function , let and be
the gradient and subgradient of at , respectively. For a
sparse vector , let the calligraphic letter

be its support, be the subvector
indexed by , and be the complementary set of , i.e.

. Furthermore, let represent the element-
wise product of two matrices and . Lastly, let denote
the columns of indexed by .

A. Matching Pursuit LASSO

To introduce MPL, in [1], we bring in a support detection
vector to , and impose an -norm constraint
on , namely , to enforce the sparsity. Here, is a
predefined integer satisfying .1 Let

be the domain of , we propose to solve the
following integer programming model for LASSO:

(4)

Rather than solving this problem directly, we bring in dual vari-
ables to the constraint for a fixed
. By introducing the dual form of the inner problem, we trans-
form (4) into the following problem:

(5)

Let

where de-
notes the feasible domain of w.r.t. a feasible , and is
a large number. By applying a convex relaxation to (5), MPL
seeks to solve the following convex problem:

(6)

1Interested readers may find more discussions of in Part I [1].
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The details of MPL are presented in Algorithm 1. Basically,
it iteratively adds a set of active atoms by worst-case analysis
in Step 3, and conducts a master problem optimization in Steps
4–8. Let , and be the index set of the detected
atoms at the th iteration, the worst-case analysis is to update
based on : We first find the atoms with the largest , and
then record their indices into . After that, we update by

. The master problem optimization from Steps
4–8 is to solve the following problem:

(7)

In this paper, the proximal gradient (PG) [21] (resp. conju-
gate gradient descent (CGD) [39]) is adopted to solve (7) when

(resp. ), which is shown in the inner for loop. To
distinguish the inner loop from the while loop, we use as the
variable.

Algorithm 1Matching Pursuit Lasso for Solving (6)

1: Initialize , , . Let .
2: while (The stopping condition is not achieved) do
3: Do worst-case analysis:

Let ; choose the largest and record
their indices in ; let .

4: Initialize and .
5: for
6: Update using PG or CGD
rules.

7: Break if the stopping conditions are achieved.
8: end for
9: Set , and . Let .

10: end while

MPL in Algorithm 1 is reduced to the orthogonal matching
pursuit (OMP) [40], [41] when and . Moreover,
it is related to the stagewise OMP(StOMP) [42] and the stage-
wise weak gradient pursuits (SWCGP for short) [43] in the sense
that all of them add a set of new atoms per iteration. How-
ever, in SWCGP and StOMP, the number of atoms added per
iteration changes due to complex thresholding strategies [42],
[43]. In StOMP, the knowledge of noise is required to deter-
mine the number of new atoms. This knowledge, however, is not
available for general problems [43]. To address this, SWCGP
uses a simpler thresholding strategy that is independent of the
noise [43]. However, it performs one iteration only in the master
problem optimization. Since the master problemmay not be suf-
ficiently optimized, non-support atoms might be mistakenly in-
cluded, which may degrade the efficiency and recovery perfor-
mance. In contrast, MPL takes more iterations before the fol-
lowing stopping condition is achieved:

(8)

where denotes a small tolerance.

B. Subspace Exploratory Matching for MPL

The convergence ofMPL has been verified in Part I [1]. How-
ever, the performance of MPL might be affected by the value of
. To explain this issue, we first present a bound regarding the
progress of objective value of each outer loop.
Lemma 1: Let , and

be the starting point regarding the inner loop. Assume
for , where is obtained by Step 3 of Algorithm
1, with proper line search in PG, we have:

where is the step size obtained by the line search.
According to Lemma 1, choosing atoms with the largest

guarantees the best improvement in objective value after one it-
eration (e.g. ) of each inner loop. However, this cannot be
guaranteed if more inner iterations (e.g. when ) are used.
In other words, the worst-case analysis in Step 3 might be sub-
optimal. When is relatively large in particular, some non-sup-
port atoms (which have large values of ) might be mistak-
enly added into . To address this, we can intuitively include
more (e.g. , where ) new atoms with the largest ,
and then do the master problem optimization with all selected
atoms. After that, we only choose new atoms that decrease the
objective value the most as the most-active atoms. This scheme,
which is referred to as subspace exploratory matching, is sum-
marized in Algorithm 2, where we use (8) as the stopping con-
dition.

Algorithm 2 Subspace Exploratory Matching

1: Given a dictionary , , , and .
2: Calculate ; choose the largest and
record the indices in ; let .

3: Initialize and .
4: for do
5: Update using PG or CGD rules.
6: Quit if the stopping conditions are achieved.
7: end for.
8: Sort the atoms in in descending order by ;
return the first atoms and record the indices in .

9: Let . Set and .

To distinguish Algorithm 1 with subspace search from the
original MPL method, hereafter we refer to it as SMPL. In gen-
eral, since the atoms chosen in SMPL achieve better improve-
ment in objective value than MPL, both convergence speed and
sparse recovery performance can be boosted.
The proposed subspace search is related to the atom selec-

tion strategies used in CoSaMP [44], SP [45]and OMPR [46].
For example, to find true supports, CoSaMP and SP choose
and additional atoms respectively into the active atom set.

