Matching Pursuit LASSO Part II: Applications and Sparse Recovery Over Batch Signals

Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract—In Part I, a Matching Pursuit LASSO (MPL) algorithm has been presented for solving large-scale sparse recovery (SR) problems. In this paper, we present a sparse subspace search to further improve the performance of MPL, and then continue to address another major challenge of SR—batch SR with many signals, a consideration which is absent from most of previous ℓ_1-norm methods. A batch-mode MPL is developed to vastly speed up sparse recovery of many signals simultaneously. Comprehensive numerical experiments on compressive sensing and face recognition tasks demonstrate the superior performance of MPL and BMPL over other methods considered in this paper, in terms of sparse recovery ability and efficiency. In particular, BMPL is up to 400 times faster than existing ℓ_1-norm methods considered to be state-of-the-art.

Index Terms—Batch mode LASSO, big dictionary, compressive sensing, face recognition, sparse recovery.

I. INTRODUCTION

W ith the fast development of compressive sensing theory [2], sparse recovery (SR) has gained increased attention recently in the signal processing community [2]–[5]. It has also become a fundamental element of many other research areas, such as image processing, computer vision, data mining and machine learning [6]–[11].

Formally, SR seeks to recover an unknown k-sparse signal $\mathbf{x} \in \mathbb{R}^m$ from its nonadaptive linear measurement $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e} \in \mathbb{R}^n$, where $\mathbf{A} \in \mathbb{R}^{n \times m} (n \ll m)$ denotes the dictionary, $\mathbf{e} \in \mathbb{R}^n$ represents the noise, and each column vector of \mathbf{A} is referred to as an atom. To recover \mathbf{x} from \mathbf{b}, one need to solve an ℓ_0-norm minimization problem:

$$
\min_{\mathbf{x}} |\mathbf{x}|_0, \quad \text{s.t.} \quad \mathbf{b} = \mathbf{A}\mathbf{x},
$$

where $| \cdot |_0$ denotes the ℓ_0-norm of a vector. Since problem (1) is NP-complete [2], [12], [13], researchers propose to solve its ℓ_1-convex relaxations [3], [14], [15], such as the LASSO problem [16]–[19]:

$$
\min_{\mathbf{x}} \lambda |\mathbf{x}|_1 + \frac{1}{2} ||\mathbf{b} - \mathbf{A}\mathbf{x}||^2,
$$

where λ is a regularization parameter. Regarding problem (2), many methods have been proposed over the last decade, such as least-angle regression (LARS) [20], gradient projection for sparse reconstruction (GPSR) [17], projected gradient (PG) [21], fast iterative shrinkage-threshold algorithm ((FISTA)) [22], coordinate descent methods [23], proximal gradient homotopy (PGH) method [18], [19] and so on. Interested readers can refer to Part I and the references therein [1] for a more comprehensive review.

Existing ℓ_1-norm methods, however, suffer from high computational complexity for large-scale SR problems. More critically, for problems like batch SR [24], in which many signals need to be sparsely recovered simultaneously, the computations will be much more expensive. Here, the batch SR problem is carried out to solve the following optimization problem:

$$
\min_{\mathbf{X}} \|\mathbf{B} - \mathbf{AX}\|_F^2 + \lambda \sum_{i=1}^p |\mathbf{x}_i|_1,
$$

where $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_p] \in \mathbb{R}^{n \times p}$ records the measurements of p signals and $\| \cdot \|_F$ denotes the F-norm of a matrix. The batch SR problem plays an important role in many applications, such as face recognition [7], [25], compressive sensing [26], [27], dictionary learning [28], [29] and so on.

A. Batch SR in Face Recognition

Face recognition by SR has achieved promising performance recently [17], [25], [30]–[32]. The basic assumption is that, any testing image lies in a subspace spanned by the training images of a person [7], [25], [33], thus it can be sparsely represented by the training images. Here, the training images are formed as a dictionary $\mathbf{A} \in \mathbb{R}^{n \times m}$, where n denotes the number of pixels or features of a face image, and m denotes the number of training images. The core task of SR based face recognition is to find the sparse representation of a testing image \mathbf{b}. However, directly solving problem (2) is computationally expensive when n is large [7], [25], [33]. To address this, some researchers propose to reduce the computational cost via dimension reduction, such as random projections [7]. However, the recognition rates may also be also affected [10], [25], [33].

Moreover, it is often required to recognize many face images simultaneously in real-time, which is very challenging for many SR based methods [33], [34]. To address this, the authors in [33] suggest directly solving $\min_{\mathbf{X}} (1/2) \| \mathbf{b} - \mathbf{AX} \|_2^2$.
sparse vector \(x \), and \(\mathcal{A} \) is a subspace search to further improve the performance of MPL, and then continue to address the computational bottleneck created by the batch SR problem. The rest of this paper is organized as follows. In Section II, we briefly review the MPL algorithm and then propose an improved MPL algorithm with subspace exploratory matching. In Section III, we describe the batch mode MPL method. Numerical experiments and real-world applications are presented in Sections IV and V, respectively. Conclusive remarks are given in Section VI.

II. MATCHING PURSUIT FOR LASSO

Throughout the paper, we denote the transpose of a vector/matrix by the superscript \(^T\), \(\mathbf{0} \) as a zero vector and \(\text{diag}(\mathbf{v}) \) as a diagonal matrix with diagonal entries equal to \(\mathbf{v} \). In addition, let \(\| \mathbf{v} \|_p \) and \(\| \mathbf{v} \| \) denote the \(\ell_p \)-norm and \(\ell_2 \)-norm of a vector \(\mathbf{v} \), respectively. For a function \(f(\mathbf{x}) \), let \(\nabla f(\mathbf{x}) \) and \(\partial f(\mathbf{x}) \) be the gradient and subgradient of \(f(\mathbf{x}) \) at \(\mathbf{x} \), respectively. For a sparse vector \(\mathbf{x} \), let the calligraphic letter \(\mathcal{T} = \text{support}(\mathbf{x}) = \{ i | x_i \neq 0 \} \subset \{ 1, \ldots, m \} \) be its support, \(\mathbf{x}_{\mathcal{T}} \) be the subvector indexed by \(\mathcal{T} \), and \(\mathcal{T}^c \) be the complementary set of \(\mathcal{T} \), i.e., \(\mathcal{T}^c = \{ 1, \ldots, m \} \setminus \mathcal{T} \). Furthermore, let \(\mathbf{A} \odot \mathbf{B} \) represent the element-wise product of two matrices \(\mathbf{A} \) and \(\mathbf{B} \). Lastly, let \(\mathbf{A}_{\mathcal{T}} \) denote the columns of \(\mathbf{A} \) indexed by \(\mathcal{T} \).

