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Minimax Sparse Logistic Regression for Very
High-Dimensional Feature Selection

Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract— Because of the strong convexity and probabilistic
underpinnings, logistic regression (LR) is widely used in many
real-world applications. However, in many problems, such as
bioinformatics, choosing a small subset of features with the
most discriminative power are desirable for interpreting the
prediction model, robust predictions or deeper analysis. To
achieve a sparse solution with respect to input features, many
sparse LR models are proposed. However, it is still challeng-
ing for them to efficiently obtain unbiased sparse solutions
to very high-dimensional problems (e.g., identifying the most
discriminative subset from millions of features). In this paper,
we propose a new minimax sparse LR model for very high-
dimensional feature selections, which can be efficiently solved
by a cutting plane algorithm. To solve the resultant nonsmooth
minimax subproblems, a smoothing coordinate descent method is
presented. Numerical issues and convergence rate of this method
are carefully studied. Experimental results on several synthetic
and real-world datasets show that the proposed method can
obtain better prediction accuracy with the same number of
selected features and has better or competitive scalability on very
high-dimensional problems compared with the baseline methods,
including the �1-regularized LR.

Index Terms— Feature selection, minimax problem,
single-nucleotide polymorphism (SNP) detection, smoothing
method, sparse logistic regression.

I. INTRODUCTION

BECAUSE of the strong convexity and probabilistic
underpinnings [7], logistic regression (LR) is widely

studied and used in many applications [8], [14], [17], [39].
Compared with support vector machine (SVM), the advan-
tages of LR are its posterior model for model selection
and its probabilistic output for uncertainty prediction, which
can be used for comparing classifier outputs, especially for
multiclass prediction. In addition, the logistic loss is twice-
differentiable and strongly convex, which is good for faster
optimizations [15], [33]. Given a set of labeled examples
{xi , yi }n

i=1, where xi ∈ R
m is the input and yi ∈ {±1} is

the output, in LR, a linear decision function f (x) = w′x is
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learned to minimize a regularized negative log-likelihood [33]

min
w

1

2
‖w‖2

2 + C
n∑

i=1

log
(

1 + e−yi w′xi
)

(1)

where C > 0 is a tradeoff parameter.
In the standard LR, the �2-norm regularizer can only induce

dense solutions. However, great attention has been drawn to
achieving sparse LR that has several attractive properties,
such as robustness to noise [26], [35]. In addition, in data
mining and machine learning applications, a sparse decision
rule with respect to input features, which is also known as
feature selection [6], [25], [34], [37], is desirable for faster
prediction or better pattern interpretation. For example, in the
microarray data analysis, the number of genes can exceed
several thousands. However, a compact gene subset of tens of
features can provide better prediction ability than that with all
genes [11], [40]. Similar observation can also be found in the
single-nucleotide polymorphism (SNP) detection [3]. With the
fast development of biotechnologies, SNP becomes a viable
tool for bio-studies. An SNP measures the DNA sequence
variation when a single nucleotide (A, T, C, or G) in the
genome differs between members of a biological species or
paired chromosomes. Usually, the number of SNPs can exceed
100 000, but only a small number of SNPs are highly related
to a given disease [3]. Considering that the large number
of irrelevant SNPs may seriously deteriorate the prediction
ability, the detection of the most informative SNPs is very
important for nucleotide-level disease diagnosis.

To select the most informative features regarding the output
y, a direct way is to impose an �0-constraint to (1). Specifi-
cally, suppose r features are expected to be selected, we can
impose an �0-constraint ‖w‖0 ≤ r to (1), resulting in the
following �0-constrained problem:

min
w

1

2
‖w‖2

2 + C
n∑

i=1

log(1 + e−yi w′xi ) : s.t. ‖w‖0 ≤ r. (2)

The nonconvexity of the �0 constraint makes the above prob-
lem challenging to solve. Instead, many researchers resort
to solving its relaxations. Among them, the �1-norm convex
relaxation is widely studied. The �1-regularized LR (�1-LR)
solves the following minimization problem:

min
w

‖w‖1 + C
n∑

i=1

log(1 + e−yi w′xi ). (3)
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By changing C , �1-LR can induce sparse solutions of
different levels [36]. Recent studies about �1-LR focus on
the improvement of the training efficiency [26]. Thorough
comparisons of several state-of-the-art �1-LR algorithms can
be referred in [36].

Although widely used, �1-LR has several limitations. For
example, as ‖w‖1 is to sum up the absolute values of all wi , it
is sensitive to their scales and may lead to biased or suboptimal
solution [37]. To overcome this drawback, several nonconvex
relaxation methods, such as weighted �1-regularization [4],
[37], are proposed. Recent studies from [16] and [37] show
that they can achieve lower predictive risk. Unfortunately,
since these methods involve many times of �1-LR training,
they are very expensive in computation. To select the most
informative features, recently, many researchers proposed to
use greedy methods, which iteratively include one feature
into a feature subset and conduct the optimization with the
selected features [18], [29]. A group orthogonal matching
pursuit (GOMP) for LR was proposed in [18], which can
be generalized to single-feature case with group size of one.
In [29], a more general greedy scheme was presented, which
includes GOMP as a special case. Since only one feature (or
one group) is selected in each iteration, the major drawback
of greedy methods is their high computational cost when
selecting a relatively large number of features. In addition, as
there is no regularizer used in the objective function, the over-
fitting problem may happen [18], [29]. Recently, a new convex
relaxation for SVM, called the Feature Generating Machine
(FGM), was proposed in [27]. However, several issues of this
method are not addressed. For example, the tightness of the
convex relaxation was unknown. The training efficiency of
FGM is also limited due to the inefficient solver [27].

Regarding the above issues, this paper focuses attention on
the linear feature selection of very high-dimensional problems.
To reduce the high-computational cost and the bias problem
of the existing feature selection methods, this paper present
a new minimax sparse LR (MSLR) model. In summary, the
contributions of this paper are listed as follows.

1) A new weight scaling scheme is proposed for sparse
LR, which can be further transformed as a minimax
optimization problem.

2) A smoothing coordinate descent method is proposed to
solve the nonsmooth minimax problems, which signifi-
cantly improves the training efficiency.

3) The weakly linear convergence rate of the smoothing
coordinate descent algorithm is verified.

The rest of this paper is organized as follows. In Section II, a
new sparse minimax LR model is presented. The smoothing
coordinate descent method is introduced in Section III. The
experimental results and conclusion remarks are given in
Sections IV and V, respectively.

II. MINIMAX SPARSE LR

A. Notations Definitions

Throughout this paper, we denote the transpose of vec-
tor/matrix by the superscript ′, all-one vector by 1 ∈ R

n , the
element wise product between two matrices A and B by A�B,

the �2-norm of any vector x by ||x|| = √
x′x, the �p-norm of

any vector x by ||x||p and the matrix norm of any matrix A
by ||A|| = max||x||=1 ||Ax||. In addition, let ||x||0 denote the
zero norm of a vector x which counts the number of nonzero
elements in x, and diag(d) denote a diagonal matrix with the
elements of d on the diagonal.

B. Minimax Sparse LR

For the standard linear LR in (1), the �2-regularizer ‖w‖2

is used to avoid the over-fitting problem but cannot induce
sparse solutions. To achieve the sparsity, one can impose the
�1-constraint ‖w‖1 ≤ r on the logistic loss model [36]. How-
ever, there are several deficiencies regarding the �1-regularizer.
At first, the performance of �1-regularized methods may face
the bias risks brought by the scale variation of w [16], [37].
Specifically, if |wi | ∈ {0, 1}, we have ‖w‖1 = ‖w‖0, and
�1-regularized methods can perform well. However, in prac-
tice, |wi | can follow any distribution, making ‖w‖1 very far
away from ‖w‖0, which leads to bias in �1-regularization [37].