After that, a pruning step is performed such that only atoms
are kept in the active atom set. Note that unlike these strategies,
there is no atom replacement or atom deletion in (S)MPL w.r.t.
outer iteratopms. Consequently, SMPL is guaranteed to mono-
tonically decrease the objective values. Moreover, the subspace
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search of CoSaMP, SP and OMPR relies on the estimation of ,
which is not required in SMPL.

C. Stopping Conditions

For a properly selected , a natural stopping condition for
(S)MPL is

(9)

However, in practice, we may choose a small in order to re-
duce the solution bias of LASSO directly. When is very small,
(S)MPL stops when (here denotes the ground-
truth noise), and it is possible that the over-fitting problem will
happen. To avoid this, we stop (S)MPL early if the following
stopping conditions are achieved:

(10)

where and are pre-determined parameters. We can also
stop (S)MPL if

(11)

where is the function value difference between the
and iteration, is a small tolerance and denotes the
initial objective value.
Without early stopping, (S)MPL will achieve the LASSO so-

lution, which may be biased (when is large) or over-fitted
(when is small). For and in particular, (S)MPL
will get the results of OMP [40], [41]. To prevent from the
over-fitting problem, we stop (S)MPL early when is small.

D. Implementation Concerns

Several implementation techniques can be adopted to im-
prove the efficiency of (S)MPL. Note that the master problem
optimization in (S)MPL is w.r.t. a small set of atoms only. Let
be the index set of selected atoms. We only need to calculate

small scale matrix-vector products and . For con-
venience, we refer to them as the partial matrix-vector product
(PMVP). Correspondingly, we refer to and as the full
matrix-vector product (FMVP).
Firstly, since , computing the PMVP (e.g.

and ) is much cheaper than FMVP (e.g. and ). To
fully exploit this advantage, we store atom by atom in the
main memory so that we can easily retrieve any atoms indexed
by using C++ pointers.
Secondly, when dealing with big dictionaries, the cache-to-

memory efficiency is important. For example, the calculations
of PMVPs (e.g. and ) may not be cache-to-memory
efficient, since the active atoms in general are very far away
from each other in the main memory. To address this, we ex-
plicitly store and in the main memory. Accordingly,
we can compute PMVPs very efficiently.
Thirdly, several iterations regarding the master problem op-

timization are sufficient, which significantly reduce the number
of PMVPs. Moreover, once updating , we set for
the purpose of warm-start (see Step 9 in Algorithm 2). In this

way, we can significantly improve the efficiency of the master
problem optimization.2

III. BATCH MODE MPL

In the batch SR problem, suppose there are signals to
be sparsely represented at the same time. Existing -norm
methods, such as PG [21]and FISTA [22], take cost
per iteration. Suppose they stop after iterations, the total
cost for recovering signals is . On the contrary,
suppose (S)MPL stops after iterations, it will reduce the cost
to , where .
Nevertheless, the complexity of MPL and SMPL is still

dependent on , making them expensive to tackle large-scale
problems that are with large . Essentially, this computational
burden is brought by the calculation of (which takes

cost) in the worst-case analysis. Therefore, how to
reduce the cost of is critical for improving the efficiency.
According to the studies in [17], [42], if the discrete Fourier

transform basis or wavelet basis are sampled to form the dictio-
nary , the computational complexity of can be reduced to

with the help of the fast Fourier transform (FFT).
However, this technique cannot be applied to general dictio-
naries.
To tackle many signals under general dictionaries, we pro-

pose below the batch-mode MPL (BMPL for short), in which
the computational cost can be greatly reduced. Actually, we
have . Let

and . If we pre-compute and , and
store them in the main memory, we can then calculate ac-
cording to

(12)

As a result, the computation cost of computing is reduced
to , where . Since , the overall cost for
signals becomes .
Remark 1: To apply (12), we need to compute the matrix

with cost, which is not efficient regarding
a single signal. However, since can be calculated off-line, this
cost is negligible when dealing with many signals.
Since BMPL adds atoms per iteration, it requires consider-

ably fewer times of than the batch mode OMP (BOMP for
short) [24]. Specifically, BOMP takes cost for sig-
nals; while BMPL takes complexity, where .
For existing -norm methods, even though the intermediate

variables are sparse, it is not easy for them to conduct the batch
mode optimization, since the support set of intermediate vari-
ables might change frequently during the optimization. As a re-
sult, frequent retrievals of are very expensive.
The batch scheme is not applicable to a dictionary with a

very large number of atoms, because of the space com-
plexity to store . Nevertheless, BMPL can be applied to many
large-scale tasks. For example, it can efficiently deal with dictio-
naries of atoms on a 24 GB memory machine, which is

2For fair comparison, we employ the above techniques to implement the
-norm methods whenever the intermediate variables are sparse: Let denote

the supports of an intermediate , we replace with , which will
improve the efficiency considerably.
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sufficient for many real-world applications, such as face recog-
nition [7] and dictionary learning [10].