A. Matching Pursuit LASSO

To introduce MPL, in [1], we bring in a support detection vector \(\mathbf{r} \in \{ 0, 1 \}^m \) to \(\mathbf{x} \), and impose an \(\ell_0 \)-norm constraint on \(\mathbf{r} \), namely \(\| \mathbf{r} \|_0 \leq g \), to enforce the sparsity. Here, \(g \) is a predefined integer satisfying \(1 \leq g < k \).\(^{1}\) Let \(\Lambda = \{ \mathbf{r} : \| \mathbf{r} \|_0 \leq g \} \) be the domain of \(\mathbf{r} \), we propose to solve the following integer programming model for LASSO:

\[
\min_{\mathbf{r} \in \Lambda} \min_{\mathbf{x}, \xi} \quad \lambda \| \mathbf{x} \|_1 + \frac{1}{2} \| \xi \|_2^2
\quad \text{s.t.} \quad \xi = \mathbf{b} - \mathbf{A}(\mathbf{x} \odot \mathbf{r}).
\tag{4}
\]

Rather than solving this problem directly, we bring in dual variables \(\mathbf{a} \in \mathbb{R}^m \) to the constraint \(\xi = \mathbf{b} - \mathbf{A}(\mathbf{x} \odot \mathbf{r}) \) for a fixed \(\mathbf{r} \). By introducing the dual form of the inner problem, we transform (4) into the following problem:

\[
\min_{\mathbf{a} \in \mathcal{A}_{\mathcal{L}}} \max_{\mathbf{r} \in \Lambda} \quad -\frac{1}{2} \| \mathbf{a} \|_2^2 + \mathbf{a}^T \mathbf{b}
\quad \text{s.t.} \quad \| \mathbf{a}^T \mathbf{A} \text{diag}(\mathbf{r}) \|_{\infty} < \lambda.
\tag{5}
\]

Let

\[
f(\mathbf{a}, \mathbf{r}) = \frac{1}{2} \| \mathbf{a} \|_2^2 - \mathbf{a}^T \mathbf{b}, \quad \mathbf{a} \in \mathcal{A}_{\mathcal{L}},
\]

where \(\mathcal{A}_{\mathcal{L}} = \{ \mathbf{a} : \| \mathbf{a}^T \mathbf{A} \text{diag}(\mathbf{r}) \|_{\infty} < \lambda, \mathbf{a} \in \{ -1, 1 \}^m \} \) denotes the feasible domain of \(\mathbf{a} \) w.r.t. a feasible \(\mathbf{r} \), and \(l \geq 0 \) is a large number. By applying a convex relaxation to (5), MPL seeks to solve the following convex problem:

\[
\min_{\mathbf{a} \in \mathbb{R}^m, \mathbf{r} \notin \mathcal{L}} \quad \theta, \quad \text{s.t.} \quad f(\mathbf{a}, \mathbf{r}) \leq \theta, \forall \mathbf{r} \in \Lambda.
\tag{6}
\]

\(^{1}\)Interested readers may find more discussions of \(g \) in Part I [1].
The details of MPL are presented in Algorithm 1. Basically, it iteratively adds a set of active atoms by worst-case analysis in Step 3, and conducts a master problem optimization in Steps 4–8. Let \(\mathbf{g} = \mathbf{A}^\top \mathbf{a}^{i-1} \), and \(\mathcal{I}_t \) be the index set of the detected atoms at the \(t \)-th iteration, the worst-case analysis is to update \(\mathcal{I}_t \) based on \(\mathbf{g} \). We first find the \(\varrho \) atoms with the largest \(|g_j| \), and then record their indices into \(\mathcal{J}_t \). After that, we update \(\mathcal{I}_t \) by \(\mathcal{I}_t = \mathcal{I}_{t-1} \cup \mathcal{J}_t \). The master problem optimization from Steps 4–8 is to solve the following problem:

\[
\min_{\mathbf{x}, \xi} \lambda \| \mathbf{x} \|_1 + \frac{1}{2} \| \mathbf{b} - \mathbf{A} \mathbf{x} \|_2^2, \quad \text{s.t. } \mathbf{x}_{\mathcal{I}_t} = 0. \tag{7}
\]

In this paper, the proximal gradient (PG) [21] (resp. conjugate gradient descent (CGD) [39]) is adopted to solve (7) when \(\lambda > 0 \) (resp. \(\lambda = 0 \)), which is shown in the inner for loop. To distinguish the inner loop from the while loop, we use \(\mathbf{u} \) as the variable.

Algorithm 1 Matching Pursuit Lasso for Solving (6)

1: Initialize \(\mathbf{x}^0 = 0, \xi^0 = \mathbf{b}, \mathcal{I}_0 = \emptyset \). Let \(t = 1 \).
2: while (The stopping condition is not achieved) do
3: Do worst-case analysis:
4: Let \(\mathbf{g} = \mathbf{A}^\top \mathbf{a}^{i-1} \); choose the \(\varrho \) largest \(|g_j| \) and record their indices in \(\mathcal{J}_t \); let \(\mathcal{I}_t = \mathcal{I}_{t-1} \cup \mathcal{J}_t \).
5: Initialize \(\mathbf{u}_{\mathcal{I}_t} = \mathbf{x}_{\mathcal{I}_t}^{i-1} \) and \(\mathbf{u}_{\mathcal{I}_t}^0 = 0 \).
6: for \(s = 1, \ldots, s_{\text{max}} \) do
7: Update \(\mathbf{u}_{\mathcal{I}_t}^s \) using PG (\(\lambda > 0 \)) or CGD (\(\lambda = 0 \)) rules.
8: end for
9: Break if the stopping conditions are achieved.
10: end while

MPL in Algorithm 1 is reduced to the orthogonal matching pursuit (OMP) [40], [41] when \(\lambda = 0 \) and \(\varrho = 1 \). Moreover, it is related to the stagewise OMP(StOMP) [42] and the stagewise weak gradient pursuits (SWCGP for short) [43] in the sense that all of them add a set of new atoms per iteration. However, in SWCGP and StOMP, the number of atoms added per iteration changes due to complex thresholding strategies [42], [43]. In StOMP, the knowledge of noise is required to determine the number of new atoms. This knowledge, however, is not available for general problems [43]. To address this, SWCGP uses a simpler thresholding strategy that is independent of the noise [43]. However, it performs one iteration only in the master problem optimization. Since the master problem may not be sufficiently optimized, non-support atoms might be mistakenly included, which may degrade the efficiency and recovery performance. In contrast, MPL takes more iterations before the following stopping condition is achieved:

\[
\frac{f(\mathbf{u}^{s-1}) - f(\mathbf{u}^s)}{f(\mathbf{u}^s) - f(\mathbf{u}^0)} < \varepsilon_{\text{in}}, \tag{8}
\]

where \(\varepsilon_{\text{in}} \) denotes a small tolerance.