To show the influences brought by scale variations, we
conduct a synthetic experiment on several toy problems of size
4096 × 8192, where half of the instances of X are used for
training and the rest for testing. To generate the ground-truth
informative features, we manually generate a sparse vector
w ∈ R

m and then produce the output label by y = sign(Xw).
Since only those features with nonzero wi s contribute to
the output, they are deemed as the ground-truth informative
features. Then the task of feature selection is to recover these
features from the output label y. Several types of w with
different scale variations are studied, which is detailed in the
caption of Fig. 1. In Fig. 1(a), we showed the distribution of
the nonzero |w j | of different ws, the prediction accuracy and
the number of recovered ground-truth features for �1-LR. It
shows that when |w j | ∈ {0, 1}, �1-LR has similar performance
with the proposed method of this paper. But when the scale
variation becomes larger, where w has a long tail, �1-LR
shows poorer performance than the proposed method in terms
of prediction accuracy and number of recovered ground-truth
features. In other words, the bias problem for �1-LR happens.
Also due to the scale variation of w, it is hard to control
the number of features. However, in many real applications,
a controllable number of selected features is desired. For
example, in biology study, biologists prefer to select hundreds
of SNPs or genes for further studies. The final issue for �1-LR
is that it is expensive to be solved for very high-dimensional
problems. Recently, a very fast �1 solver are developed based
on the coordinate descent [36]. However, the efficiency is still
limited on high-dimensional dense datasets.

To address the above issues, we propose a novel weight scal-
ing scheme for sparse LR as follows. To be more specific, we
introduce a weight scaling vector d ∈ [0, 1]m to the regressor
w ∈ R

m , and then impose an additional �1 constraint ||d||1 ≤ r
to control the sparsity. Given d, a feature j is not selected if
and only if d j = 0; otherwise, the associate feature j will
be selected. For simplicity, let D = {

d
∣∣‖d‖1 = ∑

d j ≤ r,
d j ∈ [0, 1], j = 1, . . . , m} be the domain of d. By taking
these elements into consideration, we propose to solve the
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Fig. 1. Demonstration of the influence brought by the scale variations. To generate synthetic problems of different scale variations, we first generate a sparse
vector v of 300 nonzero entries sampled from the Uniform distribution U(0, 1), and then produce w by wi = vτ

i of randomly assigned signs, where τ is
chosen from {0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0}. For simplicity, all the nonzero wi s are normalized to [−1, 1]. The value of τ determines the scale variations for
nonzero wi s. To be more specific, when τ = 0, we have |wi | ∈ {0, 1} and ‖w‖1 = ‖w‖0. However, when τ becomes large, wi will appear as a long tail, as
shown in Fig. 1(a), where the nonzero entries of w is normalized into [−1, 1] and sorted by |wi | in ascending order. (a) Distribution of the nonzero ground
truth |wi |. (b) Testing accuracy with different τ . (c) No. of recovered ground-truth features.

following joint minimization problem regarding d and w
with d ∈ D:

min
d∈D

min
w

1

2

m∑

j=1

d jw
2
j + Cl(w � d) (4)

where d j can be considered as a scaling factor on w j .
Apparently, at the optimality of the above problem, the value
of w j will be 0 if d j = 0. It is worth mentioning that, the
scalar r in (4) has practical meanings. Particularly, it can
be considered as a conservative estimation to k. Specifically,
suppose about k features are expected to be chosen, we
constrain that 1 ≤ r < k. In practice, r can be several times
smaller than k.

The above model has several advantages. At first, as d j is
in [0, 1], the influence of the scale variation of w j can be
alleviated by setting a relatively large tradeoff parameter C .
Secondly, an efficient optimization scheme can be introduced
to solve it. Last but not least, it is much easier to control the
number of selected features through the parameter r , which
will be shown later.

Problem (4) can be directly solved with 2m optimization
variables. However, it is very expensive for large m. To address
this issue, we first make the following transformations.

Proposition 1: Let Q = (X′diag(d)X) � (yy)′, where
X = [x1, . . . , xn], y = [y1, . . . , yn]′, by introducing the dual
form of the inner minimization problem regarding w, (4) can
be transformed as a minimax optimization problem

min
d∈D

max
α

−1

2
α′Qα − G(α) : s.t 0 ≤ αi ≤ C ∀i (5)

where α is the dual variable and G(α) = ∑
i:αi >0 αi log(αi ) +∑

i:αi <C (C − αi ) log(C − αi ).
Proof: By defining 0 log(0) = 0, we first derive the dual

form of the inner minimization problem with fixed d ∈ D. Let
ξi = −yi(w � d)′xi = −yi w′(xi � d) and g(ξi ) = log(1 +
eξi ) = log(1+ e−yi w′(xi�d)), given d, the inner problem of the
�1 LR becomes

min
w

1

2

m∑

j=1

d jw
2
j + C

n∑

i=1

g(ξi ), s.t. ξi = −yi w′(xi � d).

By introducing dual variables α to the constraints,
the Lagrangian function of the above problem is

L(w,α) = 1
2

m∑
j=1

d jw
2
j + C

∑n
i=1 g(ξi ) + ∑n

i=1 αi (−ξi −
yi w′(xi � d)). The KKT condition can be obtained by:
∇w j L = d jw j − ∑n

i=1 αi yi (xi j d j ) = 0 ⇒ d jw j =
d j

∑n
i=1 αi yi xi j ; ∇ξiL = Cg′(ξi ) − αi = 0 ⇒ ξi = g′−1(αi

C ).

In addition, we have g′−1(z) = log z
1−z , hence ξi = log αi

C−αi

and g(ξi ) = log C
C−αi

. Substitute all the equations
into the Lagrange function, we can obtain: L(w,α) =
− 1

2

∑m
j=1 d jw

2
j + nC log C − ∑n

i=1(C − αi ) log (C − αi )

− ∑n
i=1 αi log αi . With the definition of g(ξi ) = log C

C−αi
=

log(1 + eξi ), we have the constraint for α: α ∈ [0, C]n [13].
Let X = [x1, . . . , xn] and Q = (X′diag(d)X) � (yy)′,
the Lagrangian dual is to maximize L(w,α) regarding
the dual variable α, which can be simplified as:
maxα − 1

2α′Qα − G(α) : s.t. α ∈ [0, C]n, where
G(α) = ∑n

i=1(C − αi ) log (C − αi ) + ∑n
i=1 αi log αi and∑m

j=1 d jw
2
j = α′Qα. In order to select the most informative

features, we have to find the best d that minimizes the logistic
loss. Easily, this is to solve the minimax problem (5). This
completes the proof.

For simplicity, we define the domain of α as A= {α∣∣0 ≤
αi ≤ C, i = 1, . . . ,n}. Let c j = ∑n

i=1 αi yi xi j , and we have
f (α, d) = 1

2α′Qα+G(α) = 1
2

∑m
j=1 c2

j d j +G(α). Apparently,
f (α, d) is convex in α and linear in d. Now since both A and
D are compact, the following relation holds from the minimax
theorem [28].