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of (S)MPL with
the following baseline methods:3

• Four state-of-the-art -solvers: Shotgun4 which uses the
parallel coordinate descent in C++ [47]. FISTA5 which
uses the accelerated proximal gradient method with con-
tinuation technique [17], [25]; PGH which uses the homo-
topy method to improve the convergence speed [18], [19];
S-L16 which adopts a screening test to predict the zero en-
tries to improve the decoding efficiency [48].

• Several related greedy methods, such as ROMP [49]7,
StOMP [42]8 and SWCGP [43]are used for the compar-
ison. In addition, four well-known greedy algorithms, i.e.
orthogonal matching pursuit (OMP) [40], [41], accelerated
iterative hard thresholding (AIHT) [50]–[52]9, subspace
pursuit (SP) [45]10 and orthogonal matching pursuit with
replacement (OMPR) [46], are also included as baseline
methods.

In OMPR, it is necessary to calculate ,
where is a learning rate of OMPR [46]. The setting of is
crucial for the performance [46]. In [46], a feasible range for
is provided if satisfies the RIP condition. Unfortunately, if
is not well scaled, the scale of may vary a lot

and the setting of will be difficult.11 To address this issue, we
propose a variant of OMPR in which is adaptively adjusted by
applying the CGD rule. To distinguish this variant from OMPR,
we refer it to as the OMPRA.
In the experiments, Shotgun is conducted in parallel on an

Intel(R) Core(TM) i7 CPU (8 cores) PC with 64-bit Linux OS;
while the other methods are conducted on a 64-bit Windows op-
erating system (OS) with the same computer configuration. For
fair comparison, all methods, except S-L1, ROMP and StOMP,
are written in C++ runningwith single core.We run S-L1, which
is written in Matlab, in parallel on an eight-core machine.

A. Experimental Settings and Performance Metrics

Following [17], [18], we set for
-norm methods. Unless noted otherwise, we apply de-biasing

technique to reduce the solution bias of -norm methods [17],
[25]. For (S)MPL, we apply the early stopping to avoid the
over-fitting problem with stopping condition

(13)

3The C++ source codes of MPL and the compared methods are available at:
http://www.tanmingkui.com/mpl.html.
4https://www.select.cs.cmu.edu/projects.
5https://www.eecs.berkeley.edu/yang/software/l1benchmark/index.html.
6http://www.princeton.edu/zxiang/home/index.html.
7https://www-personal.umich.edu/romanv/software/romp.m.
8https://sparselab.stanford.edu.
9https://www.personal.soton.ac.uk/tb1m08/publications.html}.
10https://sites.google.com/site/igorcarron2/cscodes.
11Interested readers can find more details of in [46].

where denotes the objective difference between the th and
th iterations. We set the subspace search length

for SMPL. For many greedy methods, such as AIHT, SP and
OMPR, we need to specify . In the simulation, since we know
the ground-truth , we set . For OMPR, is set to
0.7. Lastly, we keep default settings of other parameters for the
baseline methods.
Following [18], [19], [45], we study compressive sensing

problems overGaussian design matrices. We study two types of
sparse signals, e.g. Bernoulli sparse vector (denoted by with
each nonzero entry being either 1 or 1) and Gaussian sparse
signal (denoted by with each nonzero entry being sampled
from Gaussian distribution ). The observation is pro-
duced by , where denotes the additive noise uni-
formly sampled from [ 0.01, 0.01].
To evaluate the sparse recovery performance of a method, we

adopt the root-mean-square error (RMSE) as the comparison
metric,

where denotes the recovered signal. Here, a sparse signal is
successfully recovered if . For a complete
comparison, we record the empirical probability of successful
reconstruction (EPSR) over independent experiments [45].

B. Comparison with PGH, FISTA and Active-set Method

We compare (S)MPL with PGH, FISTA and Active-set
methods on recovering a 140-sparse Bernoulli sparse signal
and a 140-sparse Gaussian sparse signal over a Gaussian
dictionary . To study the effect of , given
a basic , we study and . We study two 's, namely

and . In Fig. 1,
we report the objective values of the comparison methods w.r.t.
iterations. In Table I and Table II, we record the following
metrics: The number of full matrix-vector products (#FMVPs);
The number of partial matrix-vector products (#PMVPs); The
number of nonzeros (Sparsity) in solutions; The decoding time
(Time) for each signal; The speedup (#speedup) of the fastest
method over others.
Based on the results, we draw the following conclusions.
• From Fig. 1, (S)MPL with different 's converge much
faster than baseline methods. In particular, is
about 20 times faster than others on the Gaussian sparse
signal. FISTA converges well when .
In particular, the objective value decreases very quickly at
the beginning. However, it converges very slowly when

. In fact, generally speaking, the
convergence rate of FISTA is only sub-linear, e.g.
[22]. In contrast to FISTA, PGH solves a sequence of sub-
problems, and attain linear convergence rate if the sub-
problem is strongly convex [18], [19]. Overall, it performs
much better than FISTA.