B. Subspace Exploratory Matching for MPL

The convergence of MPL has been verified in Part I [1]. However, the performance of MPL might be affected by the value of \(\varrho \). To explain this issue, we first present a bound regarding the progress of objective value of each outer loop.

Lemma 1: Let \(f(\mathbf{x}^t) - \| \mathbf{x}^t \|_1 + 1/(2\varrho) |\xi^t|_2^2, \mathbf{g} = \mathbf{A}^\top \xi^{i-1} \) and \(\mathbf{u}^t \) be the starting point regarding the inner loop. Assume \(|g_i| > \lambda \) for \(\forall i \in \mathcal{J}_{t+1} \), where \(\mathcal{J}_{t+1} \) is obtained by Step 3 of Algorithm 1, with proper line search in PG, we have:

\[
f(\mathbf{x}^t) - f(\mathbf{u}^t) \geq \frac{1}{2\varrho} \sum_{i \in \mathcal{J}_{t+1}} (\lambda - g_i)^2,
\]

where \(1/L \) is the step size obtained by the line search.

According to Lemma 1, choosing \(\varrho \) atoms with the largest \(g_i \) guarantees the best improvement in objective value after one iteration (e.g. \(s = 1 \)) of each inner loop. However, this cannot be guaranteed if more inner iterations (e.g. when \(s > 1 \)) are used. In other words, the worst-case analysis in Step 3 might be suboptimal. When \(\varrho \) is relatively large in particular, some non-support atoms (which have large values of \(g_i \)) might be mistakenly added into \(\mathcal{J}_t \). To address this, we can intuitively include more (e.g. \(\varrho_2 \), where \(\omega > 1 \)) new atoms with the largest \(|g_i| \), and then do the master problem optimization with all selected atoms. After that, we only choose \(\varrho \) new atoms that decrease the objective value the most as the most-active atoms. This scheme, which is referred to as subspace exploratory matching, is summarized in Algorithm 2, where we use (8) as the stopping condition.

Algorithm 2 Subspace Exploratory Matching

1: Given a dictionary \(\mathbf{A}, \mathcal{I}_{t-1}, \mathbf{a}^t, \varepsilon_{\text{in}}, \omega (\omega > 1) \).
2: Calculate \(\mathbf{g} = \mathbf{A}^\top \mathbf{a}^t \); choose the \(\omega \varrho \) largest \(g_j \) and record their indices in \(\mathcal{J}_t \); let \(\mathcal{I}_t = \mathcal{I}_{t-1} \cup \mathcal{J}_t \).
3: Initialize \(\mathbf{u}_{\mathcal{I}_t}^0 - \mathbf{x}_{\mathcal{I}_t}^{i-1} \) and \(\mathbf{u}_{\mathcal{I}_t}^0 = 0 \).
4: for \(s = 1, \ldots, s_{\text{max}} \) do
5: Update \(\mathbf{u}_{\mathcal{I}_t}^s \) using PG (\(\lambda > 0 \)) or CGD (\(\lambda = 0 \)) rules.
6: Quit if the stopping conditions are achieved.
7: end for.
8: Sort the \(\omega \varrho \) atoms in \(\mathcal{J}_t \) in descending order by \(|g_i| \); return the first \(\varrho \) atoms and record the indices in \(\mathcal{J}_t \).
9: Let \(\mathcal{I}_t - \mathcal{I}_{t-1} \cup \mathcal{J}_t \). Set \(\mathbf{x}_{\mathcal{I}_t}^t - \mathbf{u}_{\mathcal{I}_t}^s \) and \(\mathbf{x}_{\mathcal{I}_t}^t = 0 \).

To distinguish Algorithm 1 with subspace search from the original MPL method, hereafter we refer to it as SMPL. In general, since the \(\varrho \) atoms chosen in SMPL achieve better improvement in objective value than MPL, both convergence speed and sparse recovery performance can be boosted.

The proposed subspace search is related to the atom selection strategies used in CoSaMP [44], SP [45]and OMPR [46]. For example, to find \(k \) true supports, CoSaMP and SP choose \(2k \) atoms, and then do the master problem optimization with all selected atoms. After that, a pruning step is performed such that only \(k \) atoms are kept in the active atom set. Note that unlike these strategies, there is no atom replacement or atom deletion in (S)MPL w.r.t. outer iteratops. Consequently, SMPL is guaranteed to monotonically decrease the objective values. Moreover, the subspace
search of CoSaMP, SP and OMPR relies on the estimation of κ, which is not required in SMPL.

C. Stopping Conditions

For a properly selected λ, a natural stopping condition for (S)MPL is

$$\|a^T A\|_{\infty} \leq \lambda.$$ \hspace{1cm} (9)

However, in practice, we may choose a small λ in order to reduce the solution bias of LASSO directly. When λ is very small, (S)MPL stops when $a \ll e^T$ (here e denotes the ground-truth noise), and it is possible that the over-fitting problem will happen. To avoid this, we stop (S)MPL early if the following stopping conditions are achieved:

$$\|a^T A\|_{\infty} \leq r_{\infty} \text{ or } |\|a\|| \leq r_2,$$ \hspace{1cm} (10)

where r_{∞} and r_2 are pre-determined parameters. We can also stop (S)MPL if

$$\frac{\delta^t}{\varrho f(x^0)} \leq \epsilon,$$ \hspace{1cm} (11)

where δ^t is the function value difference between the $(t-1)^{\text{th}}$ and t^{th} iteration, ϵ is a small tolerance and $f(x^0)$ denotes the initial objective value.

Without early stopping, (S)MPL will achieve the LASSO solution, which may be biased (when λ is large) or over-fitted (when λ is small). For $\lambda = 0$ and $\varrho = 1$ in particular, (S)MPL will get the results of OMP [40], [41]. To prevent from the over-fitting problem, we stop (S)MPL early when λ is small.

D. Implementation Concerns

Several implementation techniques can be adopted to improve the efficiency of (S)MPL. Note that the master problem optimization in (S)MPL is w.r.t. a small set of atoms only. Let \mathcal{I} be the index set of selected atoms. We only need to calculate small scale matrix-vector products $A_{\mathcal{I}^T x_{\mathcal{I}}}$ and $A_{x_{\mathcal{I}}^T}$. For convenience, we refer to them as the partial matrix-vector product (PMVP). Correspondingly, we refer to $A x$ and $A^T \xi$ as the full matrix-vector product (FMVP).