Theorem 1: Given the above definition of A and D for
f (α, d), we have the following:

min
d∈D

max
α∈A

− f (α, d) = max
α∈A

min
d∈D

− f (α, d). (6)

With the above equivalence, the proposed weight
scaling LR problem can be addressed by solving
maxα∈A mind∈D − f (α, d). It can be further transformed as
a nonlinear constrained optimization problem [23]

min
α∈A,θ

θ : s.t. f (α, d) − θ ≤ 0 ∀ d ∈ D, θ ∈ R. (7)

The above problem is a convex programming problem.
Therefore, it can be solved globally. In addition, as the
compact domain D contains infinite number of constraints,
it is a semi-infinite programming (SIP) problem.
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Algorithm 1 Cutting Plane Algorithm for Solving (7)
Initialization: set α = 1, C = ∅ and t = 1.
0: Find the most-active-constraint dt by solving (8), and set C = C ⋃{dt }.
1: Given the reduced constant set C, solve the subproblem (9).

2: Let t = t + 1. Repeat step 0-2 until convergence.

C. Optimization Strategies

The SIP problem (7) in general is difficult to solve as there
are infinite number of constraints involved. However, in the
feature selection task, there should be a few active constraints.
Based on this fact, the cutting plane algorithm can be adopted
to efficiently solve it [20]. The general scheme is simplified
in Algorithm 1. The basic idea of the cutting plane algorithm
is to iteratively add one or several active constraints to the
active set and then solve a reduced subproblem with selected
constraints. Accordingly, the computational cost can be greatly
reduced.

In Algorithm 1, a critical problem is to find the most-active-
constraint from the infinite number of candidates. Typically,
we need to solve maxd∈D 1

2α′Qα, which is equivalent to

max
d∈D

1

2

m∑

j=1

c2
j d j (8)

where c j = ∑n
i=1 αi yi xi j is the importance of the j th feature.

To obtain the most-active d, we can first find the r largest
c2

j , and then assigning those d j to 1 and the rest to 0. Once
an active d is found, we can update C by C = C ∪ {d}. Let
|C| = T , the remaining problem is to solve a reduced problem
of (7) with the active constraints defined by C

min
α∈A,θ

θ : s.t. f (α, dt ) − θ ≤ 0, dt ∈ C, t = 1, . . . , T . (9)

This minimax subproblem can be solved by the reduced-
gradient method [24]. Actually, by applying Lagrangian the-
ory, one can arrive at the dual form of (9) as follows:

min
μ

max
α∈A

−1

2
α′(∑

μt Qt

)
α − G(α) : s.t. μ′1 = 1, μt ≥ 0

where Qt = (X′diag(dt )X) � (yy′) and μ is the dual vari-
able for the quadratic constraints. Let μ∗ be the optimal
solution to (10), the optimal kernel matrix can be obtained
by

∑
μ∗

t Qt = (X′(
∑

μ∗
t diag(dt ))X) � (yy′). Therefore, the

optimal d∗ can be obtained by
∑

t μ∗
t dt . Notice that (10) is

essentially the SimpleMKL problem and can be addressed by a
subgradient method [21], [24]. However, the efficiency of this
method is limited since it needs many times of classier (SVM
or LR) training to compute the subgradient [24]. In addition,
due to numerical issues, it is difficult to obtain a high precision
solution for classier training, thus the subgradient may not be
accurate enough to make it converge quickly.

III. SMOOTHING COORDINATE MSLR

Now we focus on solving the minimax problem (9):
minα∈A maxdt∈C f (α, dt ). Without loss of generality, suppose
T = |C|, (9) can be equivalently written as follows:

min
α∈A

f (α) : f (α) = max
t=1,...,T

ft (α), dt ∈ C (10)

Algorithm 2 General Smoothing Method

Initialization: set α0 ∈ (0, C)n , q0 > 0 and k = 0.
0: If the stopping criterion is achieved, go to Step 3.
1: Given qk , update αk to αk+1 to make a sufficient decrease of f (α, q).
2: Update qk+1. Set k = k + 1 and go to Step 0.

3: Stop and output α∗.

where ft (α) = 1
2α′Qtα + G(α) and f (α) are a nonsmooth

function. Notice that, for any constraint defined by C, the
resultant problem can be considered a standard LR problem.
Therefore, based on the [33, Th. 1], the optimal solution to
(10) lies exactly in (0, C)n . In this sense, hereafter we can
constrain α in domain A={α∣∣0 < αi < C, i = 1, . . . ,n}.

A. Smoothing Method for Solving Minimax Problem

Smoothing methods have shown promising results on solv-
ing nonsmooth minimax problems [23], [32]. Its basic idea
is to solve a sequence of smoothing approximations to f (α).
Let q > 0 be a smoothing parameter, the following smooth
function is introduced to approximate f (α):

f (α, q) = 1
q ln

T∑
t=1

exp(q ft (α)). (11)

Proposition 2: Let f (α, q) be defined in (11), then:
1) f (α, q) is monotonically decreasing w.r.t. q , and f (α) ≤
f (α, q) ≤ f (α) + ln T

q , and 2) f (α, q) is twice continuous

differentiable. Let λ̂t = exp(q ft (α))/
∑T

t=1 exp(q ft (α)), we have:

∇α f (α, q) =
T∑

t=1
λ̂t∇ ft (α), ∇2

α f (α, q) = ∑T
t=1 λ̂t∇2 ft (α) +

∑T
t=1(qλ̂t ∇ ft (α)∇ ft (α)′) − q(

∑T
t=1 λ̂t ∇ ft (α))(

∑T
t=1 λ̂t ∇ ft (α))′

[32].
The smoothing method solves (10) by minimizing a

sequence of (11) with gradually increased q . The basic scheme
is shown as in Algorithm 2, where one can use a Newton
update αk+1 = αk − s∇2 f (α, q)−1∇ f (α, q) or a quasi-
Newton update to make a sufficient decrease of (11) with fixed
q [23]. s is the step size obtained by Armijo’s line search.
The major difference of smoothing methods from standard
optimization methods is that a nondecreasing sequence {qk}
should be maintained to make f (α, qk) gradually approach to
f (α). For example, the simple geometric increment of q can
be used, i.e., qk+1 = βqk with β ∈ (1,+∞) [32].

Because of the low computational cost per iteration, the
smoothing method has shown competitive run-time complexity
with other methods [23]. However, the standard smoothing
method requires that the domain of the variable α is in
R

n [32]. Fortunately, the following proposition shows that the
smoothing method is applicable to solve (10) if we keep {αk}
always in ∈ (0, C)n for all k.

Proposition 3: Algorithm 2 generates a sequence {αk} in
(0, C)n and the limit point α∗ is the optimal solution to (9).1

The proof can be found in Appendix A, which parallelizes the
results in [32]. In step 1 of Algorithm 2, usually the Newton or

1It is worth mentioning that the smoothing method cannot be applied to
FGM with squared hinge loss, where α is in a closed domain {α|∑n

i=1
αi = 1, αi ≥ 0, ∀i} [27]. In such case, the convergence of smoothing method
cannot be guaranteed anymore.
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quasi-Newton update is adopted to make a sufficient decrease
of f (α, q) [23]. However, there are several challenges for the
traditional smoothing method to solve (10) with direct Newton
or quasi-Newton update. At first, the construction of the search
direction in Newton or quasi-Newton is very time and memory
consuming for large-scale problems. Secondly, the line search
of the open domain problem is difficult. That is to say, it is
difficult to find a step size s to make sufficient decrease of
f (α, q) while keep αk+1 ∈ (0, C)n .