• Note that each FMVP takes complexity. From
Tables I and II, (S)MPL with different 's need far fewer
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Fig. 1. Convergence of the comparison methods on Bernoulli sparse vectors (in Fig. 1(a) and 1(b)) and Gaussian sparse vectors (in Fig. 1(c) and 1(d)). For
(S)MPL and the Active-set method, we record per PG iteration. We only record results within 150 iterations for all methods; (a) Objective value evolutions
for ; (b) Objective value evolutions for ; (c) Objective value evolutions for ; (d) Objective
value evolutions for .

TABLE I
COMPARISON AMONG MPL, FISTA, PGH AND ACTIVE-SET METHODS ON BERNOULLI SPARSE SIGNAL, WHERE TIME RECORDS THE DECODING TIME (IN SECONDS)

FMVPs than other methods, which explains the signifi-
cant speedup of (S)MPL over other methods. Therefore,
(S)MPL are more suitable for big dictionaries.

• From Tables I and II, in general, (S)MPL also need much
fewer number of PMVPs than others. Moreover, the scale
of PMVPs in (S)MPL is much smaller than in PGH and
FISTA. For example, when , the
sparsity of the PGH solution is 1015, which is much larger
than that of (S)MPL. In other words, the master problem
optimization in PGH is more expensive.

• If is too large, MPL may take more computation time.
For example, from Table I, MPL with indeed needs less

time than MPL with . The reason is that, if is large,
some non-support atoms might be mistakenly included.
From Fig. 1, SMPL in general converges faster than MPL
with a large , which demonstrates the effectiveness of the
subspace exploratory search.

• From Tables I and II, the recovered signals are not exactly
140-sparse. This is because the observation has been
disturbed by the noises .

C. Influences of on SMPL

In this experiment, we conduct a sensitivity study on
for SMPL. We fix and vary
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TABLE II
COMPARISON AMONG MPL, FISTA, PGH AND ACTIVE-SET METHODS ON GAUSSIAN SPARSE SIGNAL, WHERE TIME RECORDS THE DECODING TIME (IN SECONDS)

Fig. 2. Results of SMPL on Gaussian sparse signals with different 's; (a) EPSR w.r.t ; (b) Decoding time w.r.t .

Fig. 3. Comparison among ROMP, StOMP, SWCGP, MPL and SMPL on Gaussian sparse signals, where the early stopping according to the condition (13) is
applied to StOMP, SWCGP, MPL and SMPL; (a) EPSR w.r.t ; (b) Decoding time w.r.t (in log scale).

. Note that SMPL is reduced to MPL when
. For each , we conduct

independent experiments, and record the EPSR values and
averaged decoding time in Fig. 2(a) and (b), respectively.
From Fig. 2(a), SMPL with larger 's tends to have better re-

covery performance in terms of EPSR. However, when ,
the improvement becomes less significant. The reason is that,
if is large enough (e.g. ), the atoms with largest

already include most of the potential active atoms, thus the
increasing will not significantly improve the performance.
From Fig. 2(b), MPL (e.g. SMPL with ) shows the worst
decoding efficiency. The reason is that, without the subspace

search, some non-support atoms might be mistakenly included,
and MPL needs more iterations to converge.

D. Comparisons With ROMP, StOMP, and SWCGP

We compare (S)MPL with ROMP, StOMP, and SWCGP
on Gaussian sparse signals, where . We use
the default parameter settings for StOMP and SWCGP. We
conduct independent experiments for each

, and record the EPSR value and the
averaged decoding time in Fig. 3(a) and (b), respectively. We
also record the sparsity of solutions for in
Table III.
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Fig. 4. SR results on of different methods. Here, the de-biasing technique is applied to -norm methods, and the early stopping is applied to
(S)MPL; (a) EPSR on Gaussian sparse signals; (b) Recovery time on Gaussian sparse signals.

TABLE III
AVERAGED SPARSITY OF SOLUTIONS OBTAINED BY VARIOUS METHODS WITH

, 160, 180, RESPECTIVELY

From Fig. 3(a) and (b), (S)MPL outperforms the two base-
lines in terms of sparse recovery performance and decoding ef-
ficiency. StOMP cannot successfully recover all the sparse sig-
nals when . From Table III, StOMP and SWCGP in-
clude more atoms than (S)MPL, which indicates that many non-
support atoms have been included. This problem becomes more
severe for SWCGP, since its master problem is not sufficiently
optimized. As a result, it cannot recover all the -sparse signals
when , as shown in Fig. 3(a). Lastly, ROMP shows
much worse sparse recovery performance than other methods,
which is consistent with the conclusions in [43].

