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Abstract

Deep learning has achieved unprecedented practical success in many applications. Despite
its empirical success, however, the theoretical understanding of deep neural networks still
remains a major open problem. In this paper, we explore properties of two-layered ReLU
networks. For simplicity, we assume that the optimal model parameters (also called ground-
truth parameters) are known. We then assume that a network receives Gaussian input and
is trained by minimizing the expected squared loss between the prediction function of the
network and a target function. To conduct the analysis, we propose a normal equation
for critical points, and study the invariances under three kinds of transformations, namely,
scale transformation, rotation transformation and perturbation transformation. We prove
that these transformations can keep the loss of a critical point invariant, thus can incur flat
regions. Consequently, how to escape from flat regions is vital in training neural networks.

Keywords: Two-layered ReLU network, flatness, critical points, loss surface

1. Introduction

Deep learning plays a remarkable role with its state-of-the-art performance in many fields,
including computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language pro-
cessing (Sarikaya et al., 2014), speech recognition (Hinton et al., 2012), reinforcement learn-
ing (Mnih et al., 2015; Silver et al., 2016), etc. Despite its empirical success, theoretical
understanding of neural networks, however, is still very limited.

The loss function of a neural network is highly non-convex, leading to numerous obstacles
for training with gradient-based methods, with fear of proliferation of saddle points and
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existence of local minima. Recently, Kawaguchi (2016) proves the nonexistence of poor
local minima for deep nonlinear neural networks under strong assumptions, that is, the
activation is independent of the input. Dauphin et al. (2014) argue that the difficulty in
training neural networks mainly comes from saddle points rather than poor local minima,
and such saddle points are surrounded by high-error plateaus, which may slow down the
learning procedure. Interestingly, Shamir (2016) states that the reason of difficulty in
training is not plethora of critical points but flat loss surfaces. Two natural questions thus
arise: does the flatness exist and what kind of reasons causes such flatness?

Answering these questions, however, is difficult. In the past few years, analysis on
flatness of loss surface for high-dimensional and non-convex problems has attracted much
attention. For example, Hochreiter and Schmidhuber (1997) propose a method to find flat
minima whose neighbors have similar errors. Dauphin et al. (2014) argue that saddle points
are surrounded by plateaus, which slow down the learning procedure. Shamir (2016) dis-
cusses a special case where a loss function may exhibit flatness nearly everywhere. Freeman
and Bruna (2016) show that the solution space of a two-layered ReLU network is connected,
which shapes the flat landscape. Lipton (2016) experimentally demonstrates that the al-
gorithm does not converge to critical points, instead a flat region of weight space. On the
other hand, some researchers have noticed that neural networks do have many local minima,
while the performances of them are very similar. These results raise a theoretical question
that why the loss remains approximately constant.

In this paper, we seek to analyze the flat phenomenon from different perspectives and
aim to study how the critical points form flat regions on the loss surface. Specifically, we
focus on genreral two-layered ReLU networks with a linear output layer. Moreover, the
network is trained by minimizing the expected squared loss between the prediction function
and a target function with known optimal parameters (also called ground-truth parameters)
over the input distribution. Combination of assumptions on both the input distribution and
the target function is sufficient to guarantee computationally tractable learning (Shamir,
2016). Based on this, we consider zero-mean Gaussian inputs and a target function that is
related to a two-layered ReLU network with fixed ground-truth weights.

In this paper, we provide theoretical evidences that the flatness of loss surface does
indeed exist. Our main contributions are summarized as follows:

• Tian (2017) studies critical points in a special case where the last layer contains fixed
weights of value 1, which makes the problem easier to handle. Unlike Tian (2017)’s
work, we study the flatness of loss surface for general two-layered ReLU networks
without the fixed-weights setting for the last layer.

• We provide a normal equation for the loss function hao which helps to understand the
behaviors of critical points and the loss function.

• Based on the normal equation, we consider three kinds of transformations and explore
the invariance of the loss function under these transformations.