B. Coordinate Descent Update

To address the challenges of the traditional smoothing
method, we propose a coordinate descent update. Basically, it
does the updating with each component αi in α iteratively [35],
which have three advantages. Firstly, with one dimension
updating, it is easy to make the sequence {αk} be always in
(0, C)n . Secondly, it is also easy to conduct the line search
w.r.t. single variable in (0, C). Finally, the coordinate descent
update is scalable for large-scale problems.

Recall that, for a given q , in each iteration of the smoothing
method, essentially it solves the following problem:

min
α∈A

f (α, q) = 1

q
ln

T∑

t=1

exp(q ft (α)). (12)

Suppose we have αk at the iteration k, and we need to
update the i th component αk,i to obtain αk+1,i , then the basic
update needs to solve an one variable minimization problem

min
z

f (αk + zei , q) = min
z

1

q
ln

T∑

t=1

exp(q ft (α
k + zei ))

s.t. − c1 ≤ z ≤ c2 (13)

where c1 = αk
i and c2 = C − αk

i . For each ft (α), let g(z) =
(c1 + z) log(c1 + z) + (c2 − z) log(c2 − z) and ht (z) = at

2 z2 +
bt z, where at = (Qt )ii , bt = (Qtαk)i . Furthermore, let γt =
exp( q

2 α′Qtα) and p(z) = g(z)+ 1
q ln

(∑T
t=1 γt exp(qht(z))

)
,

then (13) can be written as min
z

p(z) : s.t . − c1 ≤ z ≤ c2.

The following result holds for p(z).
Lemma 1: p(z) attains a unique minimizer z∗ ∈ (−c1, c2),

where ∇ p(z∗) = 0.
Proof: At first, we have

∇ p(z) = ∇g(z) +
( T∑

t=1

λt (at z + bt )
)

and

∇2 p(z) = ∇2g(z) +
T∑

t=1

(
λt∇2ht (z)

)
+ q

T∑

t=1

(
λt∇ht (z)

2
)

−q

(
T∑

t=1

λt∇ht (z)

)2

Algorithm 3 Newton-Bisection Search Method
Given at , bt , c1, c2 and ε, where t = 1, ..., T ; set Zl = 0,
Zu = s, the iteration index k = 0.

0: o=
{
1 if ∇ p(zm) ≥ 0
2 if ∇ p(zm) < 0

, Zu=
{
zm + c1 if o = 1
c2 − zm if o = 2

.

1: Initialize Z0
o ∈ (0, s)

2: If |∇ p̂o(Zk
o)| < ε, go to Step 7.

3: Let d = − ∇ p̂o(Zk
o)

∇2 p̂o(Zk
o )

;

4: Update Zl and Zu by

{
Zl = max(Zk

o, Zl) if d > 0
Zu = min(Zk

o, Zu) if d < 0
;

5: Zk+1
o =

{
Zk

o + d if Zk
o + d ∈ (Zl, Zu)

(Zl+Zu )
2 Otherwise

;

6: Let k = k + 1, go to Step 2.

7: Stop, set

{
Zk

2 = s − Zk
1 if o = 1

Zk
1 = s − Zk

2 if o = 2
and output (Zk

1, Zk
2).

where

∇ht (z) = at z + bt

λt = γt exp(qht (z))∑T
t=1 γt exp(qht (z))

∇2ht (z) = at

∇g(z) = log
c1 + z

c2 − z

∇2g(z) = c1 + c2

(c1 + z)(c2 − z)
.

It is easy to verify: lim
z→−c1

∇ p(z) = −∞ and lim
z→c2

∇ p(z) =
+∞. In addition, ∇2 p(z) > 0, hence p(z) monotonically
increases within range (−c1, c2). Accordingly, ∇ p(z) has
an unique zero point in (−c1, c2) and p(z) has an unique
minimizer in this range.

To find the minimizer of p(z), it is equivalent to reach
the zero point of ∇ p(z) by using Newton search. However,
the traditional unconstrained Newton search method may fail
for open-constrained problem. The first numerical issue comes
from the logarithmic computation log(z1−z2) when z1 is close
to z2 [33]. To address it, we can use a variable transform
as in [33]. Specifically, let s = c1 + c2, and if z → −c1,
let Z1 = c1 + z; if z → c2, let Z2 = c2 − z. Rather
than directly optimizing variable z, we now do optimization
on Z1 or Z2. Let o = 1, 2 denote the routine we choose,
ĥ1t (z) = at

2 z2 +bt z and ĥ2t (z) = at
2 z2−bt z, we can uniformly

minimize a transformed problem

min
Zo

p̂o(Zo) = Zo log(Zo) + (s − Zo) log(s − Zo)

+1/q ln(

T∑

t=1

γt exp(qĥot(Zo − co))) s.t 0 ≤ Zo ≤ s. (14)

In addition, the smoothing function f (α, q) becomes
increasingly ill-conditioned when q increases. Then the
Newton search may diverge from the desired root. To show this
issue, we give a specific example in Fig. 2. From Fig. 2(b), the
second derivative has a sharp change around the root and the
smooth condition for q = 100 becomes bad. Correspondingly,
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Fig. 2. Example of the ill-conditioned problem when q becomes large. (The example comes from the experiment on news20 dataset for q = 10 and q = 100
with two subfunctions, where c1 = 0.09, c2 = 0.99, a1 = 0.015, a2 = 0.040, b1 = −2.433, b2 = 1.380, ||w1||2 = 2406.148, and ||w2||2 = 2403.345. The
dashed-dotted lines in Fig. 2(a) denote the tangent lines at z = 0.25 and 0.55, respectively.) (a) ∇ p(z). (b) ∇2 p(z). (c) p(z). (d) λ1(z).

the Newton search works well when q = 10 but cannot
converge when q = 100. To solve the possibly ill-conditioned
problem, we proposed to use a Newton-Bisection method,
which is also known as the safeguarding rooting finding
method [12]. Let Zl and Zu be the lower bound and upper
bound of the transformed variable Zo, the Newton-Bisection
search is performed as in Algorithm 3. If the Newton search
overshoot the search range, the Bisection search is used
instead.

C. Convergence

Theorem 2: Suppose the sequences {αk} and {qk} are gen-
erated by Algorithm 2 with the proposed coordinate descent
update, {αk} converges to the global solution of (12).

The proof can be found in Appendix B. In addition, given
a monotonically nondecreasing sequence {qk}, the proposed
smoothing coordinate descent method attains a sublinear con-
vergence rate.

Theorem 3: There exists a k0 and a κqk ∈ (0, 1), for ∀k ≥
k0, f (αk)− f (α∗) ≤ κ

(k−k0)
qk ( f (αk0 )− f (α∗))+(2 log(T )/qk).

The proof can be found in Appendix C. From Theorem 3, the
error brought by a fixed q is bounded by ((2 log(T )/q) + ε),
where ε is the numerical error [32]. Hence, with a properly
large qk , the smoothing algorithm can achieve a very accurate
solution. The following theorem states that Algorithm 1 can
globally converge.

Theorem 4: Given that in each iteration of Algorithm 1,
the reduced minimax subproblem (9) and the most-active-
constraint selection problem can be globally solved,
Algorithm 1 can achieve a global solution to (7).

The proof can be adapted from [27].

