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Abstract. Deep learning (DL) has made significant progress in angle
closure classification with anterior segment optical coherence tomography
(AS-OCT) images. These AS-OCT images are often acquired by different
imaging devices/conditions, which results in a vast change of underlying
data distributions (called “data domains”). Moreover, due to practical
labeling difficulties, some domains (e.g., devices) may not have any data
labels. As a result, deep models trained on one specific domain (e.g., a
specific device) are difficult to adapt to and thus may perform poorly on
other domains (e.g., other devices). To address this issue, we present a
multi-target domain adaptation paradigm to transfer a model trained on
one labeled source domain to multiple unlabeled target domains. Specif-
ically, we propose a novel Multi-scale Multi-target Domain Adversar-
ial Network (M2DAN) for angle closure classification. M2DAN conducts
multi-domain adversarial learning for extracting domain-invariant fea-
tures and develops a multi-scale module for capturing local and global
information of AS-OCT images. Based on these domain-invariant fea-
tures at different scales, the deep model trained on the source domain
is able to classify angle closure on multiple target domains even without
any annotations in these domains. Extensive experiments on a real-world
AS-OCT dataset demonstrate the effectiveness of the proposed method.

Keywords: Angle Closure Classification · Unsupervised Multi-target
Domain Adaptation · Anterior Segment Optical Coherence Tomography.

1 Introduction

Glaucoma is the foremost cause of irreversible blindness [28,31]. Since the vi-
sion loss is irreversible, early detection and precise diagnosis for glaucoma are
essential to vision preservation. A common type of glaucoma is angle closure,
where the anterior chamber angle (ACA) is narrow as shown in Fig. 1(b). Such
an issue leads to blockage of drainage channels that results in pressure on the
optic nerve [7]. To identify this, anterior segment optical coherence tomography
(AS-OCT) has been shown an effective approach for the evaluation of the ACA
structure [15] and is thus widely used for angle closure classification [12,13].

∗ Corresponding author.

ar
X

iv
:2

20
8.

12
15

7v
1 

 [
cs

.C
V

] 
 2

5 
A

ug
 2

02
2



2 Z. Qiu et al.

(a) AS-I (open angle) (b) AS-I (narrow angle)

(c) AS-II (d) AS-III

Fig. 1. Illustration of different types of anterior chamber angle (ACA) and different
data domains. Specifically, ACA consists of two categories: open angle (a) and narrow
angle (b). In addition, different imaging devices/techniques may result in different data
domains of anterior segment (AS) images, e.g., AS-I (a-b), AS-II (c) and AS-III (d),
which differ in terms of the crystalline lens [4], image noises [1], and image resolutions.

Despite the success of deep learning in computer-aided diagnosis, it hinges
on massive annotated images for training [18]. Thanks to AS-OCT devices and
hence a growing number of labeled AS-OCT data for deep model training, re-
markable performance has been achieved on angle closure classification [5,23].
However, different imaging devices/conditions intrinsically lead to a vast change
of underlying data distributions [38], which means that the AS-OCT images may
come from different “domains”. As a result, deep models trained on one domain
(e.g., a specific device) can hardly generalize to other domains [22] (e.g., other
devices). More critically, it is impractical to customize deep models for each do-
main, since annotation costs for such specific-customized images are inevitably
expensive. Note that due to labeling difficulties, we may not have any labeled
data for some domains.

To solve this issue, one may explore unsupervised domain adaptation [2,10,19,27,32,33,34,41],
which leverages the labeled data on a source domain to improve the performance
on an unlabeled target domain. Most existing methods [3,38,40,29,16] focus on
pair-wise adaptation from one source domain to one target domain. However, in
angle closure classification tasks, AS-OCT images are often acquired via diverse
imaging devices (e.g., CASIA-I or CASIA-II), imaging conditions (e.g., light or
dark environment) and preprocessing techniques. In other words, doctors need to
classify AS-OCT images from different domains. Therefore, it is more practical to
study multi-target domain adaptation [11,26,36] for angle closure classification.
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To be specific, multi-target domain adaptation aims to leverage the annotations
on one source domain to improve the performance of multiple unlabeled tar-
get domains. Despite the importance, it remains largely unexplored for medical
images analysis, especially in angle closure classification.