The rest of the paper is organized as follows. Section 2 introduces the problem definition.
Section 3 presents main results under different transformations. In Section 4, we provide
the detailed proofs corresponding to the main results. Section 5 concludes this work and
opens many future directions.
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2. Problem Definition

2.1. Notations

We denote by [m] the set {1, . . . ,m}. Let vec(M) ∈ Rmn be the vectorization of a matrix

M ∈ Rm×n, i.e., vec(M) =
[
MT
·,1,M

T
·,2, . . . ,M

T
·,n
]T

where M·,j is the j-th colunm vector of

M. Let M⊗M′ be the Kronecker product of M and M′. Let Dvec(Wk)f(·) = ∂f(·)
∂ vec(Wk) be

the partial derivative of f with respect to vec (Wk) in the numerator layout.

2.2. Two-layered ReLU Networks

Let (X,Y) be the training data set, where X ∈ RN×dx denotes the input data matrix, and
Y ∈ RN×dy denotes the ground-truth output. Without loss of generality, we consider a two-
layered neural network with ReLU activation function, let σ(A) = max(0,A) : Rm×n →
Rm×n be the element-wise rectified linear unit (ReLU) function, and let W = {W1 ∈
Rdx×d1 ,W2 ∈ Rdy×d1} be the weights of the network, where W1 =

[
w

(1)
1 ,w

(1)
2 , . . . ,w

(1)
d1

]
∈

Rdx×d1 and W2 =
[
w

(2)
1 ,w

(2)
2 , . . . ,w

(2)
d1

]
∈ Rdy×d1 are the weights of the first and second

layers, respectively. For convenience, we exclude the bias terms in our definition, and the
output g(W,X) ∈ RN×dy of a two-layered ReLU network can be written as

g(W,X) = σ (XW1) WT
2 =

d1∑
i=1

σ
(
Xw

(1)
i

)
w

(2)
i

T
, (1)

where w
(1)
i and w

(2)
i are the i-th column vector of W1 and W2, respectively.

We define Di = D(wi) = σ (Xwi) = diag (sgn (Xwi > 0)) as an N×N diagonal matrix,
where i ∈ [d1]. Here, the sign function sgn(·) is defined as sgn(a) = 1 if a > 0, otherwise,
sgn(a) = 0. The l-th diagonal element of Di is 1 or 0, which indicates whether the l-th
neuron is activated or not. Based on the above definitions, we can rewrite the prediction
function of the two-layered ReLU networks as:

g(W,X) =

d1∑
i=1

DiXw
(1)
i w

(2)
i

T
. (2)

Now we are ready to define the loss function between learned weights and the ground-truth
weights. We assume the optimal weights W∗ = {W∗

1,W
∗
2} are known in advance, where

W∗
1 ∈ Rdx×d′1 ,W∗

2 ∈ Rdy×d′1 are the weights of two layers respectively, we define the loss

function L̃(W) = 1
2 ‖g(W,X)− g(W∗,X)‖2F , and consider the expected squared loss:

L(W) =
1

2
EX

[
L̃(W)

]
=

1

2
EX

[
‖g(W,X)− g(W∗,X)‖2F

]
, (3)

where ‖ · ‖F is the Frobenius norm. Note that we do not restrict that d1 = d′1, which means
that, compared to the network corresponding to W∗, the network corresponding to W may
have a different number of hidden nodes.
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2.3. Other Definitions

Definition 1 [Critical Point] Given a loss function L(W) of a two-layered ReLU net-
work, a point W is a critical point of L(W) if Dvec(Wi)L(W) = 0, where i ∈ [2].

Some previous works provided many different definitions of flat minima in experiment and
theory. Intuitively, Hochreiter and Schmidhuber (1997) define flat minima as a large con-
nected region in the weight space where the losses remain approximately constant. Addi-
tionally, Dinh et al. (2017) give a definition of ε-flatness of minima. For convenience, we
define the flatness of critical points as follows:

Definition 2 [Flatness of Critical Points] Given ε > 0, and a critical point W of
a loss L(W), we define C(L,W, ε) as the largest connected set containing W, such that
∀ W′ ∈ C(L,W, ε), |L(W) − L(W′)| < ε. The ε-flatness will be defined as the volume of
C(L,W, ε).

The above definition is very intuitive: a critical point is called flat if there exists a large
region around it in which the absolute loss difference between any different point and this
critical point is less than ε. Otherwise, the critical point is sharp.