E. Comparisons With Other Baselines

In this experiment, we compare the performance of (S)MPL
with other baseline methods on a median-scale problem

, where Shotgun and S-L1 work in parallel. For each
, we run independent trials. For (S)MPL, we apply
early stopping to avoid the over-fitting problem.
The EPSR value and recovery time for the Gaussian sparse

signals of each method are presented in Fig. 4. From this figure,
SMPL and OMP show much better recovery performance
than other methods on the Gaussian sparse signals in terms of
EPSR. In general, SMPL shows better recovery performance
than MPL in terms of EPSR. OMPR [46]shows worse recovery
performance than other greedy methods. From the experiments,
OMPRA that uses an adaptive learning rate improves OMPR
greatly. However, OMPRA is still worse than (S)MPL.
From Fig. 4(b), MP algorithms are much faster than the
-norm methods, such as Shotgun (a well-designed parallel
-method) and PGH. Ultimately, PGH shows better efficiency

than Shotgun and S-L1, but is much worse than (S)MPL.

F. Scalability Comparisons on Big Dictionaries

In the final experiment, we compare the scalability of (S)MPL
with several baselines on a Big Dictionary with
two experiments.12 Here, only Gaussian sparse signals are
studied.
In the first experiment, we generate -sparse signals with

, and compare (S)MPL with FISTA,
PGH, SP and AIHT. We set for SP and AIHT. We
set for LASSO related algorithms, and set
the maximum iterations of FISTA and PGH to 150. We report
the RMSE and recovery time in Fig. 5(a) and (b), respectively.
According to the reported results, the following conclusions can
be drawn.
• From Fig. 5(a), (S)MPL shows better RMSE than other
methods when ; SMPL significantly im-
proves MPL in terms of RMSE when . In
addition, SP and AIHT cannot recover the -sparse signal
if (the RMSE values are very large). Lastly, PGH
and FISTA show worse recovery performance than other
methods in terms of RMSE, which coincides with the re-
sults in Tables I and II.

• From Fig. 5(b), it is evident that (S)MPL is much more
efficient than other methods, in particular when .
SP has comparable efficiency with (S)MPLwhen ,
but becomes less efficient when . PGH and FISTA
need thousands of seconds for all 's; while MPL needs
less than 100 seconds when . In particular, SMPL
needs less than 50 seconds when .

• From Fig. 5(a), it is clear that PGH is better than FISTA
in terms of RMSE. In general, PGH converges faster than
FISTA, thus it achieves a better solution with the same
number of iterations.

There are two reasons for the inefficiency of PGH and
FISTA. Firstly, both of them require many iterations to
converge, which means that they need to compute many
times of than (S)MPL. Secondly, when computing

12In real-world applications, such as the face recognition task, we may have
more than 1 million training images from many persons [53]. In SR based face
recognition, the training images are formed as a big dictionary.
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Fig. 5. SR results on Gaussian sparse signals under a Big Dictionary ; (a) RMSE w.r.t ; (b) Decoding time w.r.t (in log scale).

Fig. 6. SR performance comparison under a Big Dictionary ; (a) EPSR w.r.t ; (b) Decoding time w.r.t (in log scale).

TABLE IV
EFFICIENCY COMPARISON BETWEEN BMPL AND BOMP (IN SECONDS). THE TIME CONSUMED FOR COMPUTING IS 46.27 SECONDS

for large dictionaries, the data exchange between the main
memory and cache memory are very inefficient. In contrast, in
(S)MPL, the master problem optimization is w.r.t. a small set
of active atoms only, e.g. . Apparently, the data exchange
between the main memory and cache memory w.r.t. is
much more efficient.
To thoroughly compare the scalability of (S)MPL with SP

and AIHT, in the second experiment, we run inde-
pendent experiments for each , where we exclude FISTA and
PGH from the comparison. Here, we set for SP and
AIHT. We record the EPSR value and averaged recovery time
in Fig. 6(a) and (b), respectively. From Fig. 6(a), (S)MPL shows
much better recovery performance than SP and AIHT in terms
of EPSR value. From Fig. 6(b), (S)MPL is also much more ef-
ficient than SP and AIHT.

V. BATCH MPL AND APPLICATIONS TO MANY-FACE
RECOGNITION

In this section, we first compare BMPL with BOMP on syn-
thetic compressive sensing tasks, and then apply them to many-
face recognition tasks.

A. Comparison of BMPL and BOMP

BOMP is a batch mode implementation of OMP [24].
In the simulation, we generate a Gaussian random matrix

and generate 200 Gaussian sparse signals for
each sparsity from {400, 450, 500, 550, 600}. The vector
of measurements is produced by withGaussian
noise sampled from .The total time (in seconds) spent
by BMPL and BOMP in decoding 200 signals and the averaged
root-mean-square error (ARMSE) are reported in Table IV.
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TABLE V
PREDICTION ACCURACY ON TWO FACE DATABASES

TABLE VI
TOTAL TIME SPENT ON TWO FACE DATABASES (IN SECONDS), #SPEEDUP DENOTES THE TIMES OF SPEEDUP OF BMPL OVER PGH

From Table IV, BMPL is about 7–16 times faster than BOMP.
Moreover, BMPL gains better or comparable ARMSE to
BOMP for all .
Note that it takes only 46.27 seconds to calculate . In

other words, the consumed time per signal is only 0.23 seconds.
If there are 200,000 signals, then the computational time per
signal will be seconds, which is negligible.