D. Discussions of Related Work

A typical feature selection method that is close to our model
is the feature scaling scheme studied in [9] and [10], where a
feature scaling vector δ = [δ1, . . . , δm]′ ≥ 0 is introduced to
the dual of SVM to weight the importance of each feature [10].
Specifically, its optimization problem is written as follows:

min
δ

max
α

−1

2

∑

i, j

αiα j yi y j kδ(xi , x j ) −
n∑

i

αi ,

s.t. 0 ≤ αi ≤ C,
∑

yiαi = 0, ||δ||p = δ0 (15)

where p ≥ 1, δ0 is a parameter to control the desired sparsity,
α is the vector of SVM dual variables and kδ(xi , x j ) =∑m

k=1 δ2
k xk

i xk
j is a weighted linear kernel [10, eq. (5.18)].

In [9], an alternated optimization scheme was proposed
to solve (15). However, it is inefficient for tackling high-
dimensional problems. The nonsmooth subproblem (10) can
also be solved through subgradient methods [21], [24]. In
addition, some other methods are also available, such as the
sequential quadratic programming (SQP) method [23] and
proximal gradient methods [22], [30]. However, SQP has much
higher running complexity per iteration [23] and the proximal
gradient methods have difficulties of the line search w.r.t. α

on (0, C)n . On the contrary, the line search of the proposed
smoothing coordinate descent method can be easily solved
through Algorithm 3.

E. Computational Complexity

The liblinear �1 solver has linear convergence rate and
scales O(nm) [35]. The proposed smoothing coordinate
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Fig. 3. Experimental results with number of selected features on X ∈ R
5000×100 000 with 300 ground-truth features. (a) Prediction accuracy. (b) No. of

recovered ground-truth features. (c) Training time.

descent attains a linear convergence rate. Therefore, it con-
verges to the optimum within finite iterations. In summary,
the training complexity of the proposed MSLR includes two
parts: the smoothing coordinate descent which takes O(nr Tm)
and the most-active-constraint selection which takes O(nmTm)
complexity, where Tm is the maximum number of the cutting
plane iterations. To compare, MSLR can be more efficient than
�1 solvers on high-dimensional dense datasets since it only
needs to take Tm times on the most-active-constraint selection,
while �1 solver may need many times to converge. In FGM, the
subgradient method (namely, SimpleMKL) is used to solve the
minimax problem, which is very computationally expensive
for large-scale datasets.

IV. EXPERIMENTS

We evaluate the performance of MSLR on several synthetic
and real-world datasets. The �1-LR (�1-LR) [35], weighted �1-
logistic regression (WLR) [4], [37], greedy LR (GLR) [18],
and FGM [27] are adopted as baseline methods. For simplic-
ity, we denote by FGM-LR and FGM-SVM for FGM with
SimpleMKL solver regarding LR and SVM, respectively [1].
From [35], LIBlinear solver for �1-LR provides the state-
of-the-art performance [2]. We also adapt it to implement
WLR [4], [37]. In the experiments, we vary the parameter C
for �1-LR and WLR to achieve different sparsity. For MSLR,
we set β = 5/3 and q0 = 1/100 for the smoothing algorithm.
In addition, we fix C = 10 and Tm = 10, and vary r from 2 to
40 to select different number of features. All the methods are
written in C++ and all experiments are conducted on Intel
Core i7 CPU (2.80 GHz) with 64-b operating system.

A. Synthetic Experiment

In the first synthetic experiment, we generated a
5000 × 100 000 Gaussian random matrix as X. To generate the
ground-truth informative features, we generated a sparse vector
w with 300 nonzero entries sampled from Gaussian distribu-
tion N (0, 2), where each nonzero |wi | denoted an informative
feature. Notice that in this example, the number of instances
is much smaller than the number of features, which happens
in many feature selection tasks, such as gene selection [11]
and effective SNP detection (in our experiments). Finally, we
produced the output by y = sign(Xw). Similarly, we generated
the testing dataset Xtest and ytest = sign(Xtestw). The number

of testing points is set to 2000. We only study the performance
of �1-LR, WLR, GLR, and MSLR. For fair comparisons, after
obtaining the feature subset, we did retraining with the selected
features using standard linear LR with C = 5. For �1-LR and
WLR, we change the regularization parameter C ∈ [0.001, 4]
to select different number of features. For MSLR, with fixed
C , we can select different number features by changing r
or Tm .

The prediction accuracy, the number of recovered ground-
truth features w.r.t. the number of selected features and the
training time are recorded in Fig. 3. We also reported the accu-
racy obtained by LR with the k most informative ground-truth
features, denoted by GroundTruth. From Fig. 3(a) and (b),
MSLR achieves the best prediction accuracy and recovers
the largest number of ground-truth features with more than
300 selected features. In other words, MSLR can be more
effective to select the predictive and informative features.
Particularly, MSLR shows much better performance than
�1-LR on a wide range of selected features. Two reasons
cause this. Firstly, in MSLR, the regularizer can help to avoid
the over-fitting problem. Secondly, a suitable C can be set
to reduce the bias. For �1-LR, both the number of selected
features and model complexity are controlled by C , where
a larger C can reduce the risk of bias, but will lead to more
features; a smaller C can select fewer features but may produce
bias. Therefore, it is hard to trade off between two parts.
As expected, WLR, which is designed to alleviate the bias
problem, shows better results than �1-LR when the number
of selected features is smaller than 300. GLR also shows
consistently better performance than LR. However, both of
them show poorer performance than MSLR. For GLR, since
there is no regularizer, the bias problem can be alleviated to
some extent, but the over-fitting problem may deteriorate the
performance. Another interesting observation is that, all meth-
ods, including the GroundTruth, show decreasing performance
trend when the number of selected features is over 400, which
verifies the importance of the feature selection. On the issue of
training efficiency, from Fig. 3(c), MSLR shows better training
efficiency than others. Typically, GLR is the most expensive
one when the number of selected features is larger than 100.

In the second experiment, we generated another dataset with
relatively large number of instances and smaller dimensions,
namely X ∈ R

20 000×10 000. In addition, we generated a sparse
vector w of 600 nonzero entries sampled from N (0, 10) as the
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Fig. 4. Experimental results with number of selected features on X ∈ R
20 000×10 000 with 600 ground-truth features. (a) Prediction accuracy. (b) No. of

recovered ground-truth features. (c) Training time.

TABLE I

DATASETS USED IN THE EXPERIMENTS

Datasets # Features # Training # Testing Data Type

Leukemia 7,029 38 34 dense

Arxiv astro-ph 99,757 62,369 32,487 sparse

news20 1,355,191 9,996 10,000 sparse

RCV1 47,236 20,242 677,399 sparse

real-sim 20,958 72,309 - sparse

mil-image 10,800 1,200 800 dense

SNP 393,321 2,060 2,841 dense

epsilon 2,000 400,000 100,00 dense

ground-truth. With this generation, most of the features with
nonzero wi are significant to the output y. The experimental
results are shown in Fig. 4, where the GLR is not considered
due to its high computational cost. We can observe that MSLR
generally outperforms the two competitors and obtains the
closest results to GroundTruth. More importantly, with more
training examples, all the methods can select more ground-
truth features, but MSLR selects the most among them and
obtains the best prediction accuracy when the number of
selected features is more than 400.

B. Real-World Dataset Experiments

The real-world datasets used in our experiments are listed in
Table I. Among them, Leukemia, news20.binary, RCV1, and
real-sim can be downloaded from [2], where Leukemia is a
microarray gene dataset. Arxiv astro-ph can be downloaded
from [1]. The last three datasets are with dense features.
The mil-image is with medium dimensions from [38] for
multi-instance learning. The original data package contains
images of five scenes and only the first scene is studied in
our experiments. We also apply MSLR on SNP detection.
The SNP dataset collected in our experiment contains two
groups with 2938 controls and 1963 cases for Autoimmune
Disease study. In these experiments, we manually split mil-
image and SNP into training set and testing set, respectively.
Finally, epsilon is from [2] with a very large number of training
instances.