A flat critical point always leads to a flat loss surface. However, A question is worth
exploring: if the flatness of a critical point is unknown, and will it also cause a flat loss
surface? To answer this question, we are interested in whether a critical point is isolated.
We define the non-isolated critical point as follows:

Definition 3 [Non-isolated Critical Point] A critical point W is non-isolated if there
is a largest connected set C(L,W, ε) containing W, and W is not the only critical point.
Otherwise such critical point is called isolated.

Relying on Definition 3, we will explore whether a large region that leads to the at loss
surface contains many non-isolated critical points. To this end, we need some transforma-
tions to form these critical points in the large region.

3. Main Results under Different Transformations

In this section, we first introduce the normal equation, and then analyze the behaviors of
critical points under three kinds of transformations.

3.1. Normal Equation

To identify and analyze the critical points of the loss function, we take the expectation
of the partial derivative of Eqn. (3) w.r.t. vec(W1) and vec(W2), respectively, and set

them to 0. Then, we have E
[
Dvec(Wi)L̃(W)

]
= 0, where i ∈ [2]. Ideally, we shall find

critical points by solving the first-order equations. However, it is often difficult to achieve
closed-form solutions of W1 and W2. Nevertheless, we can expand the expectation of the
partial derivatives and introduce the following normal equation for critical points.
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Lemma 1 (Sufficient and necessary conditions for critical points) W = {W1,W2}
is a critical point of L̃(W) if and only if

0 = E
[(
Dvec(W1)L̃(W)

)T]
=
N

2π

∑
k

(Ak −A∗k) W2Pk, (4)

0 = E
[(
Dvec(W2)L̃(W)

)T]
=
N

2π

∑
k

PkW
T
1 (Ak −A∗k) , (5)

where Ak = W1ΩkW
T
2 +BΛkW

T
2 , A∗k = W∗

1Ω
∗
kW

∗
2
T+B∗Λ∗kW

∗
2
T, B =

[
e

(1)
1 , e

(1)
2 , . . . , e

(1)
d1

]
with e

(1)
k =

w
(1)
k∥∥∥w(1)
k

∥∥∥ , Λk = N
2πdiag

([∥∥∥w(1)
1

∥∥∥ sin θk,1,
∥∥∥w(1)

2

∥∥∥ sin θk,2, . . . ,
∥∥∥w(1)

d1

∥∥∥ sin θk,d1

])
,

Ωk = N
2π (πIdx − diag([θk,1, θk,2, . . . , θk,d1 ])), where θk,i = ∠

(
e

(1)
k ,w

(1)
i

)
, i ∈ [d1]. Here,

the k-th diagonal element of the matrix Pk is equal to 1 and other diagonal elements are
equal to 0.

Instead of solving the above equation, we use it to analyze the behaviors of critical points.
Note that the expectation function is differentiable everywhere except the origin, i.e., W1 =

0. In other words, E
[
Dvec(W1)L̃(W)

]
and E

[
Dvec(W2)L̃(W)

]
are not continuous.

Baldi and Hornik (1989) and Kawaguchi (2016) have analyzed linear networks without
ReLU. Tian (2017) have analyzed the special case where the last layer contains fixed weights
of value 1. Here, for simplicity, we first analyze the expected loss of a two-layered linear
network without ReLU.

Proposition 1 For a two-layered linear network without ReLU, for any fixed W2 ∈ Rdy×d1,

the expectation function E
[
L̃(W)

]
is convex with respect to W1, and its minimum satisfies

W1W
T
2 W2 = W∗

1W
∗
2
TW2.

If W2 is full rank, then E
[
L̃(W)

]
is strictly convex and has a unique minimum:

W1 = W∗
1W

∗
2
TW2

(
WT

2 W2

)−1
.

Similarly, for any fixed matrix W1, the expected loss E [L(W)] is convex with respect to
W2. In this case, if W1 is full rank, then L(W) is also strictly convex and has a unique
minimum.

In the following, the newtork without ReLU, we will focus on the expectation of the loss
function for a two-layered network with ReLU activations. We aim to analyze the behavior
of the critical points and the loss function with three common transformations.