Firstly, since $|\mathcal{I}| \ll m$, computing the PMVP (e.g. $A_{\mathcal{I}^T x_{\mathcal{I}}}$ and $A_{x_{\mathcal{I}}^T}$) is much cheaper than FMVP (e.g. $A x$ and $A^T \xi$). To fully exploit this advantage, we store A atom by atom in the main memory so that we can easily retrieve any atoms indexed by \mathcal{I} using C++ pointers.

Secondly, when dealing with big dictionaries, the cache-to-memory efficiency is important. For example, the calculations of PMVPs (e.g. $A_{\mathcal{I}^T x_{\mathcal{I}}}$ and $A_{x_{\mathcal{I}}^T}$) may not be cache-to-memory efficient, since the active atoms in general are very far away from each other in the main memory. To address this, we explicitly store $A_{\mathcal{I}^T}$ and $A_{x_{\mathcal{I}}}$ in the main memory. Accordingly, we can compute PMVPs very efficiently.

Thirdly, several iterations regarding the master problem optimization are sufficient, which significantly reduce the number of PMVPs. Moreover, once updating \mathcal{I}, we set $x_{\mathcal{I}}^T = u_{\mathcal{I}}^T$ for the purpose of warm-start (see Step 9 in Algorithm 2). In this way, we can significantly improve the efficiency of the master problem optimization.2

III. Batch Mode MPL

In the batch SR problem, suppose there are p signals to be sparsely represented at the same time. Existing l_1-norm methods, such as PG [21] and FISTA [22], take $O(mn)$ cost per iteration. Suppose they stop after S iterations, the total cost for recovering p signals is $O(Spnm)$. On the contrary, suppose (S)MPL stops after T iterations, it will reduce the cost to $O(Tpnm)$, where $T \ll S$.

Nevertheless, the complexity of MPL and SMPL is still dependent on n, making them expensive to tackle large-scale problems that are with large n. Essentially, this computational burden is brought by the calculation of $A^T \xi$ (which takes $O(mn)$ cost) in the worst-case analysis. Therefore, how to reduce the cost of $A^T \xi$ is critical for improving the efficiency.

According to the studies in [17], [42], if the discrete Fourier transform basis or wavelet basis are sampled to form the dictionary A, the computational complexity of $A^T \xi$ can be reduced to $O(m \log |m|)$ with the help of the fast Fourier transform (FFT). However, this technique cannot be applied to general dictionaries.

To tackle many signals under general dictionaries, we propose below the batch-mode MPL (BMPL for short), in which the computational cost can be greatly reduced. Actually, we have $A^T \xi - A^T (b - A x_{\mathcal{I}}) = A^T b - A^T A_{\mathcal{I}^T} x_{\mathcal{I}}$. Let $\beta = A^T b$ and $Q = A^T A_{\mathcal{I}^T} x_{\mathcal{I}}$. If we pre-compute Q and β, and store them in the main memory, we can then calculate $A^T \xi$ according to

$$A^T \xi = \beta - Q_{\mathcal{I}} x_{\mathcal{I}}.$$ \hspace{1cm} (12)

As a result, the computation cost of computing $A^T \xi$ is reduced to $O(|I| \cdot \bar{m})$, where $|I| \ll n$. Since $|I| \approx k$, the overall cost for p signals becomes $O(Tpmk)$.

Remark 1: To apply (12), we need to compute the matrix $Q \in \mathbb{R}^{m \times m}$, with $O(mn^2)$ cost, which is not efficient regardless of a single signal. However, since Q can be calculated off-line, this cost is negligible when dealing with many signals.

Since BMPL adds ϱ atoms per iteration, it requires considerably fewer times of $A^T \xi$ than the batch mode OMP (BOMP for short) [24]. Specifically, BOMP takes $O(pm \varrho k^2)$ cost for p signals; while BMPL takes $O(Tpmk)$ complexity, where $T \ll k$.

For existing l_1-norm methods, even though the intermediate variables are sparse, it is not easy for them to conduct the batch mode optimization, since the support set I of intermediate variables might change frequently during the optimization. As a result, frequent retrievals of Q_I are very expensive.

The batch scheme is not applicable to a dictionary with a very large number of atoms, because of the $O(m^2)$ space complexity to store Q. Nevertheless, BMPL can be applied to many large-scale tasks. For example, it can efficiently deal with dictionaries of $O(2^{15})$ atoms on a 24 GB memory machine, which is

2For fair comparison, we employ the above techniques to implement the l_1-norm methods whenever the intermediate variables are sparse: Let \mathcal{I} denote the supports of an intermediate x, we replace $A x$ with $A_{\mathcal{I}} x_{\mathcal{I}}$, which will improve the efficiency considerably.
IV. Numerical Experiments

In this section, we compare the performance of (S)MPL with the following baseline methods:

• Four state-of-the-art \(\ell_1 \)-solvers: Shotgun\(^4\) which uses the parallel coordinate descent in C++ [47], FISTA\(^5\) which uses the accelerated proximal gradient method with continuation technique [17], [25]; PGH which uses the homotopy method to improve the convergence speed [18], [19]; S-L1\(^6\) which adopts a screening test to predict the zero entries to improve the decoding efficiency [48].

• Several related greedy methods, such as ROMP [49], StOMP [42], and SWCGP [43] are used for the comparison. In addition, four well-known greedy algorithms, i.e. orthogonal matching pursuit (OMP) [40], [41], accelerated iterative hard thresholding (AIHT) [50]–[52],\(^8\) subspace pursuit (SP) [45],\(^9\) and orthogonal matching pursuit with replacement (OMPR) [46], are also included as baseline methods.

In OMPR, it is necessary to calculate \(\mathbf{z} = \mathbf{x} + \eta \mathbf{A}^\top (\mathbf{b} - \mathbf{A} \mathbf{x}) \), where \(\eta \) is a learning rate of OMPR [46]. The setting of \(\eta \) is crucial for the performance [46]. In [46], a feasible range for \(\eta \) is provided if \(\mathbf{A} \) satisfies the RIP condition. Unfortunately, if \(\mathbf{A} \) is not well scaled, the scale of \(\mathbf{A}^\top (\mathbf{b} - \mathbf{A} \mathbf{x}) \) may vary a lot and the setting of \(\eta \) will be difficult.\(^1\) To address this issue, we propose a variant of OMPR in which \(\eta \) is adaptively adjusted by applying the CGD rule. To distinguish this variant from OMPR, we refer to it as the OMPRA.

In the experiments, Shotgun is conducted in parallel on an Intel(R) Core(TM) i7 CPU (8 cores) PC with 64-bit Linux OS; while the other methods are conducted on a 64-bit Windows operating system (OS) with the same computer configuration. For fair comparison, all methods, except S-L1, ROMP and StOMP, are written in C++ running with single core. We run S-L1, which is written in Matlab, in parallel on an eight-core machine.

