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Collective classification (CC) is a task to jointly classifying related instances of network data. Enabling CC
usually improves the performance of predictive models on fully-labeled training networks with large
amount of labeled data. However, acquiring such labels can be difficult and costly, and learning a CC clas-
sifier with only a few labeled data can lead to poor performance. On the other hand, there are usually
large amount of unlabeled data available in practical. This naturally motivates semi-supervised collective
classification (SSCC) approaches for leveraging the unlabeled data to improve CC from a sparsely-labeled
network. In this paper, we propose a novel non-negative matrix factorization (NMF) based SSCC algorithm,
called NMF-SSCC, to effectively learn a data representation by exploiting both labeled and unlabeled data
on the network. Our idea is to use matrix factorization to obtain a compact representation of network
data which uncovers the class discrimination of the data inferred from the labeled instances and simul-
taneously respects the intrinsic network structure. To achieve this, we design a new matrix factorization
objective function and incorporate a label matrix factorization term as well as a network regularization
term into it. An efficient optimization algorithm using the multiplicative updating rules is then developed
to solve the new objective function. To further boost the predicting performance, we extend the proposed
NMF-SSCC method into an ensemble scheme, called NMFE-SSCC, in terms of building a classification
ensemble with a set of NMF-SSCC collective classifiers using different constructed latent graphs. Each
NMF-SSCC classifier is learnt from one latent graph generated with various latent linkages for effectively
label propagation. Experimental results on real-world data sets have demonstrated the effectiveness of
the new methods.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

For traditional supervised classification, data instances are
assumed to be independently and identically distributed to each
other. However, for network data classification tasks, instances
are interrelated with each other by edges which is considered as
a form of autocorrelation. Network data have become ubiquitous
in many fields ranging from the Internet to social sciences, biology
and many others. Generally, network data contain nodes
(instances) interconnected with each other by edges (linkages)
reflects the relation or dependence between the nodes.
Information on the nodes is provides as a set of attribute features
(e.g., words present in the web pages). Network data are obviously
not independently and identically distributed. Instead, the class
labels of a given node are related to the class labels of the nodes
it is connected. For example, web pages are connected by hyper-
links and the interlinked pages are more likely to have the same
class label than the unlinked pages. Another relevant example is
the collaboration networks where researchers are connected by
their joint publications. The collaborating researchers are more
likely to share similar research topics than researchers without
collaboration.

The problem of learning from network data is a challenging
problem that has attracted growing attention in the literature
due to its importance to many applications. This drives the need
for effective approaches to cope with it, and collective classification
(CC) [1] is such a task for jointly classifying related instances in the
network by exploiting the link interactions between instances.
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Enabling CC usually improves the performance of classification on
network data as prediction of one instance can be used to improve
predictions on related instances. Such a performance improvement
usually relies on using a fully-labeled network that consists of a
sufficiently large amount of labeled instances. However, for many
real-world network data applications, acquiring such labels can
be costly and time-consuming.

The challenges of label deficiency problem in CC are particu-
larly evident, when the amount of labeled instances available is
limited, learning a CC model can lead to poor performance as the
supervision knowledge cannot be obtained from the local connec-
tions. On the contrary, the unlabeled instances are much easier to
obtain as compared to labeled instances. For example, one may
only have a handful of known fraudsters and legitimate users in
a telephone fraud detection tasks, say fewer than 10%, 5% or even
1%. But there are also copious amount of unlabeled data which are
available in such sparsely-labeled network data. This naturally
motivates developing new CC algorithms that are able to utilize
both labeled and unlabeled data together to enhance the perfor-
mances. Recently, semi-supervised collective classification (SSCC)
has been examined to leverage unlabeled data to enhance the clas-
sification performance when learning from a sparsely-labeled net-
work [2–5]. In Fig. 1, we show examples of ‘‘traditional supervised
classification (TSC)’’, ‘‘semi-supervised classification (SSC)’’, ‘‘col-
lective classification (CC)’’, and ‘‘semi-supervised collective classi-
fication (SSCC)’’ to illustrate their differences. We can observe from
the figure that TSC only considers the labeled data to train a clas-
sification model, while SSC makes use of both labeled and unla-
beled data to enhance the classification performance. CC aims to
classify related instances in the network data, while SSCC lever-
ages the labeled and unlabeled data together in the learning
process.

In this paper, we propose a non-negative matrix factorization
(NMF) based algorithm, called NMF-SSCC, to learn a data represen-
tation for network data classification by exploiting both labeled
and unlabeled data on the network for SSCC. NMF has received
considerable attention due to its psychological and physiological
(a)

(c)

Fig. 1. (a) Traditional supervised classification; (b) semi-supervised classification; (c) coll
the instances are their autocorrelations.
interpretation of naturally occurring data whose representation
may be parts-based in the human brain [6]. A good representation
typically contains ‘‘explanatory factors behind the data’’ [7] and
reveals the structures within the data set [8]. For network data
classification, our goal is to use matrix factorization to find a
parts-based representation which uncovers the class discrimina-
tion of the data inferred from the labeled instances and simultane-
ously respects the intrinsic network structure, so that one can
achieve very competitive classification performance with the com-
puted network data representation.

To achieve this, we design a new matrix factorization objective
function and incorporate a label matrix factorization term and a
network regularization term into it to encode the label information
from the labeled instances and the geometric information on the
network (see Fig. 2). We also develop an optimization algorithm
to solve the objective function based on iterative updates of the
decomposed matrices and to learn a new parts-based data repre-
sentation for classification prediction. Intuitively, an instance
linked to neighbors with high probabilities to be a particular class
label is likely to have this class label.

To further boost the CC performance, we extend the proposed
NMF-SSCC approach into an ensemble scheme to build a classifica-
tion ensemble with a set of NMF-SSCC base classifiers using a set of
constructed latent graphs. The new algorithm, called NMFE-SSCC,
is to learn one NMF-SSCC classifier on the basis of a latent graph
that generated with various kinds of latent linkages to explicitly
link (separate) the instances with similar (different) class labels.
Then, the learnt NMF-SSCC models are combined into an ensemble
for prediction by using a vote among the models as the ensemble
classification decision (see Fig. 3).

In summary, the main contributions of this paper are given as
follows.

� A new NMF based learning method, i.e., NMF-SSCC, that takes
the label information and network structure into account to
seek a matrix factorization for the SSCC problem.
(b)

(d)

ective classification; (d) semi-supervised collective classification. The links between



Fig. 2. An overview of the new NMF model for SSCC.

2 Various local classifiers have been used in previous studies, such as Logistic
Regression (LR) [10] and Naive Bayes (NB) [11].
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� An efficient iterative algorithm to optimize the objective func-
tion in the proposed NMF-SSCC method and to compute the
class labels of the instances for classification.
� A theoretical discussion on the convergence of the proposed

NMF-SSCC algorithm using an auxiliary function.
� An ensemble learning method for SSCC by learning multiple

NMF-SSCC classifiers on various constructed latent graphs.
� Extensive experiments have been conducted to study the effec-

tiveness of the proposed approach using various real-world net-
work data sets.