3.2. Invariance under Scale Transformation

We first present the definition of scale transformation provided in (Dinh et al., 2017):

Definition 4 [α-scale transformation ] For a two-layered ReLU network, the α-scale
transformation is defined as: Tα : {W1,W2} 7→ {αW1, α

−1W2}, α > 0.
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Note that an α-scale transformation Tα dose not affect the prediction function and the loss
function, which leads to the following theorem which indicates that Tα keeps the loss of a
critical point invariant.

Theorem 1 [Scale-invariant] If W = {W1,W2} is a critical point satisfying Eqns. (4)
and (5), then for any α > 0, Ŵ = Tα(W) = {αW1, α

−1W2} is also a critical point, and
L(W) = L(Ŵ).

This theorem depicts the level function of the loss L w.r.t. given weight matrices W1 and
W2. From this theorem, all critical points generated by Tα form continuous critical points
and a flat surface, i.e., the losses of these critical points are the same. Furthermore, this
Theorem leads to the following proposition.

Proposition 2 Given a two-layered ReLU network, it follows that a critical point W 6= 0
is non-isolated, and ∀ ε > 0, C(L,W, ε) has an infinite volume.

The proof is similar to the method in (Dinh et al., 2017). This proposition means that
around every critical point, there exists an infinitely large region in which the losses of
points remain approximately constant.

The reason of this invariance of loss is that the prediction function is not changed
under the α-scale transformation Tα, which changes W1 and W2 simultaneously based on
parameter α. Next, we pay attention to more complicated cases where W1 and W2 can be
changed separately.

3.3. Invariance under Rotation Transformation

Without loss of generality, we assume that the optimal parameters W∗
1 and W∗

2 are known
in advance. The optimal parameters are also called ground-truth parameters.

Definition 5 [Principal Hyperplane] Define Π∗1 and Π∗2 as Principal Hyperplanes spanned

by the ground-truth weight vectors W∗
1 = [w∗1

(1), . . . ,w∗d′1
(1)] and W∗

2 =
[
w∗1

(2), . . . ,w∗d′1
(2)
]
,

respectively.

Note that Π∗1 and Π∗2 are at most d′1-dimensional, since Π∗1 and Π∗2 are spanned by d′1 ground-

truth weight vectors.
{

w
(i)
j

}d1
j=1

is said to be in-plane, if all w
(i)
j ∈ Π∗, where i ∈ {1, 2};

Otherwise, it is out-of-plane. Recall that Ωk only depends on the angles between the column
vectors of W1, and Λk only depends on the magnitudes of column vectors of W1 and the
angles between them. Based on these, the following theorem shows the rotation invariance
for critical points.

Theorem 2 [Rotation Invariance] If W = {W1,W2} is a critical point satisfying
Eqns. (4) and (5), for any orthogonal mapping matrices R1 and R2 with R1|Π∗1 = Idx
and R2|Π∗2 = Idy such that R1W

∗
1 = W∗

1 and R2W
∗
2 = W∗

2, respectively, then W̄ =
{R1W1,W2R2} is also a critical point.
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When dx ≥ d′1 + 2 or dy ≥ d′1 + 2, there always exist R1 6= Idx and R2 6= Idx that yield
continuous critical points that lie on a loss surface. Specifically, the rotation invariance in
Theorem 2 leads to the following theorem that characterizes the structure of out-of-plane
critical points and shows that these critical points lie on a manifold:

Theorem 3 Given dx ≥ d′1 + 2 or dy ≥ d′1 + 2, if a critical point W, which satisfies Eqns.
(4) and (5), is out-of-plane, then it is non-isolated and lies in a manifold. For ∀ ε > 0,
C(L,W, ε) has a large volume ε-flatness in this manifold.

For any out-of-plane critical point, there exists a set of matrices that are not identity
matrices but keep Π∗i invariant. These matrices form a Lie group SO(dx), in which each
element can transform one critical point to another critical point. This theorem shows that
such critical point would be adequately flat according to the arbitrary volume ε-flatness.
As a result, there exists a citical point with a large and flat region where the loss of each
point is arbitrarily close to a constant.