Multi-target domain adaptation with AS-OCT image poses two challenges.
The first challenge is the domain discrepancies among multiple domains, which
results from different imaging devices, imaging conditions, and preprocessing
techniques. As shown in Fig. 1, the AS-OCT images from different domains may
differ in terms of the crystalline lens [4], image noises [1] and image resolutions.
As a result, directly applying the model trained on the source domain tends
to perform poorly on the multi-target domains. The second challenge is how to
capture both local and global information of AS-OCT images for angle closure
classification. In practice, ophthalmologists classify angle closure based on both
local information (e.g., anterior chamber angle (ACA) and iris curvature) and
global information (e.g., anterior chamber width and cornea structure) [6]. How-
ever, most deep neural networks (DNNs) tend to learn global features without
paying attention to fine-grained information of the images, e.g., ACA in AS-
OCT images. Since the measurement of small regions (e.g., trabecular iris angle
and angle opening distance [6]) in ACA is highly important for this task, it is
difficult for existing DNN models to effectively classify angle closure. As a result,
most existing DNN-based unsupervised domain adaptation methods may fail to
handle such a challenging task.

To handle the two challenges, we explore multi-domain adversarial learning
and multi-scale feature extraction for angle closure classification. Specifically,
to alleviate the domain discrepancies, we resort to domain adversarial learning,
which is one of the mainstream paradigms for pair-wise unsupervised domain
adaptation [38,40]. Meanwhile, since there exists low contrast and vast noise
in local regions of AS-OCT images (e.g., trabecular iris angle and angle open-
ing distance [6]), capturing fine-grained information with a fixed scale of neural
filter is intractable. Therefore, we propose to explore multi-scale convolutional
filters for promoting fine-grained representation extraction [7,37]. Following these
ideas, we present a novel Multi-scale Multi-target Domain Adversarial Network
(M2DAN). In M2DAN, a new multi-scale module is developed to capture global
and local information of AS-OCT images. Such a module consists of three convo-
lutional branches with different filter sizes, which are used to extract multi-scale
features. Meanwhile, M2DAN conducts multi-domain adversarial learning for
each convolutional branch separately, so that it can learn domain-invariant fea-
tures at different scales. Based on the extracted multi-scale domain-invariant
features, the classifier trained on the source domain is able to conduct angle
closure classification effectively on the multiple target domains.

We summarize the main contributions of this paper as follows:

– We propose a novel Multi-scale Multi-target Domain Adversarial Network for
angle closure classification. By exploring a new multi-scale scheme and multi-
domain adversarial learning, the proposed method is able to learn multi-scale
domain-invariant features and effectively classify the angle closure.
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Fig. 2. The scheme of Multi-scale Multi-target Domain Adversarial Network. Specif-
ically, the multi-scale module consists of three convolutional branches with different
filter sizes. Then, we use a shared domain discriminator to distinguish features from
each branch separately for scale-aware domain adaptation, while we concatenate all fea-
tures for classification. We implement domain adversarial training through Gradient
Reverse Layer (GRL) [8].

– To the best of our knowledge, our work is the first to study multi-target
domain adaptation for angle closure classification, which enhances the ap-
plications of deep learning in early detection and precise diagnosis for angle
closure glaucoma.

– Extensive experiments demonstrate the effectiveness and superiority of the
proposed method on a real-world anterior segment optical coherence tomog-
raphy dataset with three domains.

2 Method

2.1 Problem Definition

We consider two practical challenges in AS-OCT based angle closure classifica-
tion task: 1) the distribution changes of different domains (e.g., devices); 2) the
lack of labeled data for multiple domains. We tackle them by adapting a model
learned on a source domain to B target domains. In total we consider (B+1)
domains. For convenience, we introduce a domain label vector di ∈ {0, 1}B+1 to
indicate the domain labels of each sample. Then, let Ds={xi,yi,di}ns

i=1 be the
source domain data and Dt = {xj ,dj}nt

j=1 be the unlabeled data collected from
B target domains, where yi denotes the class label of source domain data, and
ns and nt denote the numbers of samples in Ds and Dt, respectively.