The rest of the paper is organized as follows. Section 2 describes
the background and the related work. Section 3 presents the pro-
posed methodology and its derivation in detail. Section 4 describes
the data sets and the experimental setup, followed by a discussion
of the experimental results. Finally, conclusions are drawn in
Section 5.

2. Related work

2.1. Learning from network data

In traditional supervised classification, instances are assumed to
be independent of each other. However, in network data classifica-
tion tasks, instances are interlinked with each other in a form of
autocorrelation, and these relations among the instances can be
helpful for the classification tasks. To exploit the data dependen-
cies in the network, collective classification (CC) is proposed and it
has received Macskassy and Provost [9] provide a brief review of
the previous work of CC. In general, the methods can be catego-
rized into three groups: relational-only methods, local
classifier-based method and global formulation-based methods.

1. A relational-only method only uses relational information for
classification. Typically, the algorithm computes a new label
distribution for an instance based on the label distributions of
its neighbors. Weighted-vote relational neighbor with relax-
ation labeling (wvRN + RL) [9] is one such method. Recently,
Macskassy and Provost [9] showed that wvRN + RL performs
very well in comparisons, and thus it is recommended to be
used as a baseline for CC evaluations.

2. A local classifier-based method is based on an iterative process
whereby a local classifier2 is used to predict labels for unlabeled
nodes using both original attribute features and newly con-
structed relational features. The iterative classification algorithm
(ICA) [1] is one such example. Gibbs sampling [11] is further used
in the ICA framework to enrich the statistical properties of the
ICA algorithm. Previous studies reported that ICA is a fairly accu-
rate method with robust performance for different network data
and should be used as a baseline in CC evaluations. In recent
years, there is a lot of work proposed to use a similar schema
as ICA but with different learning strategies [11,12].

3. A global method trains a classifier to optimize a global objective
function for prediction, often based on a graphical model such
as loopy belief propagation of the relaxation labeling [12] (see
[10] for more details).

Sen et al. [10] provide an empirical study of different CC
methods. It is reported that enable CC often substantially increases
classification accuracy when the class labels of linked instances are
correlated. However, many current CC methods focus on learning
from a fully-labeled network with large amount of labeled
data, even though acquiring such labels is difficult and
time-consuming. As pointed out in [2], when the labeled data are
limited, the performance of CC may be degraded [13]. For example,
consider predicting whether a web page belongs to a professor or a
student. The ICA approach proposed in [1] uses the attribute fea-
tures together with additional relational features constructed by
using the labels of neighboring pages. The relational features of a
given page can be constructed by counting the number of neigh-
boring pages labeled student/professor that are linked to the page.
However, the above schema may not work well when there are a
limited number of labeled data available. In this scenario, most



Fig. 3. An overview of the ensemble model for SSCC.
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of the nodes may not connect to labeled data instances. Hence, the
class summary of the neighboring instances tends to be 0 for the
lack of labeled neighbor instances. As a consequence, the perfor-
mance of CC may be degraded when the labeled data are limited
[2].

In the task of CC, there are usually large amount of unlabeled
data available. This naturally motivates the use of
semi-supervised learning techniques to leverage the unlabeled
data for CC. For instance, McDowell and Aha [2] propose a
semi-supervised ICA (semiICA) algorithm using a hybrid regular-
ization to boost the performance of the ICA algorithm. They inves-
tigate the performances of different semi-supervised learning
variants in the study and developed a hybrid regularization to
boost the performance gains. McDowell and Aha [3] show that uti-
lizing neighbor attributes are often more useful than neighbor
labels when the network is sparsely labeled. They introduce a
new method that enable discriminative classifiers to be used with
neighbor attributes. Gallagher et al. [14] propose a method that
adds edges to a sparsely-labeled network to improve classification
performance. Shi et al. [4] proposed a label propagation method
with latent graph (LNP) constructed from the original network by
adding various types of latent links including k-step links, label
links, structure similarity links and attribute similarity links.
Bilgic et al. [15,5] provide an alternative solution to overcome
the label sparsity issue using active learning approaches.
Rahmani et al. [16] use a transductive learning approach to predict
the class labels of instances in instance-instance interaction net-
works. Other methods using the idea of label propagation or ran-
dom walks [17–19] have been developed for the problem of
semi-supervised collective classification.
2.2. Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a matrix factoriza-
tion technique for discovering low dimensional representations
of non-negative data [20]. In many applications, the input data
matrix (with non-negative elements) is of very high dimension,
NMF seeks to find two lower dimensional matrices (also
non-negative) whose product provides a good lower rank approx-
imation to the original data matrix, and NMF has received much
attention in such applications [21–26] because the learned bases
can be interpreted as a natural parts-based representation of data.
This interpretation is consistent with the psychological intuition of
combining parts to form a whole, like face images and text docu-
ments [20,27]. That is, we can explain each data instance by addi-
tive linear combination of non-negative basis vectors since NMF
allows only additive combinations. For this reason, NMF has been
widely used in various real world applications such as face recog-
nition [28], document clustering [29], recommendation [30] and
collaborative filtering.

Let X ¼ ½x1; . . . ; xN� 2 RM�N denotes a data matrix formed by
adjoining N non-negative column vectors (each vector is an input
instance) of dimensionality M. NMF seeks to find two
non-negative matrices U ¼ ½uik� 2 RM�K and V ¼ ½v jk� 2 RN�K whose
product provides a good approximation to the original data matrix
X, typically K � M and K � N, such that

X � UVT ð1Þ

where U;V P 0;U is the basis matrix and V is the coefficient matrix.
The cost function that quantifies the quality of the approxima-

tion can be defined in different ways. Here we consider the square
of the Euclidean distance of two matrices

kX� UVTk2 ¼
X

i;j

xij �
XK

k¼1

uikv jk

 !2

: ð2Þ

The above objective function in Eq. (2) can be minimized by an iter-
ative updating algorithm following the two steps

uik  uik
ðXVÞik
ðUVT VÞik

ð3Þ

v jk  v jk
ðXT UÞjk
ðVUT UÞjk

ð4Þ

These updates are guaranteed to decrease the approximation cost at
each iteration, and converge to a local minimum of the cost
function.

Various researchers have considered introducing additional
constraints to the original NMF. For instance, Li et al. [28] proposed
the local NMF (LNMF) method that learns spatially localized
subspace representation for visual patterns. Hoyer [31] presented
the non-negative sparse coding (NSC) method to combine sparse
coding and NMF for decomposing multivariante data into
non-negative sparse components. Wang and Jia [32] proposed a
Fisher NMF (FNMF) method for face recognition to impose Fisher
constraints on the NMF algorithm. Yang et al. [33] proposed the
non-negative graph embedding (NGE) method that simultaneously
learns two subspaces in incorporating the marginal Fisher discrim-
iinformation with NMF.

Recent attention has been given to NMF on manifold learning.
From the geometric perspective, the data usually reside on or close
to an underlying sub-manifold embedded in a high dimensional
ambient space. Learning from such intrinsic geometric structure
modeled by a graph has been shown to be useful in various fields,
including data clustering [34] and dyadic data analysis [35]. For
this reason, Cai et al. [6] propose the graph regularized
non-negative matrix factorization (GNMF) algorithm considering
the manifold structure of the data in the NMF algorithm. A
nearest-neighbor affinity graph is constructed to encode the data
geometric structure. An optimization scheme is developed to find
the parts-based data representation that respects the geometrical
structure of the data space. But, GNMF was specifically designed
for unsupervised data clustering tasks and thus cannot directly
applied for collective classification.