Corollary 1 Suppose d1 = d′1 = 1, dx > 1 is an odd number, if W = {W1,W2} is a
critical point satisfying Eqns. (4) and (5), then there exist rotation matrices R1 and R2

satisfying R1W
∗
1 = W∗

1 and R2W
∗
2 = W∗

2, such that W̄ = {R1W1,R2W2} is also a
critical point, and L(W) = L(W̄).

This corollary also shows that there exists a set of rotaion matrices yielding continuous
critical points which form a flat surface.

3.4. Invariance under Perturbation Transformation

The parameter space of a two-layered ReLU network is complicated and high-dimensional.
Therefore it is difficult to characterize the behaviors of the critical points and losses between
two critical points. Consequently, we do not know whether a training algorithm will be stuck
in a critical point, a flat region or a large obstacle.

In fact, Goodfellow et al. (2014) introduce a simple technique for qualitatively analyzing
objective functions experientially. In this paper, we introduce a transformation to conduct
perturbation on a line between two points theoretically. The definition of perturbation
transformation is given as follows:

Definition 6 [Perturbation Transformation] Given two points W and W̄, we define
a perturbation transformation on a straight line as: Pµ(W,W̄) = W + µ(W̄ −W), µ > 0.

Here, µ = 0 or µ = 1 means that there is no perturbation, namely, P0(W,W̄) = W
and P1(W,W̄) = W̄. This definition of perturbation transformation is consistent with a
straight path in which we can perturb a point to another.

We measure the expected loss for a series of points generated by perturbation trans-
formation with varying values of µ > 0, and employ this simple technique to analyze the
behavior of critical points and loss function theoretically.

Theorem 4 [Perturbation Invariance] Given a fixed weight matrix W1, if W =
{W1,W2} is a critical point satisfying Eqn. (5), then there exists a perturbation of W,
such that W̃ = {W1,W̃2} is also a critical point and is non-isolated.

551



Cao Wu Yan Wang Tan

This theorem shows that in the straight path, there exists a flat region where the losses of
points remain approximately constant. This raises a question that if weight matrix is not
fixed, will it break this perturbation invariance?

Moreover, it is worth mentioning that, in (Goodfellow et al., 2014), they shows that
there exists a certain linear space in which the algorithm does not meet another critical
point. To understand this phenomenon theoretically, we utilize another critical point W̄
given in Theorem 2 to construct a linear parameter space, and have the following theorem.

Theorem 5 Let W = {W1,W2} be a critical point satisfying Eqns. (4) and (5), for any
orthogonal mapping pair R1 and R2 with R1|Π∗1 = Idx and R2|Π∗2 = Idy , if W̄1 = R1W1

and W̄2 = R2W2, then W̃ = Pµ(W,W̄) = {W̃1,W̃2} cannot be a critical point.

This theorem indicates that given a critical point, there does not exist perturbation invari-
ance for another critical point that is generated by an orthogonal mapping in Theorem 2.
This result explains why there is no critical point in the straight line between two given
critical points.

4. Detailed Proofs

4.1. Preliminaries

To facilitate the proof, we need to introduce Population Gating (PG) function F (e,w) ≡
XTD(e)D(w)Xw in (Tian, 2017). Moreover, its expectation is given as follows.

Theorem 6 (Tian, 2017) Given F (e,w) = XTD(e)D(w)Xw, where e is a unit vector,
X = [x1,x2, . . . ,xN ]T is an N-by-d data matrix and D(w) = diag(sgn (Xw > 0)) is a
diagonal matrix with binary elements. If xi ∼ N(0, I), i ∈ [d1], then

E [F (e,w)] =
N

2π
[(π − θ)w + ‖w‖ sin θe] , (6)

where θ = ∠(e,w) ∈ [0, π] is the angle between e and w.

Based on the PG function, we have the following lemma study the normal equation of a
two-layered ReLU network.