B. Many-face Recognition by BMPL

We apply BMPL for many-face recognition tasks by solving
problem (3). We adopt L2 [33], L2-L2 [34] and BOMP [24] as
the baseline methods. Besides, the PGH method is adopted for
the comparison, since it has shown better efficiency than other
-norm methods [18], [19]. We follow the experimental set-

tings in [7] for the comparison. We set for BMPL and
for BOMP for all experiments. Furthermore, consid-

ering that there may be some images that cannot be sparse-rep-
resented by the training images, we constrain .
The Extended YaleB and AR databases are used for compar-

ison. The Extended YaleB database consists of 2,414 frontal face
images of 38 subjects [30], [33]. They are captured under var-
ious lighting conditions and cropped and normalized to

pixels. In our experiment, we take 62 images per person,
resulting in 2,356 images in total. The AR database consists
of over 2,600 frontal images of 100 individuals [7], [30], [54].
Each image is normalized to 80 60 pixels. Computing
with all images of Extended YaleB and AR takes 5.74 seconds
and 1.10 seconds, respectively. In other words, the time spent
on is negligible.
We consider two experimental settings: 1) Many-face recog-

nition with different number of pixels; and 2)Many-face recog-
nition with different number of training samples.
1) Many-face Recognition With Different Number of

Pixels: In this experiment, we down-sample the im-
ages at a sampling rate , where is chosen from

for YaleB images, and

for AR images. Accordingly, the dimen-
sion of each new image vector will be of the original image
vector. Following [33], we randomly choose half of the images
of each person as the training set, and the remaining images
as the testing set. The prediction accuracies on the YaleB and
AR images are shown in Table V. To measure the difference
between results, the Wilcoxon test with 5% significance is
conducted between BMPL and the winner of L2 and L2-L2,
and 1 indicates the significant difference.
From Table V, on the YaleB database, BMPL shows sig-

nificantly better accuracy than L2 and L2-L2 methods under
and , and comparable or slightly better

performance under other down-sampling rates. On the AR
database, BMPL performs significantly better than L2 and
L2-L2 methods under and . BMPL in particular
shows much more stable performance than the L2 and L2-L2
methods. In particular, on the AR database, L2 only achieves
73.23% prediction accuracy at a down-sampling rate ,
which may be caused by the unstable pseudo inverse on the
ill-conditioned matrix [33]. As a regularized L2 method, L2-L2
method shows more stable performance than L2. However, it
is still worse than BMPL.
We report the total time spent by various methods in Table VI.

PGH, the state-of-the-art -solver, needs several hours to pre-
dict all testing images on the AR database with , which is
unbearable for many real-world applications. On the contrary,
BMPL completes the prediction in 20 seconds only, which is
366 times faster than PGH. BMPL is also 3–10 times faster than
BOMP. Lastly, BMPL achieves comparable efficiency to L2-L2
and L2.
A remaining question is: does the sparsity help to improve

recognition performance? We list the average sparsity of
BMPL, PGH, and BOMP in Table VII. Note that the solutions
obtained by L2 and L2-L2 methods are not sparse. From
Table V, BMPL, PGH, and BOMP show comparable or sig-
nificantly better recognition rates than L2 and L2-L2 methods
on the YaleB database. In addition, BMPL outperforms L2 and
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TABLE VII
AVERAGE SPARSITY ON TWO FACE DATABASES

TABLE VIII
PREDICTION ACCURACY ON YALEBWITH DIFFERENT NUMBER OF TRAINING IMAGES

TABLE IX
TOTAL TIME SPENT ON YALEB WITH DIFFERENT NUMBER OF TRAINING

IMAGES (IN SECONDS)

L2-L2 methods on AR database with enough pixels. Therefore,
sparsity indeed helps to improve recognition rates.
2) Face Recognition With Different Number of Training

Samples: Let be the ratio of the number of training images
over the total number of images. In this experiment, we vary

to change the number of
training images. The prediction accuracy and prediction time
w.r.t. are shown in Tables VIII and IX, respectively.
In general, with more training images, the matrix be-

comes more ill-conditioned. From Table VIII, BMPL performs
significantly better than L2 and L2-L2 when . In other
words, BMPL achieves more stable performance when
becomes more ill-conditioned. Finally, from Table IX, BMPL
shows comparable efficiency to L2 and L2-L2 methods.

VI. CONCLUSIONS

In this paper, we have proposed a subspace search to further
improve the performance of MPL, and a batch-mode MPL
has been developed to vastly speed up SR with many signals.
Comprehensive experiments demonstrate the superb efficiency
of the proposed (S)MPL methods. In general, (S)MPL are
tens times faster than state-of-the-art -norm methods. The
recovery time of the SMPL method over a Big Dictionary with
one million atoms is less than 50 seconds. We apply BMPL
to batch face recognition tasks. The experimental results show
that BMPL achieves significantly better recognition rates than
L2 and L2-L2 with comparable computational cost. Notably,
BMPL is up to 20 times faster than the batch-mode OMP [24]
and 400 times faster than the -norm methods considered to
be state-of-the-art.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their insightful comments and suggestions which have greatly
improved the paper.