Note that given a specific task, all domains share the same label space, but
only the source domain data are labeled. The primary goal of this paper is to
learn a well-performed deep neural network for multiple target domains, using
both labeled source samples and unlabeled target samples. Unfortunately, since
we have no labeled target data, how to conduct effective domain adaptation to
multiple target domains is very challenging.
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2.2 Multi-scale Multi-target Domain Adversarial Network

To enforce effective domain adaptation from the source domain Ds to the mul-
tiple target domain Dt, we address the challenges from two aspects: (1) we seek
to alleviate the domain discrepancies among multiple domains with domain ad-
versarial learning; (2) Note that beyond the distribution changes, the B + 1
domains also share some intrinsic properties as they are dealing with the same
task, e.g., angle closure classification. We thus exploit both local and global in-
formation of AS-OCT images for angle closure classification with a multi-scale
scheme. Given the above motivations, we propose a multi-scale multi-target do-
main adversarial network (M2DAN). As shown in Fig. 2, M2DAN consists of four
components: a feature extractor Gf and a multi-scale module Gm, a classifier Gy
for task prediction, and a domain discriminator Gd to discriminate multi-scale
features of images from different domains. To be specific, the multi-scale module
Gm is developed to extract features with multi-scale information.

In the angle closure classification, both local information (e.g., iris curvature
and angle opening distance ) and global information (e.g., cornea structure [7])
plays important roles. The local information can be used to obtain several major
clinical measurements for clinical diagnosis [24], while the global cornea structure
offers various cues associated with risk factors for angle-closure glaucoma [7]. To
capture them, the multi-scale module consists of three parallel convolutional
branches with different filter sizes (i.e., 1×1, 3×3 and 5×5) to extract features
from different scales. Here, all feature maps have the same spatial size through
padding. We then send the feature maps at different scales into the domain
discriminator separately for multiple domain adaptation, while we concatenate
all these features for classification. In this way, we are able to extract domain-
invariant features with multi-scale information, which helps the classifier to make
more accurate predictions on the target domains.

To train M2DAN, we employ the following two strategies. First, inspired by
most domain adaptation methods [3,38,26], we adopt domain adversarial learn-
ing to enforce the multi-scale feature extractor Gm ◦ Gf to capture multi-scale
domain-invariant features, so that the discrepancy among multiple domains is
minimized. To be specific, a shared domain discriminator Gd is trained to ade-
quately distinguish features of images from different domains by minimizing a
domain loss Ld. Meanwhile, Gm ◦Gf is trained to confuse the domain discrim-
inator by maximizing Ld. Note that, domain adversarial learning is applied to
each branch of the multi-scale module separately for learning multi-scale domain-
invariant features. Second, we train the backbone network (Gf , Gm, Gy) via a
classification loss Lc to make it imbalance-aware and discriminative. The overall
training of M2DAN is to solve the following problem:

min
θf ,θm,θy

max
θd
−αLd(θf , θm, θd)︸ ︷︷ ︸

domain loss

+ λLc(θf , θm, θy)︸ ︷︷ ︸
classification loss

(1)
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where θf , θm, θy, θd indicate the parameters of Gf , Gm, Gy and Gd, respectively.
Moreover, α and λ denote the trade-off parameters for different losses. In next
sections, we will detail the domain loss Ld and the classification loss Lc.

2.3 Domain Loss for Multi-target Domain Adaptation

Diverse imaging devices and techniques intrinsically result in discrepancies among
image domains. In practice, doctors often need to classify angle closure based
on AS-OCT images from multiple target domains. However, existing unsuper-
vised domain adaptation for medical images mainly focuses on two domains and
cannot handle this practical problem.

To solve this, inspired by multi-class classification via cross-entropy, we con-
duct multi-target domain adaptation via a multi-domain loss as follows:

Ld(θf , θm, θd) = − 1

n

n∑
i=1

d>i log(d̂i), (2)

where d̂i=Gd(Gm(Gf (xi))) denotes the prediction of the domain discriminator
w.r.t. xi, and n denotes the overall number of data. Moreover, since different
branches in the multi-scale module share the same domain discriminator, we use
the same domain loss for them without explicitly mentioning branches. In this
way, M2DAN is able to capture domain-invariant features at different scales.

2.4 Classification Loss for Angle Closure Classification

For the task of angle closure classification, we can adopt any classification losses
to train the network, e.g., cross-entropy. Nevertheless, since the class-imbalanced
issue commonly exist in this task, we use the focal loss [17] as follows:

Lfo(θf , θm, θy) = − 1

ns

ns∑
i=1

y>i
(
(1− ŷi)

γ � log(ŷi)
)
, (3)

where ŷi=Gy(Gm(Gf (xi)) denotes the prediction of the classifier w.r.t. xi, and
ns denotes the number of labeled source samples. Moreover, � denotes the
element-wise product and γ is hyperparameter in focal loss. Note that, the focal
loss is a widely-used loss for class imbalance issue [38,39]. To further improve the
classification performance, we encourage high-density compactness of intra-class
samples and low-density separation of inter-class samples for all domains via
entropy minimization [21]:

Len(θf , θm, θy) = − 1

nt + ns

nt+ns∑
i=1

ŷ>i log(ŷi). (4)

Based on the above, we summarize the overall classification loss Lc as follows:

Lc(θf , θm, θy) = Lfo(θf , θm, θy) + ηLen(θf , θm, θy), (5)

where η is a hyperparameter to trade-off between the two losses.
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Table 1. Statistics of the AS-OCT dataset.