In the first experiment, we study the convergence behavior
of MSLR. We recorded the relative function value difference
| f k+1 − f k |/| f ∗| w.r.t. outer iterations for Algorithm 1 in

Fig. 5. Convergence of MSLR on (a) Leukemia and (b) news20 dataset.

Fig. 5 on Leukemia and news20 datasets, where f ∗ is the
global function value. On both datasets, we can observe that
the relative function value difference decreases sharply within
several iterations, which demonstrates the nice convergence
behavior of MSLR.

In the second experiment, we study the effectiveness and
efficiency of various methods on real-world datasets. Similar
in the synthetic experiments, we reported the prediction accu-
racy obtained by retraining with linear LR. Specifically, the
prediction accuracy and the training time versus the number
of selected features are recorded in Figs. 6 and 7, respectively.
The recorded time is in logarithm scale. From Fig. 6, in gen-
eral, MSLR can obtain better prediction accuracy than �1-LR
and slightly better than WLR and GLR with the same number
of selected features. This observation demonstrates that MSLR
can select more informative features. Particularly, MSLR
can obtain 100% prediction accuracy with eight features on
Leukemia dataset, which is very useful for medical diagnosis.

Now we come to the efficiency comparison. From Fig. 7,
�1-LR method shows the best efficiency on Arxiv astro-ph,
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Fig. 6. Testing accuracy on various datasets with different number of features. (a) Leukemia. (b) Arxiv astro-ph. (c) news20. (d) mil-image. (e) SNP.
(f) epsilon.

Fig. 7. Training time on various datasets (in logarithm scale) with different number of features. (a) Leukemia. (b) Arxiv astro-ph. (c) news20. (d) mil-image.
(e) SNP. (f) epsilon.

and competitive efficiency on news20.binary dataset. Notice
that these two datasets are with very sparse entries. Therefore,
the liblinear solver for �1-LR gains very fast training speed.

However, MSLR can obtain the best training efficiency among
all methods on mil-image, epsilon and SNP datasets with
competitive or better prediction accuracy. MSLR is also much
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Fig. 8. Sensitivity of MLSR to parameter C . (a) Prediction accuracy.
(b) Training time.

faster than WLR and GLR in most cases, which verifies its
good scalability. Particularly, MSLR can be much faster on
the extremely large-scale epsilon dataset, where the results
of WLR, FGM-SVM, FGM-LR, and GLR are not reported
due to their high computational cost. Actually, in MSLR,
it only needs to scan all the features at most T times but
solves much reduced subproblems of complexity O(nT B).
Therefore, MSLR is more efficient with extremely large num-
ber of features. Because of the same reason, MSLR can be
more efficient on dense datasets. Although MSLR, FGM-SVM
and FGM-LR obtain very close prediction accuracy under the
same sparsity, MSLR is much more efficient than them. To be
more specific, MSLR can be 10–500 times faster than FGM-
SVM and FGM-LR. In addition, the training time of MSLR
is much less sensitive to the increment of the parameter r . For
example, when r becomes relatively large (r > 30), MSLR
is surely several hundred times faster than FGM-SVM and
FGM-LR.

Finally, the number of selected features for MSLR can be
easily controlled by r . In addition, we can also fix C and
r , and change Tm to obtain different number of features. By
comparison, it is much more difficult for �1-LR and WLR
to obtain the desired number of features by tuning C . For
example, in our experiments, on Leukemia dataset, we use
C = 0.08 to obtain four features and C = 70 to obtain 101
features; while for WLR, we use C = 50 to obtain five features
but have to set C = 20 000 000 to obtain 95 features. From
the above experiment, the performance of �1-LR is sensitive
to the parameter C .

In the third experiment, we conducted the sensitivity study
on the parameter C for MSLR. Fig. 8 recorded the prediction
accuracy and training time of MSLR on Arxiv astro-ph dataset
with different C . �1-LR is adopted as the baseline. We chose

TABLE II

PREDICTION ACCURACY ON RCV1 (IN %)

# Features 65 172 202 264 332 381

L1-LR 88.84 92.79 93.45 94.33 94.82 95.17
±0.12 ±0.1 ±0.08 ±0.06 ±0.07 ±0.04

MSLR
91.11 94.42 94.86 95.41 95.87 96.09
±0.09 ±0.06 ±0.04 ±0.04 ±0.06 ±0.03

Wilcoxon 1 1 1 1 1 1
P-value 1.82E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4 1.83E-4

TABLE III

PREDICTION ACCURACY ON REAL-SIM (IN %)

# Features 101 159 195 242 266 318

L1-LR 89.42 91.68 92.29 92.89 93.26 93.65
±0.18 ±0.17 ±0.12 ±0.14 ±0.13 ±0.11

MSLR 91.38 92.65 93.16 93.74 94.12 94.54
±0.27 ±0.16 ±0.19 ±0.20 ±0.10 ±0.09

Wilcoxon 1 1 1 1 1 1
P-value 1.81E-4 1.83E-4 1.83E-4 1.83E-4 1.82E-4 1.81E-4

different C from {5, 10, 20}. From the figures, MSLR is
relatively insensitive to the regularization parameter in terms
of prediction accuracy and training time.

Finally, we conducted an additional experiment to compare
the performance of MSLR and �1-LR on RCV1 and real-sim
datasets. We did not include the results of WLR and GLR
because of their high computational cost. We use the averaged
cross-validation accuracies as the comparison criterion. Specif-
ically, we randomly partitioned the datasets into ten folds, and
used seven folds as the training set and the rest as the testing
set. We independently repeated the procedure for ten times
and recorded the average testing accuracies and the standard
variations. For RCV1, since it was partitioned into training and
testing set, we merged them to form a larger dataset of 697 641
instances. We vary C for �1-LR to obtain different number of
features (denoted by #) and then set r = #/Tm for MSLR
such that they obtain similar number of features. To show
the statistic difference between two methods, we conducted
the Wilcoxon test on the averaged testing accuracies with 5%
significance level. The averaged testing accuracies as well as
the p-values are listed in Tables II and III, where 1 shows
the significant difference under the Wilcoxon test. From the
two tables, we can observe that MSLR indeed significantly
outperforms �1-LR with the same number of selected features.

V. CONCLUSION

In this paper, we proposed a new weight scaling scheme
to achieve the sparse LR by introducing a scaling vector
d ∈ [0, 1]m into the LR model. To induce the sparsity, we
imposed an �1-constraint ||d||1 ≤ r on d, where r was a
conservative estimation to the desired number of features. We
further transformed the model as a SIP problem and then
solved it through an efficient cutting plane method. To solve
the resultant nonsmooth minimax subproblem of the cutting
plane method, we presented a smoothing coordinate descent
algorithm that could attain a weakly linear convergence rate. In
each iteration of the cutting plane algorithm, at most r features
were selected. Therefore, the number of selected features can
be controlled by changing the maximum number of cutting
plane iterations Tm or r . Extensive experiments on several
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synthetic and real-world datasets verified the efficiency and
effectiveness of the proposed method.