A. Experimental Settings and Performance Metrics

Following [17], [18], we set \(\lambda = 0.005 \| \mathbf{A}^\top \mathbf{b} \|_\infty \) for \(\ell_1 \)-norm methods. Unless noted otherwise, we apply de-biasing technique to reduce the solution bias of \(\ell_1 \)-norm methods [17], [25]. For (S)MPL, we apply the early stopping to avoid the over-fitting problem with stopping condition

\[
|\delta| / (\mathcal{G} \cdot \mathbf{b})^2 \leq 1.0 \times 10^{-6}, \tag{13}
\]

where \(\delta \) denotes the objective difference between the \(t \)th and \((t + 1)\)th iterations. We set the subspace search length \(\omega = 3 \) for SMPL. For many greedy methods, such as AIHT, SP and OMPR, we need to specify \(\mathcal{G} \). In the simulation, since we know the ground-truth \(\mathbf{k} \), we set \(\mathcal{G} = 1.2k \). For OMPR, \(\eta \) is set to 0.7. Lastly, we keep default settings of other parameters for the baseline methods.

Following [18], [19], [45], we study compressive sensing problems over Gaussian design matrices. We study two types of sparse signals, e.g. Bernoulli sparse vector (denoted by \(\mathbf{s} \) with each nonzero entry being either 1 or \(-1\)) and Gaussian sparse signal (denoted by \(\mathbf{s} \) with each nonzero entry being sampled from Gaussian distribution \(N(0,1) \)). The observation \(\mathbf{b} \) is produced by \(\mathbf{b} = \mathbf{A} \mathbf{x} + \mathbf{e} \), where \(\mathbf{e} \) denotes the additive noise uniformly sampled from \([-0.01, 0.01]\).

To evaluate the sparse recovery performance of a method, we adopt the root-mean-square error (RMSE) as the comparison metric,

\[
\text{RMSE} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i^* - x_i)^2}
\]

where \(x^* \) denotes the recovered signal. Here, a sparse signal is successfully recovered if \(\text{RMSE} \leq 1 \times 10^{-3} \). For a complete comparison, we record the empirical probability of successful reconstruction (EPSR) over \(M \) independent experiments [45].

B. Comparison with PGH, FISTA and Active-set Method

We compare (S)MPL with PGH, FISTA and Active-set methods on recovering a 140-sparse Bernoulli sparse signal and a 140-sparse Gaussian sparse signal over a Gaussian dictionary \(\mathbf{A} \in \mathbb{R}^{212 \times 140} \). To study the effect of \(\varrho \), given a basic \(\varrho \), we study 2\(\varrho \) and 4\(\varrho \). We study two \(\lambda \)'s, namely \(\lambda_1 = 0.005 \| \mathbf{A}^\top \mathbf{b} \|_\infty \) and \(\lambda_2 = 0.00005 \| \mathbf{A}^\top \mathbf{b} \|_\infty \). In Fig. 1, we report the objective values of the comparison methods w.r.t. iterations. In Table I and Table II, we record the following metrics: The number of full matrix-vector products (#FMVPs); The number of partial matrix-vector products (#PMVPs); The number of nonzeros (Sparsity) in solutions; The decoding time (Time) for each signal; The speedup (#speedup) of the fastest method over others.

Based on the results, we draw the following conclusions.

• From Fig. 1, (S)MPL with different \(\varrho \)'s converge much faster than baseline methods. In particular, (S)MPL(2\(\varrho \)) is about 20 times faster than others on the Gaussian sparse signal. FISTA converges well when \(\lambda = 0.005 \| \mathbf{A}^\top \mathbf{b} \|_\infty \). In particular, the objective value decreases very quickly at the beginning. However, it converges very slowly when \(\lambda = 0.00005 \| \mathbf{A}^\top \mathbf{b} \|_\infty \). In fact, generally speaking, the convergence rate of FISTA is only sub-linear, e.g. \(O(1/k^2) \) [22]. In contrast to FISTA, PGH solves a sequence of sub-problems, and attain linear convergence rate if the sub-problem is strongly convex [18], [19]. Overall, it performs much better than FISTA.

• Note that each FMVP takes \(O(mn) \) complexity. From Tables I and II, (S)MPL with different \(\varrho \)'s need far fewer

\(^3\)The C++ source codes of MPL and the compared methods are available at: http://www.tamingkui.com/mlp.html.

\(^4\)https://www.select.cs.cmu.edu/projects.

\(^5\)https://www.eecs.berkeley.edu/yang/software/l1benchmark/index.html.

\(^6\)http://www.princeton.edu/zxiang/home/index.html.

\(^7\)https://sparselab.stanford.edu.

\(^8\)https://www-personal.umich.edu/romanv/software/romp.m.

\(^10\)https://www-personal.soton.ac.uk/tb1m08/publications.html.

\(^11\)Interested readers can find more details of \(\eta \) in [46].
Fig. 1. Convergence of the comparison methods on Bernoulli sparse vectors (in Fig. 1(a) and 1(b)) and Gaussian sparse vectors (in Fig. 1(c) and 1(d)). For (S)MPL and the Active-set method, we record $f(x^*)$ per PG iteration. We only record results within 150 iterations for all methods: (a) Objective value evolutions for $\lambda = 0.005 \| \mathbf{A}^T \mathbf{b} \|_\infty$; (b) Objective value evolutions for $\lambda = 0.0005 \| \mathbf{A}^T \mathbf{b} \|_\infty$; (c) Objective value evolutions for $\lambda = 0.005 \| \mathbf{A}^T \mathbf{b} \|_\infty$; (d) Objective value evolutions for $\lambda = 0.0005 \| \mathbf{A}^T \mathbf{b} \|_\infty$.

TABLE I

<table>
<thead>
<tr>
<th>λ</th>
<th>Sparsity</th>
<th>Active-set</th>
<th>FISTA</th>
<th>PGH</th>
<th>MPL(ρ)</th>
<th>SMPL(ρ)</th>
<th>MPL(2ρ)</th>
<th>SMPL(2ρ)</th>
<th>MPL(4ρ)</th>
<th>SMPL(4ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005$| \mathbf{A}^T \mathbf{b} |_\infty$</td>
<td>159</td>
<td>168</td>
<td>11</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>134</td>
<td>171</td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.14</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0005$| \mathbf{A}^T \mathbf{b} |_\infty$</td>
<td>1015</td>
<td>1044</td>
<td>189</td>
<td>144</td>
<td>244</td>
<td>195</td>
<td>328</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td></td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td></td>
<td>0.12</td>
<td>0.14</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$</td>
<td></td>
<td></td>
<td>1.6</td>
<td>1.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Tables I and II, in general, (S)MPL also need much fewer number of PMVPs than others. Moreover, the scale of PMVPs in (S)MPL is much smaller than in PGH and FISTA. For example, when $\lambda = 0.0005 \| \mathbf{A}^T \mathbf{b} \|_\infty$, the sparsity of the PGH solution is 1015, which is much larger than that of (S)MPL. In other words, the master problem optimization in PGH is more expensive.