Lemma 2 Given any k, let F
(
e

(1)
k ,w

(1)
i

)
= XTD

(
e

(1)
k

)
D
(
w

(1)
i

)
Xw

(1)
i , i ∈ [d1], where

e
(1)
k =

w
(1)
k∥∥∥w(1)
k

∥∥∥ , D(w) = diag(sgn (Xw > 0)). If xi ∼ N(0, I), i ∈ [d1], then

∑
i

E
[
F
(
e

(1)
k ,w

(1)
i

)]
w

(2)
i

T
= W1ΩkW

T
2 + BΛkW

T
2 , (7)

where B =
[
e

(1)
1 , e

(1)
2 , . . . , e

(1)
d1

]
with e

(1)
k =

w
(1)
k∥∥∥w(1)
k

∥∥∥ , Ωk = N
2π (πIdx − diag([θk,1, θk,2, . . . , θk,d1 ])),

Λk = N
2πdiag

([∥∥∥w(1)
1

∥∥∥ sin θk,1,
∥∥∥w(1)

2

∥∥∥ sin θk,2, . . . ,
∥∥∥w(1)

d1

∥∥∥ sin θk,d1

])
, and θk,i = ∠

(
e

(1)
k ,w

(1)
i

)
,

i ∈ [d1].
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Proof With Eqn. (6) in Theorem 6, we have∑
i

E
[
F
(
e

(1)
k ,w

(1)
i

)]
w

(2)
i

T
=
N

2π

∑
i

[
(π − θk,i)w

(1)
i +

∥∥∥w(1)
i

∥∥∥ sin θk,iek

]
w

(2)
i

T

=
N

2π

∑
i

[
(π − θk,i)w

(1)
i w

(2)
i

T
+
∥∥∥w(1)

i

∥∥∥ sin θk,iekw
(2)
i

T
]

=
N

2π

(
W1ΩkW

T
2 + BΛkW

T
2

)
,

where W1 =
[
w

(1)
1 ,w

(1)
2 , . . . ,w

(1)
d1

]
∈ Rdx×d1 and W2 =

[
w

(2)
1 ,w

(2)
2 , . . . ,w

(2)
d1

]
∈ Rdy×d1 .

Note that the left side of Eqn. (7) is linear to WT
2 , and is also dependent on the weight

matrix W1, including the magnitudes of its column vectors and the angles between them.
This lemma will be used to analyze the normal equation of the loss function L(W) in the
following part.

4.2. Proof of Lemma 1

Proof Recall that L̃(W) = 1
2 ‖g(W,X)− g(W∗,X)‖2F = 1

2 vec (E)T vec (E). By taking

the partial derivative of L̃(W) w.r.t. w
(1)
k as follows

D
w

(1)
k

L̃(W) =
(
Dvec(E)L̃(W)

)(
D

w
(1)
k

vec (E)
)

= vec (E)TD
w

(1)
k

(∑
i

vec (g(W,X))− vec(g(W∗,X))

)

= vec (E)TD
w

(1)
k

(∑
i

vec

(
DiXw

(1)
i w

(2)
i

T
)
− vec(g(W∗,X))

)

= vec (E)TD
w

(1)
k

(∑
i

(
w

(2)
i ⊗DiX

)
w

(1)
i

)
= vec (E)T

(
w

(2)
k ⊗DkX

)
, k ∈ [d1],

where E = g(W,X)− g(W∗,X). By expanding E, we obtain(
D

w
(1)
k

L̃(W)
)T

=

(
w

(2)
k

T
⊗XTDk

)
vec (E) = vec

(
XTDkEw

(2)
k

)
= XTDkEw

(2)
k

= XTD
(
w

(1)
k

)(∑
i

DiXw
(1)
i w

(2)
i

T
− g(W∗,X)

)
w

(2)
k

=
∑
i

XTD
(
w

(1)
k

)
D
(
w

(1)
i

)
Xw

(1)
i w

(2)
i

T
w

(2)
k −XTD

(
w

(1)
k

)
g(W∗,X)w

(2)
k

=
∑
i

∑
j:xT

j w
(1)
k >0,xT

j w
(1)
i >0

xjx
T
j w

(1)
i w

(2)
i

T
w

(2)
k −XTD

(
w

(1)
k

)
g(W∗,X)w

(2)
k

=
∑
i

F
(
e

(1)
k ,w

(1)
i

)
w

(2)
i

T
w

(2)
k −

∑
i

F
(
e

(1)
k ,w∗i

(1)
)

w∗i
(2)Tw

(2)
k ,
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where X = [x1,x2, . . . ,xN ]T. The last equation holds since F
(
e

(1)
k ,w

(1)
i

)
can be written

as
F
(
e

(1)
k ,w

(1)
i

)
=

∑
j:xT

j w
(1)
k >0,xT

j w
(1)
i >0

xjx
T
j w

(1)
i .