Domain Data Country Device
Training set Test set

#Narrow #Open #Total #Narrow #Open #Total

Source AS-I China CASIA-I 3,006 6,024 9,030 790 1412 2,202
Target I AS-II China CASIA-II 62 464 526 64 464 526
Target II AS-III Singapore CASIA-I 416 1,406 1,822 418 1,406 1,824

3 Experiments

Dataset. In this paper, we conduct our experiments on one anterior segment
optical coherence tomography (AS-OCT) dataset, provided by Zhongshan Oph-
thalmic Center. Such a dataset consists of a well-labeled source domain (AS-I)
and two unlabeled target domains (AS-II and AS-III). The data from different
domains are acquired from different OCT devices and/or different countries. The
statistics of the dataset are shown in Table 1.

Compared methods. We compare our proposed M2DAN with one baseline
(Source-only), several state-of-the-art unsupervised domain adaptation meth-
ods (DSN [3], DANN [8], DMAN [38] and ToAlign [35]), and one advanced
multi-target domain adaptation methods for natural images (MTDA [11]). The
baseline Source-only is trained only on the labeled source domain.

Implementation details. We implement our proposed method based on Py-
Torch [25]. For a fair comparison, we use res2net [9] as the feature extractor in all
considered methods. (one can also use other DNN models, e.g., ResNet [14] and
MobileNetV2 [30]). For all compared methods, we keep the same hyperparame-
ters as the original paper. Note that we conduct pair-wise domain adaptation for
each target domain separately when implementing unsupervised domain adap-
tation methods. For M2DAN, both classifier and domain discriminator consist
of three fully connected layers. In the training process, we use an SGD optimizer
with a learning rate of 0.001 to train the network. For the trade-off parameters,
we set λ = 1.0, η = 0.1 and α = 0.03 through cross-validation. Following [17],
we set γ = 2.0 for the focal loss. Following [6], we cut the images in half as the
input of the network.

3.1 Comparisons with State-of-the-art Methods

We compare our M2DAN with several state-of-the-art methods in terms of two
metrics, i.e., accuracy and AUC [20]. From Table 2, all domain adaptation meth-
ods perform better than Source-only, which verifies the contribution of unsuper-
vised domain adaptation. Moreover, our proposed M2DAN outperforms all pair-
wise unsupervised domain adaptation methods (i.e., DSN, DANN, DMAN and
DANN+ToAlign). The result indicates that those pair-wise domain adaptation
methods may fail to alleviate the discrepancies among multiple domains since
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Table 2. Comparisons of six methods in accuracy and AUC on two target domains.

Method
AS-II AS-III

Mean Acc. Mean AUC
Acc. AUC Acc. AUC

Source-only 0.638 0.834 0.737 0.911 0.688 0.872
DANN [8] 0.723 0.866 0.836 0.912 0.780 0.889
DSN [3] 0.762 0.888 0.848 0.915 0.805 0.901

DMAN [38] 0.786 0.906 0.834 0.922 0.810 0.914
DANN+ToAlign [35] 0.842 0.685 0.688 0.607 0.765 0.646

MTDA [11] 0.667 0.791 0.735 0.806 0.701 0.799

M2DAN (ours) 0.856 0.914 0.869 0.928 0.862 0.921

Table 3. Effect of the filter size in the multi-scale module. The variant M2DAN-Sk
represents the convolutional layers in all three branches of the multi-scale module use
the same filter size k, where k=1, 3, 5.