C. Influences of ω on SMPL

In this experiment, we conduct a sensitivity study on ω for SMPL. We fix $\lambda = 0.00005 \| \mathbf{A}^T \mathbf{b} \|_\infty$ and vary ω.
TABLE II
COMPARISON AMONG MPL, FISTA, PGH AND ACTIVE-SET METHODS ON GAUSSIAN SPARSE SIGNAL, WHERE TIME RECORDS THE DECODING TIME (IN SECONDS)

<table>
<thead>
<tr>
<th>λ</th>
<th>Sparsity</th>
<th>Active-set</th>
<th>FISTA</th>
<th>PGH</th>
<th>MPL(ρ)</th>
<th>SMPL(ρ)</th>
<th>MPL(2ρ)</th>
<th>SMPL(2ρ)</th>
<th>MPL(4ρ)</th>
<th>SMPL(4ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.005</td>
<td></td>
<td>A^Tb</td>
<td></td>
<td>_\infty$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>313</td>
<td>221</td>
<td>154</td>
<td>154</td>
<td>196</td>
<td>168</td>
<td>303</td>
<td>296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#FMVP</td>
<td>160</td>
<td>79</td>
<td>92</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#PMVP</td>
<td>2578</td>
<td>255</td>
<td>280</td>
<td>195</td>
<td>414</td>
<td>146</td>
<td>235</td>
<td>152</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>1.40</td>
<td>4.46</td>
<td>0.92</td>
<td>0.09</td>
<td>0.14</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>#speedup</td>
<td>22.3</td>
<td>70.8</td>
<td>14.6</td>
<td>1.5</td>
<td>2.2</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

$0.00005		A^Tb		_\infty$										
160	1015	1015	166	154	222	194	391	280						
#FMVP	201	1006	144	11	10	7	6	4						
#PMVP	3271	3023	611	218	415	183	282	202	239					
Time	1.92	92.4	22.8	0.12	0.12	**0.09**	**0.09**	**0.09**	0.11					
#speedup	20.5	983.1	24.2	1.3	1.3	1.0	1.0	1.0	1.2					

Note that SMPL is reduced to MPL when $\omega = 1$. For each $k \in \{270, 280, \ldots, 360\}$, we conduct $M = 100$ independent experiments, and record the EPSR values and averaged decoding time in Fig. 2(a) and (b), respectively.

From Fig. 2(a), SMPL with larger ω‘s tends to have better recovery performance in terms of EPSR. However, when $\omega > 3$, the improvement becomes less significant. The reason is that, if ω is large enough (e.g. $\omega = 3$), the $\omega \rho$ atoms with largest $|\hat{g}_i|$ already include most of the potential active atoms, thus the increasing ω will not significantly improve the performance. From Fig. 2(b), MPL (e.g. SMPL with $\omega = 1$) shows the worst decoding efficiency. The reason is that, without the subspace search, some non-support atoms might be mistakenly included, and MPL needs more iterations to converge.

D. Comparisons With ROMP, StOMP, and SWCGP

We compare (S)MPL with ROMP, StOMP, and SWCGP on Gaussian sparse signals, where $A \in \mathbb{R}^{210 \times 213}$. We use the default parameter settings for StOMP and SWCGP. We conduct $M = 100$ independent experiments for each $k \in \{80, 100, \ldots, 360\}$, and record the EPSR value and the averaged decoding time in Fig. 3(a) and (b), respectively. We also record the sparsity of solutions for $k \in \{140, 160, 180\}$ in Table III.
Fig. 4. SR results on $A \in \mathbb{R}^{210 \times 213}$ of different methods. Here, the de-biasing technique is applied to ℓ_1-norm methods, and the early stopping is applied to (S)MPL; (a) EPSR on Gaussian sparse signals; (b) Recovery time on Gaussian sparse signals.

TABLE III

<table>
<thead>
<tr>
<th>k</th>
<th>ROMP</th>
<th>StOMP</th>
<th>SWCGP</th>
<th>MPL</th>
<th>SMPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>506</td>
<td>260</td>
<td>230</td>
<td>167</td>
<td>154</td>
</tr>
<tr>
<td>160</td>
<td>584</td>
<td>309</td>
<td>359</td>
<td>182</td>
<td>168</td>
</tr>
<tr>
<td>180</td>
<td>651</td>
<td>374</td>
<td>432</td>
<td>196</td>
<td>210</td>
</tr>
</tbody>
</table>

From Fig. 3(a) and (b), (S)MPL outperforms the two baselines in terms of sparse recovery performance and decoding efficiency. StOMP cannot successfully recover all the sparse signals when $k > 240$. From Table III, StOMP and SWCGP include more atoms than (S)MPL, which indicates that many non-support atoms have been included. This problem becomes more severe for SWCGP, since its master problem is not sufficiently optimized. As a result, it cannot recover all the k-sparse signals when $k > 180$, as shown in Fig. 3(a). Lastly, ROMP shows much worse sparse recovery performance than other methods, which is consistent with the conclusions in [43].

E. Comparisons With Other Baselines

In this experiment, we compare the performance of (S)MPL with other baseline methods on a median-scale problem $A \in \mathbb{R}^{210 \times 213}$, where Shotgun and S-L1 work in parallel. For each k, we run $M = 100$ independent trials. For (S)MPL, we apply early stopping to avoid the over-fitting problem.

The EPSR value and recovery time for the Gaussian sparse signals of each method are presented in Fig. 4. From this figure, SMPL and OMP show much better recovery performance than other methods, which is consistent with the conclusions in [43].

F. Scalability Comparisons on Big Dictionaries

In the final experiment, we compare the scalability of (S)MPL with several baselines on a Big Dictionary $A \in \mathbb{R}^{210 \times 213}$ with two experiments. Here, only Gaussian sparse signals are studied.