Our proposed method is a NMF based algorithm but it is funda-
mentally different from these methods. We proposed a new NMF
based objective function for semi-supervised collection classifica-
tion (SSCC) problem by taking both network structure and label
information in network data into account. To the best of the
authors’ knowledge, no previous work has been done on utilizing
NMF for SSCC in network data where autocorrelations and label
information are involved.

3. Methodology

We consider the network data as a graph G ¼ ðV;E;X;YÞ. V is
the set of nodes fv1; . . . ; vNg, and E ¼ ½Eij� 2 RN�N is the weight
matrix on the graph such that Eij ¼ 1 if and only if nodes v i and
v j are connected by an edge, and Eij ¼ 0 otherwise.
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X ¼ ½x1; . . . ; xN� 2 RM�N is a data matrix with respect to N nodes’
attribute feature vectors of dimensionality M, each xi 2 X is an
attribute vector for a node v i. Y ¼ ½Y1; . . . ;YN� 2 Rq�N is a label
matrix where q is the number of all possible class labels, and each
Yi ¼ ½Yi1; . . . ;Yiq� 2 f0;1gq such that Yi;j ¼ 1 means that v i is associ-
ated with j-th class label, and Yi;j ¼ 0 otherwise. Assume that we

have n0 labeled nodes fðxi;YiÞgn0

i¼1 and n00 unlabeled nodes

fðxiÞgn0þn00

i¼n0þ1 with N ¼ n0 þ n00. The task is to predict the class labels
of unlabeled nodes. In SCCC task, there are only a limited number
of labeled nodes on the network, i.e., n0 � n00, most of the unlabeled
nodes may not connect to the labeled ones, which makes the task
very challenging.

3.1. NMF-SSCC: Non-negative matrix factorization for SSCC

The ordinary NMF method is developed for unlabeled data anal-
ysis in the context of Euclidean structure of the data. The updates
in Eq. (3) and (4) derived from the objective function of NMF in Eq.
(2) simply ignore the label information and network structure
which play a crucial role for network data classification problems.
The main aim of this paper is to use matrix factorization to seek a
compact representation of all the (labeled and unlabeled) data
nodes of the network in which the new data representation can
uncover the class discrimination of the data inferred from the
labeled instances and simultaneously respects the intrinsic net-
work structure. To achieve this, we design a new matrix factoriza-
tion objective function and incorporate a label matrix factorization
term and a network regularization term into it.

Given the data matrix X and the label matrix Y ¼ ½Y1; . . . ; YN�
2 Rq�N which encodes the label information of all the data in which
Yij ¼ 1 if xi is labeled with cj, and Yij ¼ 0 otherwise for labeled data,
and Yij ¼ 0 for unlabeled data, we extend the objective function of
NMF by incorporating an additional label matrix factorization

O1 ¼ kX� UVTk2 þ akW� ðY � BVTÞk2 ð5Þ

where � is the Hadamard product symbol which is a binary opera-
tion that takes two matrices of the same dimensions, and produces
another matrix with elements given by ½A� B�ij ¼ ½A�ij 	 ½B�ij. The
above objective function is divided into two terms. The first term
is exactly the same as the objective function of ordinary in Eq. (2).
The second term is the matrix factorization term in terms of Y, a
is a tradeoff parameter to determine the importance of the second
term.

In the label matrix factorization term, B 2 Rq�K is the basis
matrix, V is the coefficient matrix, and W ¼ ½Wij� 2 Rq�N is a weight
matrix such that the elements of W are with nonzero values if the
labels of corresponding instances are known. Otherwise, the
elements of W are 0. Specifically, we have

Wij ¼
h; if Yi is known and Yij ¼ 1
1� h; if Yi is known and Yij ¼ 0
0; if Yi is unknown:

8><
>: ð6Þ

By using the above constraints, the supervised knowledge inferred
from the labeled instances can be preserved in solving the matrix
factorization mathematical problem given by Eq. (5). In practical,
the learning data sets may have large number of possible class
labels. Note that the label matrix Y is a sparse matrix in this case
because the number of zero elements(i.e., Yij ¼ 0) is much larger
than the remaining nonzero elements (i.e., Yij ¼ 1). We can use a
parameter h to determine the weights to attach to these two types
of elements.

Recall that the NMF method is a dimension reduction technique
for factorizing a given matrix into the low-dimensional latent
factor space, and is taken out through some constrained optimiza-
tion process which can theoretically work on different forms of
objective functions that quantify the quality of the factorization,
such as Euclidean distance or Kullback–Leibler divergence [6]. In
relational data sets and information network data, instances are
correlated with complex dependencies, and exploiting the data
dependencies can be used to enhance the performance of predict-
ing class labels of related instances on the network. One hopes that
the new data representation can respect the intrinsic network
structure, rather than ambient Euclidean structure. To achieve this,
we propose a new matrix factorization objective function which
explicitly considers local invariance with respect to the geometri-
cal information of the network, i.e., the neighboring nodes xj and
xl on the network are likely to have similar classes. Specifically,
we incorporate a network regularization term into the NMF objec-
tive function to seek a matrix factorization in which two data
nodes are sufficiently close to each other if they are connected
on the network. In other words, the distances of two data instances
in terms of the new representation should be close if they are
connected on the network where the measure of distance of two
data instances can be measure by the Euclidean distance.

Given an adjacency matrix E ¼ ½Eij� 2 RN�N to model the linkages
of a network data with N vertices where Eij ¼ 1 if and only if nodes i
and j are connected by an edge, and Eij ¼ 0 otherwise, The low
dimensional representations of two neighboring nodes xj and xl

with respect to the new basis are zj ¼ ½v j1; . . . ;v jK �T and

zl ¼ ½v l1; . . . ;v lK �T , respectively. The Euclidean distance of these
two neighboring nodes is

dðzj; zlÞ ¼ jjzj � zljj2

With the adjacency matrix E and the distance measure dðzj; zlÞ, we
can compute the smoothness of the instances on the intrinsic
network structure using the following network regularizer

R ¼ 1
2

XN

j;l¼1

jjzj � zljj2Ejl ¼
XN

j¼1

zT
j zjDjj �

XN

j;l¼1

zT
j zlEjl

¼ TrðVT DVÞ � TrðVT EVÞ ¼ TrðVT LVÞ ð7Þ

where Trð	Þ denotes the trace of a matrix and D is a diagonal matrix
whose elements are column sum of E, i.e., Djj ¼

P
lEjl. L ¼ D� E is

the graph Laplacian.
Combining this network regularizer R with the objective func-

tion in Eq. (5), we obtain the following new matrix factorization
objective function with an additional network regularization term

O ¼ jjX� UVT jj2 þ ajjW� ðY � BVTÞjj2 þ bTrðVT LVÞ ð8Þ

where b is the parameter controlling the importance of the network
regularization term.

Similar to the standard NMF, multiplicative updates are derived
for U;B and V for minimizing the objective function. We introduce
an iterative algorithm which can achieve a local minimum for the
objective function O in Eq. (8). Using the matrix properties
TrðABÞ ¼ TrðBAÞ and TrðAÞ ¼ TrðATÞ, the objective function can be
rewritten as follows.