In this paper, we studied only the problem of high-
dimensional linear feature selections. However, in many real-
world problems, the features might have complex nonlinear
structures like the Corral (or XOR) problem [34]. The detection
of these nonlinear features of complex structures was desirable
for many applications. However, it was still a challenging
problem and cannot be handled by the proposed method of this
paper. To address the nonlinear feature selection problem, one
possible way was to explicitly map the nonlinear features to
high-dimensional linear feature space using nonlinear feature
mappings. Then the nonlinear feature selection problem can
be transformed as a linear feature selection problem in the
feature space [5]. For example, we can address the nonlinear
feature selection of the XOR Corral problem by employing
the polynomial kernel feature mappings [5]. We leave this
nonlinear feature selection issue as our future study.

APPENDIX A

PROOF OF PROPOSITION 2

The smoothing algorithm presented in [32] was originally
proposed to solve unconstrained problems. To prove that it
can be applied to solve the minimax problem (6), principally,
we should verify that ft (α) = 1/2α′Qtα + G(α) satisfies the
necessary conditions mentioned in [32] and Algorithm 2 was
well defined in the open domain (0, C)n . The proof includes
several Propositions and is concluded in Lemma 2. To begin
with, we first present some basic properties of ft (α) and the
smoothing problem f (α) in (11).

Definition 1: Let f : R
n → R be continuously differen-

tiable and let σ be a positive scalar. If f satisfies the condition,
(∇ f (x) − ∇ f (z))′(x − z) ≥ σ ||x − z||2, ∀x, z ∈ R

n , then f
is strongly convex.

Proposition 4:

1) ft (α) is strongly convex with σ ≥ 4
C and twice con-

tinuous differentiable function within an open domain
α ∈ (0, C)n .

2) ft (α) attains a minimum α∗ within (0, C)n .
3) For any subset S ⊂ (0, C)n , there exists a

Kt ∈ (0,+∞), such that max{| ft (α)|, ||∇ ft (α)||,
||∇ f 2

t (α)||} ≤ Kt for ∀α ∈ S.
4) For any x ∈ S, x′∇2 ft (α)x ≤ Kt ||x||2.

Proof:

1) It is easy to verify that ft (α) is convex.
In addition, we can verify that ∇ ft (α) =
Qtα + p̂ and ∇2 ft (α) = Qt + Q̂, where
p̂ = [log(α1/(C − α1)), . . . , log(αn/(C − αn))]
and Q̂ = diag[(1/α1) + (1/(C − α1)), . . . , (1/αn) +
(1/(C − αn))]. To prove ft (α) is strongly convex, we
only need to prove that ∇2 ft (α)−σ I � 0, where I is the
identity matrix. Because Qt

ii = (1/αi )+(1/(C − αi )) ≥
4/C , with Qt � 0, we know ft (α) is strongly convex
and σ ≥ 4/C .

2) From [33, Th. 1], ft (α) attains a minimum α∗ within
(0, C)n .

3) Firstly, | 1
2α′Qtα|, ||Qtα|| and ||Qt || are bounded for

∀α ∈ S. α ∈ S means that any dimension of α cannot
reach to 0 and C . For G(α), because it is a convex
function, its maximum value should lie on the boundary.
In addition, with lim

α→0
α log(α) = 0, we know ft (α) is

upper bounded within S. Also ft (α) attains a optimal
solution in (0, C)n . Then we can conclude | ft (α)| is
bounded within S. Obviously, we also have ||p̂|| < +∞
and ||Q̂|| < +∞. Note that ||̂p|| = ∞ and ||Q̂|| = +∞
only when there is at least one dimension of α lies
on the boundary, which, however, will never happen
because α ∈ (0, C)n . Finally, we can obtain that for any
subset S ⊂ (0, C)n , there exists a Kt ∈ (0,+∞), such
that max{| ft (α)|, ||∇ ft (α)||, ||∇ f 2

t (α)||} ≤ Kt holds
for ∀α ∈ S.

4) For ∀x ∈ S, We have x′∇2 ft (α)x ≤ ||x||2||∇2 ft (α)|| ≤
Kt ||x||2. This completes the proof.

Now we present the corresponding results regarding the
smoothing function f (α, q).

Proposition 5: Let K = maxT
t=1 Kt and L = K + 2K 2,

there exist constant τ1 = 4
C and τ2 = q L, such that τ1||x||2 ≤

x′∇2
α f (α, q)x ≤ τ2||x||2, for all α ∈ S, x ∈ (0, 1)n and q > 1.
Proof: We first prove the left side. For the first

term of the Hessian matrix ∇2
α f (α, q), we have

x′(∑T
t=1 λ̂t∇2 ft (α)

)
x = ∑T

t=1 λ̂t x′(∇2 ft (α)
)
x ≥∑T

t=1 λ̂t
4
C ||x||2 = 4

C ||x||2 using Proposition 4.
From [32, Lemma 2.1],

∑T
t=1

(
qλ̂t∇ ft (α)∇ ft (α)′

) −
q
(∑T

t=1 λ̂t∇ ft (α)
)(∑T

t=1 λ̂t∇ ft (α)
)′ � 0. Accordingly, we

can set τ1 = 4
C . For the right side, with K = maxT

t=1 Kt , by
adapting the [23, Lemma 3.2] and Proposition 4, we have
x′∇2

α f (α, q)x ≤ q L||x||2, where L = K + 2K 2. Hence we
can set τ2 = q L.

Lemma 2: Based on Proposition (2), Algorithm 2 is well
defined given that {αk} is always in (0, C)n .

Proof: Let α∗
q be the global optimum of f (α, q)

regarding q , from Proposition (2), ∇2
α f (α, q) � 0, hence for

any αk ∈ (0, C)n , we have the Taylor expansion as follows:
f (α∗

q , q) = f (αk, q) + ∇α f (αk, q)′(α∗ − αk) + 1
2 (α∗ −

αk)′∇2
α f (αk +θ(α∗−αk), q)(α∗−αk), where θ ∈ (0, 1). If α∗

q
is the global optimum of f (α, q), then f (α∗

q , q) ≤ f (αk, q).
Then we have ∇α f (αk, q)′(α∗ − αk) < 0, which indicates
that there exists at least a descent direction hk at αk regarding
q . Furthermore, regarding hk , we can always find a suitable
step size s to make some decrease of f (α, q) by using line
search method.

APPENDIX B

PROOF OF THEOREM 2

To prove the presented algorithm can solve the minimax
problem, based on the above global optimality condition, we
should prove that the sequence {αk} generated by the algorithm
follows: 1) {αk} ∈ (0, C)n for any k > 0, which will be stated
in Lemma 3 and 2) {αk} has a limit point α̂ ∈ (0, C)n that
is the stationary point of the minimax problem, which will be
summarized in Theorem 5. To begin with, we first present the
optimality condition for f (α), which is shown as follows.
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Proposition 6 [23], [32]:

1) Given ft (α) defined by dt with t = 1, . . . , T , α∗
is stationary point to the minimax problem in (6), if
there exists a vector ζ ∗ = (ζ ∗

1 , . . . , ζ ∗
T ) such that

T∑
t=1

ζ ∗
t ∇ ft (α

∗) = 0, ζ ∗
t ≥ 0,

T∑
t=1

ζ ∗
t = 1, ζ ∗

t =
0, if ft (α

∗) < max{ f ∗
1 (α∗), . . . , f ∗

t (α∗)}.
2) If α∗ is a local minimum to (6), then α∗ is a stationary

point satisfying (6).

Conversely, if f (α) is convex, then α∗ is a global minimum
to (6) if α∗ is a stationary point.

Lemma 3: Suppose {αk} be the sequence of the smoothing
dual coordinate descent for the Step 1 in Algorithm 2, then
{αk} ∈ (0, C)n for any k > 0.