By taking the expectation, we get

E
[(
D

w
(1)
k

L̃(W)
)T]

=
∑
i

E
[
F
(
e
(1)
k ,w

(1)
i

)]
w

(2)
i

T
w

(2)
k −

∑
i

E
[
F
(
e∗
k
(1),w

(1)
i

)]
w∗

i
(2)Tw

(2)
k

=
N

2π

[(
W1ΩkWT

2 + BΛkWT
2

)
−
(
W∗

1Ω
∗
kW∗

2
T + B∗Λ∗

kW∗
2
T
)]

w
(2)
k , k ∈ [d1],

Furthermore, we have

E
[(
Dvec(W1)L̃(W)

)T]
=

[
E
[(
D

w
(1)
1
L̃(W)

)T]
,E
[(
D

w
(1)
2
L̃(W)

)T]
, . . . ,E

[(
D

w
(1)
d1

L̃(W)

)T
]]

=
N

2π

[(
W1

∑
k

ΩkWT
2 W2Pk + B

∑
k

ΛkWT
2 W2Pk

)

−

(
W∗

1

∑
k

Ω∗
kW∗

2
TW2Pk + B∗

∑
k

Λ∗
kW∗

2
TW2Pk

)]

=
N

2π

∑
k

(Ak −A∗
k) W2Pk.

Similarly, by taking the partial derivative of L̃(W) with respect to w
(2)
k , we get

E
[(
D

w
(2)
k

L̃(W)
)T]

= E

[
w

(1)
k

T∑
i

XTDkDiXw
(1)
i w

(2)
i

T
−w

(1)
k

T
XTDkg(W∗,X)

]

= w
(1)
k

T

[∑
i

E
[
F
(
e
(1)
k ,w

(1)
i

)]
w

(2)
i

T
−
∑
i

E
[
F
(
e∗
k
(1),w∗

i
(1)
)]

w∗
i
(2)T

]

=
N

2π
w

(1)
k

T [(
W1ΩkWT

2 + BΛkWT
2

)
−
(
W∗

1Ω
∗
kW∗

2
T + B∗Λ∗

kW∗
2
T
)]
, k ∈ [d1].

We then have

E
[(
Dvec(W2)L̃(W)

)T]
=

[
E
[(
D

w
(2)
1
L̃(W)

)T]
,E
[(
D

w
(2)
2
L̃(W)

)T]
, . . . ,E

[(
D

w
(2)
d1

L̃(W)

)T
]]

=
N

2π

[∑
k

PkWT
1 W1ΩkWT

2 +
∑
k

PkWT
1 BΛkWT

2

]

− N

2π

[∑
k

PkWT
1 W∗

1Ω
∗
kW∗

2
T +

∑
k

PkWT
1 B∗Λ∗

kW∗
2
T

]

=
N

2π

∑
k

PkWT
1 (Ak −A∗

k) .

By setting E
[(
Dvec(Wi)L̃(W)

)T]
= 0 for all i ∈ {1, 2}, we achieve the statement of Lemma 1.
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4.3. Proof of Proposition 1

Proof For any fixed W2, we can rewrite L̃(W) as

L̃(W) = ‖g(W,X)− g(W∗,X)‖2F

=
∥∥∥vec

(
XW1W

T
2

)
− vec

(
XW1W

T
2

)∥∥∥2

2

= ‖(W2 ⊗X) vec (W1)− (W∗
2 ⊗X) vec (W∗

1)‖22 .

By setting ∇L̃(W) = 0, we obtain(
WT

2 ⊗XT
)

(W2 ⊗X) vec(W1) =
(
WT

2 ⊗XT
)

(W∗
2 ⊗X) vec (W∗

1)

⇒
(
WT

2 W2 ⊗XTX
)

vec(W1) =
(
WT

2 W∗
2 ⊗XTX

)
vec (W∗

1)

⇒ vec
(
XTXW1W

T
2 W2

)
= vec

(
XTXW∗

1W
∗
2
TW2

)
⇒XTXW1W

T
2 W2 = XTXW∗

1W
∗
2
TW2.