O ¼ TrððX� UVTÞðX� UVTÞTÞ þ aTrðW� ððY

� BVTÞðY � BVTÞTÞÞ þ bTrðVT LVÞ

¼ TrðXXTÞ � 2TrðXVUTÞ þ TrðUVT VUTÞ þ aTrðW� YYTÞ

� 2aTrðW� YVBTÞ þ aTrðW� BVT VBTÞ þ bTrðVT LVÞ ð9Þ

Let wik; cik and /jk be the Lagrange multiplier for constraint
uik P 0; bik P 0 and v jk P 0, respectively. We need to minimize O
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with respect to U;B and V subject to the Lagrange multiplier
constraints. Then we have the Lagrangian L as follows.

L ¼ TrðXXTÞ � 2TrðXVUTÞ þ TrðUVT VUTÞ þ aTrðW� YYTÞ

� 2aTrðW� YVBTÞ þ aTrðW� BVT VBTÞ þ bTrðVT LVÞ

þ TrðWUTÞ þ Trð!BTÞ þ TrðUVTÞ ð10Þ

where U ¼ ½wik�; � ¼ ½cik� and U ¼ ½/jk�.
The partial derivatives of L with respect to U;B and V are

@L
@U
¼�2XVþ2UVT VþU ð11Þ

@L
@B
¼�2a½W�Y�Vþ2a½W�BVT �Vþ� ð12Þ

@L
@V
¼�2XT Uþ2VUT U�2a½WT�YT �Bþ2a½WT�VBT �Bþ2bLVþU ð13Þ

By using the Karush–Kuhn–Tucker conditions wikuik ¼ 0; cikbik ¼ 0
and /jkv jk ¼ 0, we have

ðUVT VÞikuik�ðXVÞikuik ¼0 ð14Þ
ð½W�BVT �VÞikbik�ð½W�Y�VÞikbik ¼0 ð15Þ
ðVUT Uþa½WT �VBT �BþbDVÞjkv jk�ðXT Uþa½WT �YT �BþbEVÞjkv jk ¼0 ð16Þ

These equations lead to the following updating rules

uik  uik
ðXVÞik
ðUVT VÞik

ð17Þ

bik  bik
ð½W� Y�VÞik
ð½W� BVT �VÞik

ð18Þ

v jk  v jk
ðXT Uþ a½WT � YT �Bþ bEVÞik
ðVUT Uþ a½WT � VBT �Bþ bDVÞik

: ð19Þ

When a ¼ 0 and b ¼ 0, the above updating rules reduce to the
updating rules of the original NMF.

Theorem 1. The objective function O in Eq. (8) is non-increasing
under the updating rules in Eqs. (17)–(19).

The detailed proof for the above theorem is given in the
Appendix. When a ¼ 0 and b ¼ 0, the updating rules in
Eqs. (17)–(19) reduce to the updating rules of the original NMF.

Algorithm 1. NMF-SSCC

Require: input matrices X;Y, and the parameters a and b

Ensure: output label matrix Y0

1: Initialize V using Eqs. (20) and (21).
2: repeat
3: Update U using Eq. (17);
4: Update B using Eq. (18);
5: Update V using Eq. (19);
6: Reset V using Eq. (20) for labeled data;
7: until stopping criteria is met
8: for each unlabeled instance xi do
9: k arg maxk̂ðv ik̂Þ;

10: Y 0ði; kÞ  1;
11: end for
3.2. NMF-SSCC Algorithm

We describe the NMF-SSCC algorithm in Algorithm 1 using the
proposed NMF based method for SSCC. In the algorithm, the first
step (line 1) initializes the value of V based on the class priors
(using the labeled data). Specifically, for the labeled data we have
v jk ¼
1; if yjk ¼ 1;
0; if yjk ¼ 0:

(
ð20Þ

For unlabeled data, the values of v jk are initialized as

v jk ¼
P

inðck; xiÞP
k0
P

inðck0 ; xiÞ
ð21Þ

where nðck; xiÞ ¼ 1 if xi is labeled as ck and 0 otherwise.
The matrices U;B and V are then updated alternately until the

objective value of Eq. (8) does not change or the maximum number
of iterations is met (line 2–7). In this procedure, the v jk values of
the labeled data are reset at each iteration to encode the label
information (line 6). In practice, only a small portion of elements
of V will be reset when we have limited number of labeled data,
and thus the reset action does not affect the convergence of the
algorithm as we see in the experiment section.

Using these updating rules, we obtain a local optimum solution
of the non-negative matrix V for the objective function O in Eq. (8).
In the following, we describe how to use V for classification predic-
tion. We specify the column dimension of the new representation
V ¼ ½v jk� 2 RN�K of the original data with respect to the new basis
as the same as the number of possible class labels q, i.e., we set K
equals to q, each column of V corresponds to one class label. For
an unlabeled instance xj, we assign it with the class with largest
v jk score,

Yjk ¼
1; if k ¼ arg max

k̂
v jk̂;

0; otherwise;

(
ð22Þ
3.3. Complexity analysis

In this part, we discuss the computational cost of our proposed
NMF-SSCC algorithm in comparison to standard NMF. We count
the arithmetic operations for the NMF algorithm based on the
updating rules in Eq. (3) and (4) and the NMF-SSCC algorithm
based on the updating rules in Eq. (17)–(19). We count the arith-
metic operations of each iteration in two algorithms and the result
is given in Table 1. Suppose the multiplicative updates stops after t
iterations, the overall cost for NMF is OðtMNKÞ and the overall cost
for NMF-SSCC is also OðtMNKÞ.

3.4. NMFE-SSCC: NMF-SSCC ensemble with latent graphs for SSCC

The basic assumption of the network regularization method in
our proposed NMF-SMCC model is that the network structure
can well respect the prediction relationships between the input
instances and the output class labels. The proposed NMF-SSCC
method naturally works better with network structure that can
facilitate the prediction of the instances’ labels. The relationship
between instances and class labels are usually have semantic inter-
pretability and thus it is desirable to obtain a graph structure
which can well respect the relationships between instances and
class labels, because it relates more directly to the classification
tasks. This naturally motivates approaches for constructing various
latent graphs in order to improve the quality of classification. This
is achieved by a latent graph construction approach by which an
undirected graph is constructed which utilizes different data
sources that are available in the CC problem setting, including
autocorrelation, attribute features, and label information.

The basic idea of constructing latent graphs is to link together
the instance nodes, such that nodes which are closer in the graphs
will tend to have the same class labels, and the nodes which are
disconnected will tend to have different class labels. Various data
sources of the CC data can be used to construct the latent graphs.