Proof: When fixing q , we solve the problem by using
coordinate descent algorithm such that α ∈ (0, C)n . In
addition, it holds for ∀q > 0. Then the lemma holds.

We further need the following Lemmas and Propositions.
Lemma 4: Let αk be the sequence generated by the outer

iteration of Algorithm 2, then: 1) the sequence f (αk, qk) is
monotonically decreasing; 2) the sequence f (αk+1, qk) and
f (αk, qk) are both convergent and have the same limit; and
3) the sequence αk is bounded.

Proof: The proof can be easily obtained by adapting the
proof of [32, Proposition 3.1].

Proposition 7: Regarding p(z), we have: 1) p(z) is convex
and twice continuous differentiable; and 2) its derivative is
Lipschitz continuous. That is, ∃L > 0 such that

|∇ p(x) − ∇ p(y)| ≤ L|x − y| ∀x, y. (16)
The following lemma measures the improvement of the

exact line search regarding a fixed q .
Lemma 5: With the the exact line search method,

f (αk
i , qk) − f (αk+1

i , qk) ≥ (∇ p(0)2)/(2Lqk
i ), where Lqk

i is
the Lipschitz constant regarding qk for the i th variable.

Proof: Without loss of generality, we drop the superscript
qk for Lqk

i . In the coordinate descent update, suppose the cyclic
rule is used. Hence, there are two iterations for the smoothing
algorithm. Specifically, we denote by k for outer iteration and
i for the i th variable αk,i of the inner iteration to be optimized,
where i = 1, . . . , n.

For the i th dimension of the kth iteration, we use an exact
line search to find the exact solution with an accuracy ε to
the 1-D problem. It is hard to measure the improvement of
the objective function with such 1-D update. Alternatively,
we consider another line search method which gives a lower
bound to the improvement. For the i th dimension in the kth
iteration, with a fixed vk,i where vk,i is the update direction, we
consider to use an exact line search to find the exact step size.
Let f (αk

i , qk) be the function regarding αi and f (αk+1
i , qk)

be the optimal value obtained by such line search. Similar to
the 1-D search in Section III-B, we can do the optimization on
p(z) from z = 0 rather than on f . Let sk be the optimal step
size, we have ∇ p(0 + skvk,i )vk,i = 0. From Proposition 7,
we have sk Liv

2
k,i ≥ |∇ p(0 + skvk,i ) − ∇ p(0)| × |vk,i | =

(∇ p(0+skvk,i )−∇ p(0))×vk,i = −∇ p(0)vk,i . Then, we have
sk ≥ −(∇ p(0)/Livk,i ). Now we measure the improvement of

the above line search method. Let �s = {z|p(z) ≤ p(0)}.
Obviously, �s is bounded. Then, ∀s such that z = 0 + svk,i ∈
�s , we have |p(tsvk,i ) − p(0)| ≤ tsLi |vk,i | with t ∈ [0, 1].
From mean value theorem, we further have p(svk,i )− p(0) =
s
∫ 1

0 ∇ p(tsvk,i )vk,i dt ≤ s∇ p(0)vk,i + 1
2 s2 Li |vk,i |2. Hence

we have: f (αk+1
i , qk) − f (αk

i , qk) ≤ p(skvk,i ) − p(0) ≤
sk∇ p(0)vk,i + (1/2)s2

k Liv
2
k,i = −(∇ p(0)2/(2Li )). Obviously,

with updated gradient in the line search, we can obtain
better solution than the above search method. That is to say,
f (αk

i , qk) ≥ f (αk+1
i , qk) + (∇ p(0)2)/(2Li ) still holds. This

completes the proof.
Theorem 5: Suppose the sequences {αk} and {qk} are gen-

erated by Algorithm 2: 1) {αk} has a limit point α̂; 2) Every
limit point is a stationary point of the minimax problem; and
3) α̂ is the solution to (12).

Proof:
1) By Lemma 4, the sequence {αk} is bounded. Then a

limit point exists.
2) Let ∇ pi (0) = ∇ f (αk, qk)i , i.e., ∇ pi(0) is the gradient

for i th dimension of α. In addition, let α∗ be the limit
point. When k → +∞, ∇ f (α∗,+∞)i = ∇ pi(0) →
0, i = 1, . . . , n, which can be proved by contradiction.
Suppose that there exists an ε > 0 such that ∇ pi (0) ≥ ε,
for ∀k > k0 > 1. From Lemma 5, f (αk+1, qk) cannot
converge to f (αk, qk) as f (αk

i , qk) − f (αk+1
i , qk) ≥

∇ pi (0)2

2Li
≥ ε2

2Li
, which contradicts the results in Lemma 4.

Hence, ∇ f (α∗,∞)i = 0 for i = 1, . . . , n. Finally, we
obtain ∇ f (α∗,∞) = 0. Then α∗ is a stationary point
of the minimax problem.

3) With Proposition 6, α∗ is the global solution. Then we
can complete the proof.

APPENDIX C

PROOF OF THEOREM 3

Proposition 8: With τ1 and τ2 defined in Proposition 5,
we have

(∇x f (x, q) − ∇y f (y, q)
)′

(x − y) ≥ τ1‖x − y‖2

‖∇x f (x, q) − ∇y f (y, q)‖ ≤ τ2‖x − y‖.
Proof: With Proposition 5, the above result holds with

τ1 = 4
C and τ2 = q L.

The following theorem shows that with fixed q , the coordi-
nate descent updating attains linear convergence rate.

Lemma 6: Given q > 0, the dual coordinate descent
method can attain at least linear convergence rate to the global
optimum. In other words, let {αk

q } be the sequence of the dual
coordinate descent algorithm and α∗

q be the global solution
regarding q , there exist κq = (1 − 1/ηq) ∈ (0, 1) and an
iteration k0 such that ∀k ≥ k0, f (αk+1

q , q) − f (α∗
q , q) ≤

κq( f (αk
q , q) − f (α∗

q , q)), where η is a constant.
Proof: We consider the following bounded problem:

min
α

g(Eα) + b′α : Li ≤ αi ≤ Ui .

Now we construct the matrix E as follows:

E =

⎡
⎢⎢⎢⎣

y1x1
1, ..., ylx1

l
...

...
...

y1xt
1, ..., ylxt

l
Il

⎤
⎥⎥⎥⎦ Eα =

⎡
⎢⎢⎢⎣

w1

...
wt

α

⎤
⎥⎥⎥⎦. (17)
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Define g(Eα) = 1
q ln

T∑
t=1

exp(q( 1
2 ||wt ||2 + G(α))). With

b = 0, Li = 0, Ui = C,∀ i . In addition, as indicated
before, its Hessian matrix ∇2g(Eα) is positive definite for
q > 0. All the conditions hold and the linear convergence
is attained [19]. In addition, with Almost Cyclic Rule for
choosing variable to optimize, and with Proposition 8, we have
ηq = (τ2ω

2n/τ1 min
j

||E j ||2), where ω = (2 + ||E||2τ2), E j is

the j th column of E and n is the dimension of α. Finally,
we have ηq = (q L(||E||2q L + 2)2n)/(τ1 min

j
||E j ||2). More

details can be seen in [19].
Finally, from Proposition 2, let κqk = 1 − (1/ηqk ),

where ηqk is defined in Lemma (6), k is the iteration index
of the cutting plane algorithm and qk is the correspond-
ing smoothing parameter at the kth iteration, we have the
following:

f (αk) − f (α∗) ≤ κ(k−k0)
qk

( f (αk0 ) − f (α∗))

+ (1 + κ
(k−k0)
qk ) log(T )

qk
.
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