Method
AS II AS III

Mean Acc. Mean AUC
Acc. AUC Acc. AUC

M2DAN-S1 0.737 0.847 0.807 0.909 0.772 0.878
M2DAN-S3 0.756 0.913 0.748 0.916 0.752 0.914
M2DAN-S5 0.757 0.902 0.792 0.921 0.775 0.914

M2DAN 0.856 0.914 0.869 0.928 0.862 0.921

they focus on pair-wise adaptation and cannot capture correlation among do-
mains effectively. In addition, M2DAN also outperforms MTDA in terms of both
metrics, which demonstrates the superiority of our proposed method in handling
multi-target domain adaptation for angle closure classification. In M2DAN, the
multi-scale scheme helps to extract multi-scale domain-invariant features of AS-
OCT images for angle closure classification. Note that the performance of MTDA
is worse than pair-wise domain adaptation methods. Such poor performance of
MTDA results from the poor reconstruction which includes a lot of noise for
fine-grained anterior chamber angle in AS-OCT images.

3.2 Ablation Studies

The Effectiveness of Multi-scale Module. To verify the effectiveness of
the proposed multi-scale module, we compare our method with three variants,
namely M2DAN-S1, M2DAN-S3 and M2DAN-S5. The variant M2DAN-
Sk uses the same filter size k in all three branches of convolutional layers in the
multi-scale module. In this case, the feature maps in each variant are extracted
at the same scale. From Table 3, M2DAN achieves better performance than
all three variants in terms of two target domains. The results demonstrate the
superiority of the proposed multi-scale module.

Ablation Studies on Difference Losses. To investigate the effect of all losses
(Lfo, Ld and Len), we evaluate the model optimized by different losses. From
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Table 4. Ablation study for the losses (i.e., Lfo, Ld and Len). Note that Lce denotes
the cross-entropy loss for angle closure classification.

Backbone Lce Lfo Ld Len

AS II AS III
Mean Acc. Mean AUC

Acc. AUC Acc. AUC

3 3 0.784 0.826 0.780 0.903 0.782 0.865

3 3 0.828 0.843 0.814 0.894 0.821 0.868

3 3 3 0.856 0.876 0.841 0.916 0.848 0.896

3 3 3 3 0.856 0.914 0.869 0.928 0.862 0.921

Table 5. Influence of the trade-off parameter α on AUC performance of our method.
The value of α is selected among [0.0003, 0.003, 0.03, 0.3], while fixing other parameters.

α AS-II AS-III Mean AUC
3e−04 0.828 0.910 0.869
3e−03 0.909 0.892 0.901
3e−02 0.914 0.928 0.921
3e−01 0.813 0.843 0.828

Table 6. Influence of the trade-off parameter η on AUC performance of our method.
The value of η is selected among [0.001, 0.01, 0.1, 1], while fixing other parameters.

η AS-II AS-III Mean AUC
1e−03 0.791 0.871 0.831
1e−02 0.825 0.876 0.851
1e−01 0.914 0.928 0.921

1 0.884 0.922 0.903

Table 4, our method with Lfo performs better than that with Lce, verifying
that the focal loss helps to handle the class-imbalanced issue. When introducing
Ld, the performance improves a lot, which indicates that such a loss succeeds in
alleviating domain discrepancies among domains. By combining all the losses,
we obtain the best result. Such a result demonstrates that encouraging high-
density compactness of intra-class samples and low-density separation of inter-
class samples further facilitates the classification of angle closure.

3.3 Influence of Hyper-parameter

In this section, we investigate the impact of the hyper-parameters α, η and
λ. We evaluate one parameter a time while fixing other parameters. As shown
in Tables 5, 6 and 7, our method achieves the best performance when setting
α = 0.03, η = 0.1 and λ = 1. To some extent, our method is non-sensitive to
hyper-parameters. Moreover, it is crucial to set a reasonable classification loss
weight which helps to classify angle closure effectively.
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Table 7. Influence of the trade-off parameter λ on AUC performance of our method.
The value of λ is selected among [0.001, 0.01, 0.1, 1], while fixing other parameters.

λ AS-II AS-III Mean AUC
1e−03 0.663 0.671 0.667
1e−02 0.709 0.647 0.678
1e−01 0.659 0.815 0.737

1 0.914 0.928 0.921

4 Conclusion

In this paper, we have proposed a novel Multi-scale Multi-target Domain Ad-
versarial Network (M2DAN) for angle closure classification. M2DAN aims to
transfer a deep model learned on one labeled source domain to multiple unlabeled
target domains. To be specific, we devise a multi-scale module to extract features
regarding both local and global information. By performing multi-domain ad-
versarial learning at different scales, M2DAN is able to extract domain-invariant
features and effectively classify angle closure in multiple target domains. Exten-
sive experiments demonstrate the effectiveness of our proposed method.
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