Table 1
Computational operation counts for each iteration in NMF and NMF-SSCC where f.p. refers to floating-point, N: the number of instances; M: the number of features; K: the number
of factors; q: the number of labels, and M 
 N 
 q.

f.p. addition f.p. multiplication f.p. division Overall

NMF 2MNK þ 2ðM þ NÞK2 2MNK þ 2ðM þ NÞK2 þ ðM þ NÞK ðM þ NÞK OðMNKÞ
NMF-SSCC 2MNK þ 2ðM þ NÞK2 þ 2qNK þ 2ðqþ NÞK2 þ N2K þ NK 2MNK þ 2ðM þ NÞK2 þ ðM þ NÞK þ 2qNK þ 2ðqþ NÞK2 þ N2K þ NK ðM þ NÞK OðMNKÞ
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For example, the CC instances are associated with a set of attribute
features which can be used to detect the underlying network struc-
ture among instances based on the idea that instances with similar
feature values may also be similar in their class labels. On the other
hand, the labeled CC instances are associated with a set of class
labels, which can be represented by a set of class features. The class
features are also useful for evaluating the pairwise similarity of
instance instances. Intuitively, instances with large class overlap
on their class features should be linked together in the latent
graph. In general, the copious availability of different data sources
in the CC problem setting can be used to design for effective latent
graphs for our classification model.

Here we exploit the data sources available in CC data to con-
struct a set of latent graphs for more effective label prediction.
Via the latent linkages in the latent graphs we constructed, knowl-
edge from labeled nodes can be propagated to unlabeled nodes
more effectively, such as the example in Fig. 4. Specifically, we
introduce three types of latent graphs that can be easily computed
from the data. For each individual latent graph, we compute a
weight Eij for each element of its adjacency matrix where Ei;j is
large indicates two nodes are close together, and vice versa.

Autocorrelation latent graph: We consider the autocorrelation
network as a latent graph, and construct the adjacency matrix Eð1Þ

of the autocorrelation latent graph as follows
Eð1Þij ¼ Eði; jÞ
where Eði; jÞ ¼ 1 if node v i and node v j are connected in the auto-
correlation network, and Eði; jÞ ¼ 0 otherwise.

Random walk latent graph: Some first-order neighborhoods
may not share the same class label in the autocorrelation network.
In such cases, the performance of learning methods simply based
on first-order linkages will be degraded. On the other hand, it is
observed that second-order neighborhoods can have a great likeli-
hood of sharing similar characteristics with the instance of interest
[36]. Thus, we use the idea of even-step random walk with restart
(ERWR) [14] to compute such latent linkages. We assume that
the linkages linked to first-order neighborhoods with the same
class label with the instance of interest (i.e., v1) typically have
triangle structures (see Fig. 4(b)). These neighbors (i.e., v2 and
v3) are able to obtain high scores using ERWR because they are
well-connected in the autocorrelation network. On the other
hand, ERWR can avoid the immediate neighbors (e.g., v1 and v2)
with inconsistent linkages that negatively influence the
prediction of v1 because such inconsistent linkages are often
sparsely-connected (i.e., without triangle structures among these
nodes). Also, ERWR is able to exploit the second-order neighbor-
hoods (e.g., v4) which are well-connected with level-1 neighbors.

Formally, we compute P ¼ EE and normalize its elements with
respect to each column to obtain a normalized transition probabil-
ity matrix P, where E is the adjacency matrix of the autocorrelation
network of the data. With transition probability given in P, the
ERWR random walker iteratively visits neighborhood nodes to
compute the steady-state probability matrix as the adjacency
matrix of the random walk latent graph. Also at each step, it has
probability k (e.g., k ¼ 0:1) to return to the start node. Concretely,
we define the adjacency matrix Eð2Þ of the random walk latent
graph as follows

Eð2Þij ¼ Rði; jÞ

where R ¼
PT

t¼1kð1� kÞtPt is the steady-state probability matrix
after T steps.

Prediction similarity latent graph: We consider the values of
class labels of the labeled instances as input features to build a
classifier and use the learnt classifier to predict the labels of the
remaining unlabeled instances. Specifically, we use SVM classifier
with probability outputs implemented in the LIBSVM library [37]
to compute the probabilities of different labels to an instance,
Yi ¼ ½Pðc1jxiÞ; Pðc2jxiÞ; . . . ; PðcqjxiÞ�T , such that PðcjjxiÞ is the proba-
bility (or confidence) of an instance xi belongs to the class cj.
With the computed prediction confidences of the instances, the
adjacency matrix Eð3Þ of the prediction similarity latent graph is
defined as follows

Eð3Þij ¼ YT
i Yj

Here, Yi and Yj are normalized to unit length, thus the dot product
of the two vectors is equivalent to their cosine similarity.

In the prediction similarity latent graph, there are many ele-
ments being close to zero. It may not be necessary to consider
these elements. Therefore, we use a kNN construction scheme for
graph. We connect two nodes v i and v j if v j is among the k-nearest
neighbors of v i or if v j is among the k-nearest neighbors of v i. We
define a sparse adjacency matrix for kNN graph as follows

Êð3Þij ¼
1; if v i 2 N kðjÞ or v j 2 N kðiÞ
0; otherwise:

�

where N kðiÞ is the set of k nearest neighbors of v i. In practice, we
find that k does not need tuning. We use k ¼ 10 nearest neighbors
as default setting.

Algorithm 2. NMFE-SMCC

Input: latent graphs fEðiÞg
p
i¼1, input matrices X;Y, and the

parameters a and b

Output: the label matrix Y0

Procedure:

1: for i ¼ 1 to p do
2: Learn a NMF-SMCC model using the constructed latent

graph EðiÞ. In the NMF-SMCC model, compute the network

regularizer R in Eq. (2) according to EðiÞ;
3: Use EM algorithm to optimize the NMF-SMCC model to

compute the output label matrix Y0ðiÞ as in Algorithm 1;
4: end for

5: Combine the results of p learned models Y0ðiÞ;Y0ðiÞ,. . ., Y0ðpÞ

into an ensemble prediction as Y0 ¼ 1
p

Pp
i¼1Y0ðiÞ

6: for each unlabeled instance xj do

7: k arg maxk̂ðY
0ðjk̂ÞÞ;

8: Y 0ðj; kÞ  1;
9: end for



(a) (b) (c)

Fig. 4. An example of latent graphs. (a) autocorrelation latent graph, i.e., the original interaction network, where the ground-truth label of the center (unknown) node v1 is
‘‘+’’, but it is difficult to predict the label (+ or �) for node v1 since it has the same number of positive and negative neighboring nodes; (b) even-step random walk latent
graph, the first-order neighborhoods with the same label (‘‘+’’) to v1 have triangle edges (red lines), hence they are reachable from v1 using even-step random walks. On the
other hand, the second-order neighborhoods (from the + nodes) in the network are also linked together by creating edges (dash line) using even-step random walks; (c)
prediction similarity latent graph using kNN graph construction. In the kNN graph, a node pair shares an edge if the two nodes are k-nearest neighbors. In the example, we set

is referred to the web version of this article.)

Table 2
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A summarized description of the three data sets.

Characteristics Cora Citeseer COIL20

#Instances 2708 3312 1440
#Features 1433 3703 1024
#Links 5278 4598 8402
#Classes 7 6 20
Via the latent graphs constructed, the supervised knowledge
can be propagated from labeled to unlabeled nodes more effec-
tively. Here, we introduce the NMFE-SSCC method to build a clas-
sification ensemble with a set of NMF-SSCC classifiers using

various latent graphs. Given adjacency matrices fEðiÞg
p

i¼1 of p latent
graphs, the NMFE-SMCC algorithm is described in Algorithm 2. In
the algorithm, each NMF-SSCC model is learnt from one latent
graph, and we combine the learned NMF-SSCC models into an
ensemble classifier to effectively compute the prediction for net-
work data.