In the first experiment, we generate k-sparse signals with $k \in \{300, 400, \ldots, 800\}$, and compare (S)MPL with FISTA, PGH, SP and AIHT. We set $\delta = 1.2k$ for SP and AIHT. We set $\lambda = 0.005 \lVert A \rVert_\infty$ for LASSO related algorithms, and set the maximum iterations of FISTA and PGH to 150. We report the RMSE and recovery time in Fig. 5(a) and (b), respectively. According to the reported results, the following conclusions can be drawn:

- From Fig. 5(a), (S)MPL shows better RMSE than other methods when $500 < k \leq 600$; SMPL significantly improves MPL in terms of RMSE when $650 < k < 700$. In addition, SP and AIHT cannot recover the k-sparse signal if $k > 600$ (the RMSE values are very large). Lastly, PGH and FISTA show worse recovery performance than other methods in terms of RMSE, which coincides with the results in Tables I and II.

- From Fig. 5(b), it is evident that (S)MPL is much more efficient than other methods, in particular when $k > 500$. SP has comparable efficiency with (S)MPL when $k \leq 450$, but becomes less efficient when $k > 450$. PGH and FISTA need thousands of seconds for all k’s; while MPL needs less than 100 seconds when $k \leq 600$. In particular, SMPL needs less than 50 seconds when $k \leq 700$.

- From Fig. 5(a), it is clear that PGH is better than FISTA in terms of RMSE. In general, PGH converges faster than FISTA, thus it achieves a better solution with the same number of iterations.

There are two reasons for the inefficiency of PGH and FISTA. Firstly, both of them require many iterations to converge, which means that they need to compute many times of $A^T \xi$ than (S)MPL. Secondly, when computing $A^T \xi$,

12In real-world applications, such as the face recognition task, we may have more than 1 million training images from many persons [53]. In SR based face recognition, the training images are formed as a big dictionary.
for large dictionaries, the data exchange between the main memory and cache memory are very inefficient. In contrast, in (S)MPL, the master problem optimization is w.r.t. a small set of active atoms only, e.g. \mathbf{A}_Z. Apparently, the data exchange between the main memory and cache memory w.r.t. \mathbf{A}_Z is much more efficient.

To thoroughly compare the scalability of (S)MPL with SP and AIHT, in the second experiment, we run $M = 100$ independent experiments for each k, where we exclude FISTA and PGH from the comparison. Here, we set $k = 1.5k$ for SP and AIHT. We record the EPSR value and averaged recovery time in Fig. 6(a) and (b), respectively. From Fig. 6(a), (S)MPL shows much better recovery performance than SP and AIHT in terms of EPSR value. From Fig. 6(b), (S)MPL is also much more efficient than SP and AIHT.

V. Batch MPL and Applications to Many-Face Recognition

In this section, we first compare BMPL with BOMP on synthetic compressive sensing tasks, and then apply them to many-face recognition tasks.

A. Comparison of BMPL and BOMP

BOMP is a batch mode implementation of OMP [24]. In the simulation, we generate a Gaussian random matrix $\mathbf{A} \in \mathbb{R}^{12 \times 214}$ and generate 200 Gaussian sparse signals for each sparsity $k \in \{400, 450, 500, 550, 600\}$. The vector of measurements \mathbf{b} is produced by $\mathbf{b} = \mathbf{A} \mathbf{x} + \xi$ with Gaussian noise sampled from $\mathcal{N}(0, 0.05)$. The total time (in seconds) spent by BMPL and BOMP in decoding 200 signals and the averaged root-mean-square error (ARMSE) are reported in Table IV.
From Table IV, BMPL is about 7–16 times faster than BOMP. Moreover, BMPL gains better or comparable ARMSE to BOMP for all \(k \).

Note that it takes only 46.27 seconds to calculate \(A^{\top}A \). In other words, the consumed time per signal is only 0.23 seconds. If there are 200,000 signals, then the computational time per signal will be \(2.3 \times 10^{-4} \) seconds, which is negligible.

B. Many-face Recognition by BMPL

We apply BMPL for many-face recognition tasks by solving problem (3). We adopt \(\ell_2 \) [33], \(\ell_2-\ell_2 \) [34] and BOMP [24] as the baseline methods. Besides, the PGH method is adopted for the comparison, since it has shown better efficiency than other \(\ell_1 \)-norm methods [18], [19]. We follow the experimental settings in [7] for the comparison. We set \(\varrho = 10 \) for BMPL and \(k = 200 \) for BOMP for all experiments. Furthermore, considering that there may be some images that cannot be sparse-represented by the training images, we constrain \(k \leq 600 \).

The Extended YaleB and AR databases are used for comparison. The Extended YaleB database consists of 2,414 frontal face images of 38 subjects [30], [33]. They are captured under various lighting conditions and cropped and normalized to 192 \times 168 pixels. In our experiment, we take 62 images per person, resulting in 2,356 images in total. The AR database consists of over 2,600 frontal images of 100 individuals [7], [30], [54]. Each image is normalized to 80 \times 60 pixels. Computing \(A^{\top}A \) with all images of Extended YaleB and AR takes 5.74 seconds and 1.10 seconds, respectively. In other words, the time spent on \(A^{\top}A \) is negligible.

We consider two experimental settings: 1) Many-face recognition with different number of pixels; and 2) Many-face recognition with different number of training samples.

1) Many-face Recognition With Different Number of Pixels: In this experiment, we down-sample the images at a sampling rate \(\rho_d \), where \(\rho_d \) is chosen from \{1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7\} for YaleB images, and \{1, 3/4, 2/3, 1/2, 1/3\} for AR images. Accordingly, the dimension of each new image vector will be \(\rho_d^2 \) of the original image vector. Following [33], we randomly choose half of the images of each person as the training set, and the remaining images as the testing set. The prediction accuracies on the YaleB and AR images are shown in Table V. To measure the difference between results, the Wilcoxon test with 5% significance is conducted between BMPL and the winner of \(\ell_2 \) and \(\ell_2-\ell_2 \), and 1 indicates the significant difference.

From Table V, on the YaleB database, BMPL shows significantly better accuracy than \(\ell_2 \) and \(\ell_2-\ell_2 \) methods under \(\rho_d = 1/5, 1/6 \) and 1/7, and comparable or slightly better performance under other down-sampling rates. On the AR database, BMPL performs significantly better than \(\ell_2 \) and \(\ell_2-\ell_2 \) methods under \(\rho_d = 1, 3/4 \) and 2/3. BMPL in particular shows much more stable performance than the \(\ell_2 \) and \(\ell_2-\ell_2 \) methods. In particular, on the AR database, \(\ell_2 \) only achieves 73.23% prediction accuracy at a down-sampling rate \(\rho_d = 1/2 \), which may be caused by the unstable pseudo inverse on the ill-conditioned matrix [33]. As a regularized \(\ell_2 \) method, \(\ell_2-\ell_2 \) method shows more stable performance than \(\ell_2 \). However, it is still worse than BMPL.