REFERENCES

[1] M. Tan, I. Tsang, and L. Wang, “Matching pursuit LASSO Part I:
Sparse Recovery Over Big Dictionary,” IEEE Trans. Signal Process.,
vol. 63, no. 3, pp. 727–741, Feb. 1, 2015.

[2] E. J. Candès and T. Tao., “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[3] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[4] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9, pp.
4053–4085, Sep. 2011.

[5] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient
compressive sensing using structurally random matrices,” IEEE Trans.
Signal Process., vol. 60, no. 1, pp. 139–154, Jan. 2012.

[6] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color
image restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp.
53–69, Jan. 2008.

[7] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal.
Mach., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[8] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” CVPR, 2009.
[9] A. Adler, M. Elad, and Y. Hel-Or, Fast Subspace Clustering via Sparse

Representations Dept. Comput. Sci., Technion Univ., Technion, Israel,
2011.

[10] A. Coates and A. Ng, “The importance of encoding versus training with
sparse coding and vector quantization,” presented at the ICML, 2011.

[11] T. Peleg, Y. Eldar, and M. Elad, “Exploiting statistical dependencies
in sparse representations for signal recovery,” IEEE Trans. Signal
Process., vol. 60, no. 5, pp. 2286–2303, May 2012.

[12] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approxima-
tions,” Constr. Approx., vol. 13, no. 1, pp. 57–98, 1997.

[13] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of lp minimiza-
tion,” Math. Program., vol. 129, no. 2, pp. 285–299, 2011.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani., “Least angle re-
gression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[15] H. Lee, A. Battle, R. Raina, and A. Y. Ng., “Efficient sparse coding
algorithms,” presented at the NIPS, 2006.

[16] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An inte-
rior-point method for large-scale -regularized least squares,” IEEE
J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.

[17] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient pro-
jection for sparse reconstruction: Application to compressed sensing
and other inverse problems,” IEEE J. Sel. Topics Signal Process.: Spe-
cial Issue Convex Optimiz. Methods Signal Process., vol. 1, no. 4, pp.
586–597, Dec. 2007.

[18] L. Xiao and T. Zhang, “A proximal-gradient homotopy method for the
l1-regularized least-squares problem,” presented at the ICML, 2012.

[19] L. Xiao and T. Zhang, “A proximal-gradient homotopy method for the
sparse least-squares problem,” SIAM J. Optimiz., vol. 23, no. 2, pp.
1062–1091, 2013.

[20] B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[21] Y. Nesterov, “Gradient Methods for Minimizing Composite Objective
Function,” Center for Operations Research and Econometrics (CORE),
Catholic University of Louvain (UCL), 2007.



TAN et al.: MATCHING PURSUIT LASSO PART II: APPLICATIONS AND SPARSE RECOVERY OVER BATCH SIGNALS 753

[22] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no.
1, pp. 183–202, 2009.

[23] S. Yun and K.-C. Toh, “A coordinate gradient descent method for
-regularized convex minimization,” Comput. Optimiz. Appl., vol.

48, no. 2, pp. 273–307, 2011.
[24] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implementation

of the -SVD Algorithm Using Batch Orthogonal Matching Pursuit,”
Technion, 2008.

[25] A. Yang, A. Ganesh, Y. Ma, and S. Sastry, “Fast l1-minimization al-
gorithms and an application in robust face recognition: A review,” pre-
sented at the ICIP, 2010.

[26] R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol.
24, no. 4, pp. 118–121, Jul. 2007.

[27] J. Romberg, “Imaging via compressive sampling,” IEEE Signal
Process. Mag., vol. 25, no. 2, pp. 14–20, Mar. 2008.

[28] M. Aharon, M. Elad, and A. Bruckstein, “The -SVD: An algorithm
for designing of overcomplete dictionaries for sparse representation,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov.
2006.

[29] H. Lee, A. Battle, R. Raina, and A. Y. Ng., “Efficient sparse coding
algorithms,” in Proc. NIPS, 2006, pp. 801–808.

[30] S. Gao, I. W. Tsang, and L. Chia, “Sparse representation with kernels,”
IEEE Trans. Image Process., vol. 22, no. 2, pp. 423–434, Feb. 2013.

[31] W. Deng, J. Hu, and J. Guo, “Extended SRC: Undersampled face
recognition via intraclass variant dictionary,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 9, pp. 1864–1870, Sep. 2012.

[32] L. Zhuang, A. Y. Yang, Z. Zhou, S. S. Sastry, and Y. Ma, “Single-
sample face recognition with image corruption and misalignment via
sparse illumination transfer,” presented at the CVPR, 2013.

[33] Q. Shi, A. Eriksson, A. v. d. Hengel, and C. Shen, “Is face recognition
really a compressive sensing problem?,” presented at the CVPR, 2011.

[34] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collabora-
tive representation: Which helps face recognition?,” presented at the
ICCV, 2011.

[35] G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging
by compressive sensing,” presented at the ICIP, 2013.