4. Experiments

In this section, we compare the performance of our proposed
NMF-SSCC algorithm with the autocorrelation network to a num-
ber of baselines (SVM, wvRN + RL, ICA, semiICA, and LNP) on three
data sets, and show that the proposed NMF-SSCC algorithm out-
performs these algorithms.

4.1. Data sets

We use three real network data sets for our performance com-
parison. A summary of the characteristics of these data sets are
shown in Table 2 and described below.

The Cora data set [10]3 is a paper publication data set which is
used frequently in collective classification studies. It consists of
2708 machine learning papers classified into one of seven classes:
‘‘Case Based’’, ‘‘Genetic Algorithms’’, ‘‘Neural Networks’’,
‘‘Probabilistic Methods’’, ‘‘Reinforcement Learning’’, ‘‘Rule Learning’’
and ‘‘Theory’’. Each node in the network graph represents a paper
document described by a 0/1 valued bag-of-word vector with 1433
dimensions. The citations provide links between the instances and
we ignore their directions similar to Bilgic et al. [5]. This citation net-
work consists of 5278 links.

The Citeseer data set [10] is a collection of research papers
drawn from the Citeseer collection. The data set consists of 3312
instances taken from six classes as follows: ‘‘AI’’, ‘‘Agents’’, ‘‘DB’’,
‘‘HCI’’, ‘‘IR’’ and ‘‘ML’’. Each instance is described as a 0/1
bag-of-word vector indicating the absence or presence of particu-
lar words in the corresponding paper. The dimension of the vector
is 3703. There are 4598 links representing the citation relations
between the instances.

k ¼ 3. (For interpretation of the references to color in this figure legend, the reader
3 http://linqs.cs.umd.edu/projects/projects/lbc/index.html.
The COIL20 image data set [6]4 contains 32� 32 gray scale
images of 20 objects viewed from varying angles. A p nearest neigh-
bor graph is constructed to encode the interaction among the data
instances. For each data node xj, we find its p ¼ 5 nearest neighbors
and put edges between xj and its neighbors.

4.2. Existing methods for comparison and experimental setting

We compare the accuracy and sensitivity of our proposed
approach to five existing algorithms using the three data sets.
These baseline algorithms are as follows:

1. SVM. This classifier only uses the attribute feature informa-
tion for learning without considering using any link rela-
tionship. The linear kernel SVM in LibSVM5 is used.

2. wvRN + RL. This algorithm is a relational-only CC method
using only relational information. This method computes
the label of an instance by averaging the labels of its neigh-
bors. Macskassy and Provost [9] have shown that wvRN + RL
performs quite well on the network data. It is considered as
a good baseline learner for CC.

3. ICA. The Iterative Collective classification Algorithm (ICA)
[1] is one of the most popular CC methods that is frequently
used as a baseline for CC evaluation in previous studies. ICA
uses a local classifier for classification prediction. Prior work
has found Logistic Regression (LR) to be superior to other
classifiers, such as Naive Bayes and k-Nearest Neighbors,
for ICA [5]. Therefore, we use LR as the local classifier for
ICA in our experiments.

4. semiICA. This algorithm is a SSCC method. It uses the idea of
label regularization to learn hybrid local classifiers, enabling
them to leverage the unlabeled data to improve the learning
performance of the ICA algorithm.
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
5 Available at http://www.csie.neu.edu.tw/cjlin/libsvm/.

http://linqs.cs.umd.edu/projects/projects/lbc/index.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.csie.neu.edu.tw/cjlin/libsvm/
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Fig. 5. Results for the Cora data set.
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5. LNP. This algorithm is another SSCC method [4]. It explores
latent linkages among the nodes to generate a latent graph
for label propagation. There may exist various latent link-
ages for latent graph construction. Semantic similarity is
one of the most commonly used methods for latent graph
generation. In our experiments, we use the semantic simi-
larity linkages for the LNP algorithm. Such linkages can be
obtained by connecting the nearest neighbor of the
instances based on their attribute similarity.

To quantify the classification performance for the various clas-
sification approaches at each experimental trial,

Accuracy ¼ #Test data labeled correctly
#Test data

is used.
In the experiments, a small number of examples are randomly

selected as labeled data. The remaining ones are used as unlabeled
data for testing the quality of the classification. This is a challeng-
ing problem from the classifier training perspective because the
labeled data is scarce. The labeled/unlabeled data split is repeated
10 times for 10 runs. For each algorithm, the average accuracy as
well as the standard deviation over 10 runs is reported in order
to compare the effectiveness of the classifiers for the learning
tasks.

Note that it is generally more difficult to determine the classi-
fier parameter values when the number of labeled data available
is smaller. Thus, we simply set the penalty C ¼ 1:0 for the SVM
with linear kernel as default. The maximum number of iterations
for ICA and wvRN + RL is set to 10 and 100 as the setting used in
[38]. The number of neighbors used in wvRN + RL is depended on
the percentages of the labeled data used in the experiments.
Specifically, for each unlabeled node, wvRN + RL finds all its labeled
neighbors and computes the most common label among these
neighbors as the new label. The number of labeled neighbors used
increases as the percentages of labeled data increases.

The percentages of the labeled data used in the experiments is
small, the number of possible labels of the data sets is large, and
the label matrix Y in Eq. (6) is a sparse matrix, i.e., Y has large
quantity of zero elements (Yij ¼ 0). In this case, we set the param-
eter h in Eq. (6) to be a small value (0.01 in this study) to ensure the
zero elements with a large weight. The parameters a and b in Eq.
(8) are set default to 10 and 5, respectively. The parameter selec-
tion will be discussed in Section 4.6.
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Fig. 7. Results for the COIL20 data set.
4.3. NMF-SSCC results

Figs. 5–7 show the accuracy results of different compared algo-
rithms on the Cora, Citeseer and COIL20 data sets with respect to
different percentages of labeled data ranging from 1% to 10%. For
each percentage of labeled data in each data set, we average accu-
racies of each algorithm over 10 runs and report the results of aver-
age accuracies and standard deviation. The x-axis of the figures
indicates the different percentages of data used as labeled
instances, and y-axis of the figures indicates the results of accuracy
of different algorithms. We see from the figures that, over all per-
centages of labeled/unlabeled data splits, our proposed NMF-SSCC
method consistently outperforms the other baselines. In general,
the smaller the percentage of labeled data is, the larger improve-
ment NMF-SSCC can achieve.

We note that only a small number of labeled data available is
the focus for our study. From the figures, one observes that
NMF-SSCC achieves a better performance than the other algorithm
by a large margin when the percentage of labeled data is less than
5%. NMF-SSCC achieves the largest improvement against the other
baselines while learning with only 1% labeled data. For instance,
NMF-SSCC achieves accuracy improvement of 16% against the sec-
ond best method on the Cora data set (NMF-SSCC with accuracy
0.67 versus semiICA with 0.51), and 22% on the Citeseer data set
(NMF-SSCC with accuracy 0.66 versus semiICA with 0.45). This
result illustrates the advantages of the proposed NMF-SSCC
method when there are an extremely small number of labeled
data, and it is consistent with our earlier assertions that our pro-
posed approach can work well in the paucity of labeled data. A clo-
ser examination of the results in the figures shows that the second
best performing methods are semiICA and LNP which leveraging
the unlabeled data using some form of semi-supervised learning.