We report the total time spent by various methods in Table VI. PGH, the state-of-the-art \(\ell_1 \)-solver, needs several hours to predict all testing images on the AR database with \(\rho_d = 1 \), which is unbearable for many real-world applications. On the contrary, BMPL completes the prediction in 20 seconds only, which is 366 times faster than PGH. BMPL is also 3–10 times faster than BOMP. Lastly, BMPL achieves comparable efficiency to \(\ell_2 \) and \(\ell_2-\ell_2 \).

A remaining question is: does the sparsity help to improve recognition performance? We list the average sparsity of BMPL, PGH, and BOMP in Table VII. Note that the solutions obtained by \(\ell_2 \) and \(\ell_2-\ell_2 \) methods are not sparse. From Table V, BMPL, PGH, and BOMP show comparable or significantly better recognition rates than \(\ell_2 \) and \(\ell_2-\ell_2 \) methods on the YaleB database. In addition, BMPL outperforms \(\ell_2 \) and
L2-L2 methods on AR database with enough pixels. Therefore, sparsity indeed helps to improve recognition rates.

2) Face Recognition With Different Number of Training Samples: Let ρ_t be the ratio of the number of training images over the total number of images. In this experiment, we vary $\rho_t \in \{0.55, 0.60, 0.65, 0.70, 0.75, 0.80\}$ to change the number of training images. The prediction accuracy and prediction time w.r.t. ρ_t are shown in Tables VIII and IX, respectively.

In general, with more training images, the matrix $A^T A$ becomes more ill-conditioned. From Table VIII, BMPL performs significantly better than L2 and L2-L2 when $\rho_t \geq 0.60$. In other words, BMPL achieves more stable performance when $A^T A$ becomes more ill-conditioned. Finally, from Table IX, BMPL shows comparable efficiency to L2 and L2-L2 methods.

VI. CONCLUSIONS

In this paper, we have proposed a subspace search to further improve the performance of MPL, and a batch-mode MPL has been developed to vastly speed up SR with many signals. Comprehensive experiments demonstrate the superb efficiency of the proposed (S)MPL methods. In general, (S)MPL are tens times faster than state-of-the-art ℓ_1-norm methods. The recovery time of the SMPL method over a Big Dictionary with one million atoms is less than 50 seconds. We apply BMPL to batch face recognition tasks. The experimental results show that BMPL achieves significantly better recognition rates than L2 and L2-L2 with comparable computational cost. Notably, BMPL is up to 20 times faster than the batch-mode OMP [24] and 400 times faster than the ℓ_1-norm methods considered to be state-of-the-art.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their insightful comments and suggestions which have greatly improved the paper.

TABLE VII

<table>
<thead>
<tr>
<th>ρ_t</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMP</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>PHG</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>BMPL</td>
<td>1/16</td>
<td>1/16</td>
<td>1/16</td>
</tr>
</tbody>
</table>

TABLE VIII

<table>
<thead>
<tr>
<th>ρ_t</th>
<th>0.55</th>
<th>0.60</th>
<th>0.65</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>0.6352</td>
<td>0.9350</td>
<td>0.9330</td>
<td>0.9684</td>
<td>0.9764</td>
<td>0.9815</td>
</tr>
<tr>
<td>L2-L2</td>
<td>0.9814</td>
<td>0.9814</td>
<td>0.9823</td>
<td>0.9827</td>
<td>0.9843</td>
<td>0.9872</td>
</tr>
<tr>
<td>BMPL</td>
<td>0.9848</td>
<td>0.9887</td>
<td>0.9887</td>
<td>0.9908</td>
<td>0.9911</td>
<td>0.9925</td>
</tr>
</tbody>
</table>

TABLE IX

<table>
<thead>
<tr>
<th>ρ_t</th>
<th>0.55</th>
<th>0.60</th>
<th>0.65</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>2.48</td>
<td>2.95</td>
<td>3.02</td>
<td>3.16</td>
<td>3.56</td>
<td>6.02</td>
</tr>
<tr>
<td>L2-L2</td>
<td>2.20</td>
<td>2.51</td>
<td>3.50</td>
<td>3.94</td>
<td>3.21</td>
<td>6.06</td>
</tr>
<tr>
<td>BMPL</td>
<td>10.65</td>
<td>6.11</td>
<td>5.71</td>
<td>4.93</td>
<td>4.23</td>
<td>2.85</td>
</tr>
</tbody>
</table>

REFERENCES

Mingkui Tan is currently working as a senior research associate with the School of Computer Science at The University of Adelaide in Australia. He received his Ph.D. degree in Computer Science from Nanyang Technological University, Singapore, in 2014. He received the Master's degree in Control Science and Engineering in 2009 and his Bachelor's degree in Environmental Science and Engineering in 2006, both from Hunan University in Changsha, China. His research interests include compressive sensing, big data learning, and large-scale optimization.

Ivor W. Tsang is an Australian Future Fellow and Associate Professor with the Centre for Quantum Computation & Intelligent Systems (QCIS), at the University of Technology, Sydney (UTS). Before joining UTS, he was the Deputy Director of the Centre for Computational Intelligence, Nanyang Technological University, Singapore. He was awarded his PhD in Computer Science from the Hong Kong University of Science and Technology in 2007. He has published more than 100 research papers in refereed international journals and conference proceedings, including JMLR, TPAMI, TNN/TLNLS, NIPS, ICML, UAI, SIGKDD, IJCAI, AAAI, ACL, ICCV and CVPR.

In 2009, Dr Tsang was conferred the 2008 Natural Science Award (Class II) by the Ministry of Education, China, which recognized his contributions to kernel methods. In 2013, Dr Tsang received the prestigious Australian Research Council Future Fellowship for his research regarding Machine Learning on Big Data. In addition, he received the prestigious IEEE TRANSACTIONS ON NEURAL NETWORKS Outstanding 2004 Paper Award in 2006, the 2014 IEEE TRANSACTIONS ON MULTIMEDIA Prized Paper Award, and a number of best paper awards and honors from reputable international conferences, including the Best Student Paper Award at CVPR 2010, the Best Paper Award at IJCAI 2011 and the Best Poster Award Honorable Mention at ACM 2012, etc. He was also awarded the Microsoft Fellowship 2005, and the ECCV 2012 Outstanding Reviewer Award.

Li Wang is currently a postdoctoral Fellow at ICERM, Brown University, USA. She received her Ph.D. degree with Department of Mathematics in University of California, San Diego, USA. She received the masters degree in Computational Mathematics from Xi"an Jiaotong University, Shaanxi, China, in 2009 and the Bachelors degree in Information and Computing Science from China University of Mining and Technology, Jiangsu, China in 2006. Her research interests include large scale polynomial optimization, semi-infinite polynomial programming and machine learning.