[36] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proc. ICML, , 2009, pp. 689–696, ACM.

[37] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” in Proc. JMLR, 2010, vol. 11, pp.
19–60.

[38] R. Rubinstein, T. Peleg, and M. Elad, “Analysis k- SVD: A dictionary-
learning algorithm for the analysis sparse model,” IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 661–677, Feb. 1, 2013.

[39] B. Beckermann and A. B. J. Kuijlaars, “Superlinear convergence
of conjugate gradients,” SIAM J. Numer. Anal., vol. 39, no. 1, pp.
300–329, 2002.

[40] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst. Comput.,
1993, pp. 40–44.

[41] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

[42] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution
of underdetermined systems of linear equations by stagewise orthog-
onal matching pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp.
1094–1121, Feb. 2012.

[43] T. Blumensath and M. E. Davies, “Stagewise weak gradient pursuits,”
IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4333–4346, Nov.
2009.

[44] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol.
26, no. 3, pp. 301–321, 2009.

[45] W. Dai and O.Milenkovic., “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp.
2230–2249, May 2009.

[46] P. Jain, A. Tewari, and I. S. Dhillon, “Orthogonal matching pursuit with
replacement,” presented at the NIPS, 2011.

[47] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin., “Parallel coor-
dinate descent for -regularized loss minimization,” presented at the
ICML, 2011.

[48] Z. J. Xiang, H. Xu, and P. J. Ramadge., “Learning sparse representa-
tions of high dimensional data on large scale dictionaries,” presented
at the NIPS, 2012.

[49] D. Needell and R. Vershynin, “Uniform uncertainty principle and
signal recovery via regularized orthogonal matching pursuit,” J.
Found. Comput. Math., vol. 9, no. 3, pp. 317–334, 2009.

[50] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp.
265–274, 2009.

[51] T. Blumensath, “Accelerated iterative hard threshoding,” Signal
Process., vol. 92, no. 3, pp. 752–756, 2011.

[52] R. Giryes and M. Elad, “RIP-based near-oracle performance guaran-
tees for subspace-pursuit, CoSaMP, iterative hard-thresholding,” IEEE
Trans. Signal Process., vol. 60, no. 3, pp. 1465–1468, Mar. 2012.

[53] Y. Taigman and L. Wolf, “Leveraging billions of faces to overcome
performance barriers in unconstrained face recognition,” Facebook AI
Research, 2011, arXiv:1108.1122.

[54] A. Martinez and R. Benavente, “The AR Face Database,” CVC Tech,
1998.

Mingkui Tan is currently working as a senior re-
search associate with the School of Computer Sci-
ence at The University of Adelaide in Australia.
He received his Ph.D. degree in Computer Sci-
ence from Nanyang Technological University, Sin-
gapore, in 2014. He received the Master's degree in
Control Science and Engineering in 2009 and his
Bachelor's degree in Environmental Science and
Engineering in 2006, both from Hunan Univer-
sity in Changsha, China. His research interests in-
clude compressive sensing, big data learning, and

large-scale optimization.

Ivor W. Tsang is an Australian Future Fellow and
Associate Professor with the Centre for Quantum
Computation & Intelligent Systems (QCIS), at the
University of Technology, Sydney (UTS). Before
joining UTS, he was the Deputy Director of the
Centre for Computational Intelligence, Nanyang
Technological University, Singapore. He was
awarded his PhD in Computer Science from the
Hong Kong University of Science and Technology
in 2007. He has published more than 100 research
papers in refereed international journals and con-

ference proceedings, including JMLR, TPAMI, TNN/TNNLS, NIPS, ICML,
UAI, SIGKDD, IJCAI, AAAI, ACL, ICCV and CVPR.
In 2009, Dr Tsang was conferred the 2008 Natural Science Award (Class

II) by the Ministry of Education, China, which recognized his contributions
to kernel methods. In 2013, Dr Tsang received the prestigious Australian Re-
search Council Future Fellowship for his research regarding Machine Learning
on Big Data. In addition, he received the prestigious IEEE TRANSACTIONS ON
NEURAL NETWORKS Outstanding 2004 Paper Award in 2006, the 2014 IEEE
TRANSACTIONS ON MULTIMEDIA Prized Paper Award, and a number of best
paper awards and honors from reputable international conferences, including
the Best Student Paper Award at CVPR 2010, the Best Paper Award at ICTAI
2011 and the Best Poster Award HonorableMention at ACML 2012, etc. He was
also awarded the Microsoft Fellowship 2005, and the ECCV 2012 Outstanding
Reviewer Award.

Li Wang is currently a postdoctoral Fellow at
ICERM, Brown University, USA. She received
her Ph.D. degree with Department of Mathematics
in University of California, San Diego, USA. She
received the masters degree in Computational Math-
ematics from Xi'an Jiaotong University, Shaanxi,
China, in 2009 and the Bachelors degree in Informa-
tion and Computing Science from China University
of Mining and Technology, Jiangsu, China in 2006.
Her research interests include large scale polynomial
optimization, semi-infinite polynomial programming

and machine learning.