Table 3
The results of win/tie/loss counts.

Data set SVM wvRN + RL ICA semiICA LNP

Cora 5/0/0 4/1/0 5/0/0 4/1/0 4/1/0
Citeseer 5/0/0 5/0/0 5/0/0 5/0/0 5/0/0
COIL20 5/0/0 4/1/0 5/0/0 5/0/0 5/0/0

Table 4
The running time (in seconds) of different learning algorithms on the Citeseer dataset.

SSCC-NMF SVM wvRN + RL ICA semiICA

2% 3.50 4.20 5.87 6.15 6.75
4% 6.93 12.15 14.13 30.19 32.07
6% 7.05 7.75 8.23 9.25 9.18
8% 12.18 13.79 17.19 18.04 19.63
10% 25.72 30.35 39.92 41.31 45.99
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Fig. 8. The accuracy of NMF-SMCC (with different latent graphs) and NMFE-SMCC
(with all latent graphs) against different percentages of labeled data (%) on the Cora
data set.

Table 5
The accuracy of NMFE-SMCC with all latent graphs and NMFE-SMCC without using
the prediction graph on the Cora dataset.

Ensemble methods 1% 2% 3% 4% 5%

NMFE-SMCC with all graphs 0.687 0.719 0.762 0.775 0.786
NMFE-SMCC without prediction

graph
0.672 0.701 0.750 0.758 0.770
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The SVM and wvRN + RL methods only using the attribute features
or relational information perform is not competitive with the other
algorithms. They perform poorly when there are limited number of
labeled data.

We further analyze the performance difference between
NMF-SSCC and other methods and count the results of the
win-tie-loss with pairwise t-tests at 0.10 significance level. In the
statistical significance evaluation, the percentages of labeled data
used for learning are 1%, 2%, 3%, 4% and 5%. For each labeled/unla-
beld data split, a win (or loss) is counted when NMF-SSCC is signif-
icantly better (or worse) than the compared algorithm over 10
runs. Otherwise, a tie is recorded. Table 3 shows the win/tie/lose
counts with pairwise t-test for NMF-SSCC against the baselines.
The results of win/tie/loss counts are 5/0/0 over all comparison
except the comparisons on the Cora and COIL20 data sets where
the win/tie/loss counts on Cora data set are 4/1/0 when compared
with wvRN + RL, semiICA, and LNP with 5% of labeled data and the
win/tie/loss counts on COIL20 data set are 4/1/0 when compared
with wvRN + RL with 5% of labeled data. This result reveals that
NMF-SSCC is statistically superior to other compared methods
when there is only limited number of labeled data.

We also conduct experiment to compare the running time of
NMF-SSCC with the SVM, wvRN + RL, ICA, and semiICA algorithms
on the Citeseer dataset. The comparison is performed in a com-
puter with 2.40 GHz CPU and 4.0 GB memory. The results of differ-
ent compared algorithms against different percentages of labeled
data on the Citeseer dataset are given in Table 4, where the best
performance on each percentage of labeled data is bolded. We
can see from the table that NMF-SSCC is able to achieve better run-
ning time performance against compared algorithms. Similar run-
ning time results on the other datasets are also observed.

4.4. NMFE-SMCC results

In the case of NMFE-SMCC, three types of latent graphs are uti-
lized to build the ensemble model. It is desirable to investigate
which latent graph will work better with the proposed NMF
method, and whether the ensemble method will improve the
equality of classification. In this experiment, we compare the per-
formance of the MFE-SMCC method using a single latent graph
with the NMFE-SMCC ensemble method using multiple latent
graphs on the Cora data set with different label ratio from 1% to
5%. For each label ratio, we report the average accuracy of each
comparison method over 10 runs. The experimental results are
given in Fig. 8, where NMF-SMCC-1, NMF-SMCC-2 and
NMF-SMCC-3 denote the NMF-SMCC method using the autocorre-
lation latent graph (Eð1Þ), the random walk latent graph (Eð2Þ) and
the prediction similarity latent graph (Eð3Þ), respectively. While
NMFE-SMCC denotes the ensemble method using all the latent
graphs.

From Fig. 8, we observe that NMFE-SMCC using multiple latent
graphs is able to achieve better performance against the
NMF-SMCC method using a single latent graph. A reasonable
explanation for this finding is that the different latent graphs
have complementary relationship for classification, because these
latent graphs are derived on the basis of different data sources.
The performance of an ensemble learner is highly dependent on
two factors: one is the accuracy of each component learner; the
other is the diversity among these components. Examining the
results in Fig. 8 shows that the performances of the NMF-SMCC
methods built from different graphs are able to achieve good over-
all performance. This result indicates that different latent graphs
provide prediction knowledge from different aspects, and thus
the ensemble of such latent graphs is able to achieve better perfor-
mance than the single latent graph scheme.

We also conduct experiment to investigate how the prediction
similarity latent graph affects the performance of the ensemble.
Table 5 shows the accuracy results of NMFE-SMCC with all latent
graphs and NMFE-SMCC without using the prediction latent graph
on the Cora dataset. We find that NMFE-SSCC using all the latent
graphs has better performance against the NMFE-SSCC only using
the autocorrelation latent graph and the random walk latent graph.
These results are reasonable because the autocorrelation latent
graph and the random walk latent graph are based on the network
topology information. The prediction latent graph considers the
availability of label information to learn a latent graph such that
the supervision knowledge can be applied in the ensemble. Such
strategy is found to be useful in learning tasks with limited labeled
data in the experiments.

4.5. Convergence study

The iterative algorithm in Algorithm 1 minimizes the objective
functions O in Eq. (8) using iterative updates. Here, we investigate
the convergence of the iterative algorithm. Figs. 9 and 10 shows
the convergence curve of the NMF-SSCC algorithm on the Cora
and Citeseer data sets (with 5% labeled data). The x-axis is the
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Fig. 9. Convergence curve of NMF-SSCC on the Cora data set.
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Fig. 10. Convergence curve of NMF-SSCC on the Citeseer data set.
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number of iterations in the optimization procedure for the objec-
tive function O, and the y-axis is the difference of successively
computed objective value jjOðt � 1Þ � OðtÞjj at t and t � 1 iteration
steps. We observe from the figures that the difference of the suc-
cessive computed objective values decreases as the iteration num-
ber increases. The algorithm converges after about 20 iterations.
4.6. Parameter sensitivity

For our proposed NMF-SSCC method, we need to set the param-
eters a and b which quantify the importance of the label matrix
factorization term and network regularizer term in the objective
function (8). In this experiment, we investigate how different val-
ues of the parameters a and b affect the classification accuracy of
the proposed method. Fig. 11 shows the classification accuracy of
NMF-SSCC using different values of label matrix factorization term
parameter a. The parameter b is fixed at 5. From the figure, we
observe that when a is small the accuracy is poor because the pro-
posed algorithm becomes an unsupervised NMF. The accuracy of
the proposed NMF-SSCC method increases as the value of a
increases. However, the accurate for a between 5 and 60 does
not change significantly. Such a plateau in the accuracy curve indi-
cates that the proposed method is insensitive to the specific setting
of a across a wide range of parameter setting. One observes that
the best performance is achieved at a ¼ 10. Fig. 12 shows the clas-
sification accuracy of NMF-SSCC using different values of network
regularization term parameter b. The parameter a is fixed at 10.
When one has a small b value, i.e., no network regularization is
used, the classification accuracy is degraded. As the parameter b
increases, the accuracy reaches a plateau between 5 and 60, and
does not change significantly. One observes that the best perfor-
mance is achieved at b ¼ 5. The convergence behaviors of
NMF-SSCC on the other data sets are similar.
5. Conclusions

In this paper, we present an effective non-negative matrix fac-
torization (NMF) based learning method for semi-supervised col-
lective classification (SSCC). This method alleviates the issue of
scarce labels inherent in the domain of network data classification.
A factorization term contains the label information and a network
regularizer term respects the network structure are incorporated
into the NMF model to seek a data representation which respects
the label information and the intrinsic network structure in the
network data for SSCC. An efficient iterative algorithm using mul-
tiplicative updating rules is developed to optimize the objective
function of the proposed NMF method, and to effectively compute
the class labels of the unlabeled instances. We also extend the pro-
posed NMF method into an ensemble classification scheme by con-
structing various latent graphs that utilize different data sources
that are available in the CC problem setting. We evaluate the pro-
posed algorithms on three real world network data sets. The pro-
posed algorithms show superior results compared to a number of
baseline classification algorithms. The improvement of the ensem-
ble method against the single latent graph methods is not signifi-
cant because the proposed ensemble algorithm uses a simple
equally-weighting method for each latent graph. The
equally-weighting method is not able to reflect the different
degrees of importance from different latent graphs. In future, we
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plan to investigate a more sophisticated weight setting for building
the ensemble, such that the latent graph with more discriminative
power for classification tends to have higher weights. A suitable
weight for each latent graph is critical to our ensemble method.
It remains unclear how to do weight selection theoretically and
effectively. It is interesting to investigate the weight selection
method in our future work. We also plan to use our proposed
method for semi-supervised classification tasks in heterogeneous
networks.
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Appendix A. Proofs of Theorem 1

To prove Theorem 1, we need to show that O is non-increasing
under the updating rules Eqs. (17)–(19). Since the second and the
third terms in O are not related to U, we have exactly the same
update formula for U under Eq. (8) as in the original NMF. On
the other hand, the first and the third terms in O are not related
to B. By reversing the roles of X and Y, and reversing the roles of
U and B in Eq. (8), O can similarly be shown to be non-increasing
under the update rules for B.

Thus we only need to prove that O is non-increasing under the
updating rules for V in Eq. (19). Our convergence proof will follow
the similar procedure in [6] by making use of an auxiliary function
similar to that used in [39]. The definition of the auxiliary function
is given as follows.

Definition 1. Gðh; h0Þ is an auxiliary function for FðhÞ if the
following conditions are satisfied

Gðh; h0ÞP LðhÞ; Gðh; hÞ ¼ FðhÞ ð23Þ
Lemma 1. If G is an auxiliary function of F , then F is non-increasing
under the update

hðtþ1Þ ¼ arg min
h
Gðh; hðtÞÞ ð24Þ
Proof.

Fðhðtþ1ÞÞ 6 Gðhðtþ1Þ; hðtÞÞ 6 GðhðtÞ; hðtÞÞ ¼ FðhðtÞÞ: �

In the following, we will show that the update rules for V are
exactly the updates in Eq. (24) with a proper auxiliary function.
For simplicity’s sake, we rewrite the objective function O in Eq.
(8) without using the weight matrix E as follows

O ¼ jjX� UVT jj2 þ ajjY � BVT jj2 þ bTrðVT LVÞ

¼
XM

i¼1

XN

j¼1

x�
XK

k¼1

uikv jk

 !
þ a

XM

i¼1

XN

j¼1

x�
XK

k¼1

uikv jk

 !

þ b
XK

k¼1

XN

j¼1

XM

l¼1

v jkLjlv lk ð25Þ

We use Fab to denote the part of O which is relevant to V, and we
have
F 0ab¼
@O
@V

� �
ab

¼ð�2XT Uþ2VUT U�a2YT Bþ2aVBT Bþ2bLVÞab ð26Þ

F 00ab¼2ðUT UÞaaþ2aðBT BÞaaþ2bLaa ð27Þ

The update in Eq. (19) for V is element-wise, thus it is sufficient to
show that each Fab is non-increasing under the update step of Eq.
(19).

Lemma 2. If Fab is the part of O which is relevant to V, then the
auxiliary function for Fab is given as follows

Gðv; v ðtÞab Þ ¼ Fabðv ðtÞabÞ þ F 0abðv
ðtÞ
abÞðv � v ðtÞabÞ

þ ðVUT UÞaa þ aðVBT BÞaa þ bðDVÞab

v ðtÞab

ðv � v ðtÞabÞ
2

ð28Þ
Proof. It is obvious that Gðv ;vÞ ¼ FabðvÞ. In the follows, we show

that Gðv ;v ðtÞabÞP FabðvÞ. First, we compare the Taylor series expan-
sion of FabðvÞ

FabðvÞ ¼ Fabðv ðtÞabÞ þ F 0abðv
ðtÞ
abÞðv � v ðtÞabÞ ð29Þ

þ ½ðUT UÞbb þ aðBT BÞbb þ bLaa�ðv � v ðtÞabÞ
2

ð30Þ

with Eq. (28) to find that Gðv ;v ðtÞabÞP FabðvÞ is equivalent to

ðVUT UÞaaþaðVBT BÞaaþbðDVÞab

v ðtÞab

P ðUT UÞbbþaðBT BÞbbþbLaa ð31Þ

Because we have

ðVUT UÞaa ¼
XK

l¼1

v ðtÞal ðU
T UÞlb P v ðtÞab ðU

T UÞbb ð32Þ

and

aðVBT BÞaa ¼ a
XK

l¼1

v ðtÞal ðB
T BÞlb P av ðtÞabðB

T BÞbb ð33Þ

and

bðDVÞab ¼ b
XM

j¼1

Dajv ðtÞjb P bDaav ðtÞab P bðD� EÞaav
ðtÞ
ab ¼ bLaav ðtÞab ð34Þ

Thus, Eq. (31) holds and Gðv ;v ðtÞabÞP FabðvÞ. h
Proof of Theorem 1. Replacing Gðv; v ðtÞabÞ in Eq. (24) by Eq. (28)
resulting in the update rule:

v ðtþ1Þ
ab ¼ v ðtÞab � v ðtÞab

F 0abðv
ðtÞ
abÞ

2ðVUT UÞaa þ 2aðVBT BÞaa þ 2bðDVÞab

ð35Þ

¼ v ðtÞab

ðXT Uþ aYT Bþ bEVÞab

ðVUT Uþ aðVBT BÞaa þ bðDVÞÞab

Since Eq. (28) is an auxiliary function, Fab is non-increasing under
this update rule.
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