For the standard Gaussian input X, we have EX[XTX] = I. Considering that E
[
L̃(W)

]
is

convex with respect to W1, W1 is a global minimum if and only if

W1W
T
2 W2 = W∗

1W
∗
2
TW2.

If W2 is full rank, WT
2 W2 is symmetric and positive definite, then E [L(W)] is strictly

convex w.r.t. W1 and has a unique minimum.

4.4. Proof of Theorem 1

Proof Since α > 0, for a rectified linear function σ(·), we have σ(X(αW1)) = ασ(XW1).
For the two-layered ReLU network, we have

σ(X(αW1))(α−1WT
2 ) = σ(XW1)WT

2 .

Therefore, the loss is invariant. If W = {W1,W2} is a critical point, then it is easy to
verify that Ŵ = {αW1, α

−1WT
2 } is also a critical point satisfying Eqns. (4) and (5).

4.5. Proof of Theorem 2

Proof Since R1 and R2 are orthogonal transformations, they do not change all the magni-

tudes of the column vectors of W1 and the angles between them. i.e., ∠
(
w

(1)
k ,w

(1)
k′

)
is not

changed, and
∥∥∥Riw

(i)
k

∥∥∥ =
∥∥∥w(i)

k

∥∥∥,
∥∥∥Riw

∗(i)
k

∥∥∥ =
∥∥∥w∗(i)k ∥∥∥, where k ∈ [d1], i ∈ [2]. Therefore,

Ωk and Λk are not changed. Since R1|Π∗1 = Idx and R2|Π∗2 = Idy , then Ω∗k and Λ∗k are not
changed, we thus have RiW

∗
i = W∗

i but RiWi 6= Wi, where i ∈ [2].
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We firstly discuss the left side of Eqn. (4) with the orthogonal transformation R1,

W̄1

∑
k

ΩkW̄
T
2 W̄2Pk + B̄

∑
k

ΛkW̄
T
2 W̄2Pk

=R1W1

∑
k

ΩkW
T
2 RT

2 R2W2Pk + R1B
∑
k

ΛkW
T
2 RT

2 R2W2Pk

=R1

∑
k

AkW2Pk. (8)

For the right side of Eqn. (4), we have

W∗
1

∑
k

Ω∗kW
∗
2
TW2Pk + B∗

∑
k

Λ∗kW
∗
2
TW2Pk

=R1W
∗
1

∑
k

Ω∗kW
∗
2
TRT

2 R2W2Pk + R1B
∗
∑
k

Λ∗kW
∗
2
TRT

2 R2W2Pk

=R1

∑
k

A∗kW2Pk. (9)

Combining Eqns. (8) and (9), we get R1
∑

k (Ak −A∗k) W2Pk = 0, which satisfies the
condition of a critical point in Eqn. (4). Now, we discuss Eqn. (5) under the orthogonal
transformation R2. For the left side of Eqn. (5), we have

∑
k

PkW̄
T
1 W̄1ΩkW̄

T
2 +

∑
k

PkW
T
1 B̄ΛkW̄

T
2

=
∑
k

PkW
T
1 RT

1 R1W1ΩkW
T
2 RT

2 +
∑
k

PkW
T
1 RT

1 R1BΛkW
T
2 RT

2

=
∑
k

PkW
T
1 AkR

T
2 . (10)

For the right side of Eqn. (5), we have∑
k

PkW
T
1 W∗

1Ω
∗
kW

∗
2
T +

∑
k

PkW
T
1 B∗Λ∗kW

∗
2
T

=
∑
k

PkW
T
1 RT

1 R1W
∗
1Ω
∗
kW

∗
2
TRT

2 +
∑
k

PkW
T
1 RT

1 R1B
∗Λ∗kW

∗
2
TRT

2

=
∑
k

PkW
T
1 A∗kR

T
2 . (11)

Combining Eqns. (10) and (11), we get
∑

k PkW
T
1 (Ak −A∗k) RT

2 = 0, which also satisfies
the condition of a critical point in Eqn. (5). Thus, W̄ = {R1W1,R2W2} is also a critical
point satisfying Eqns. (4) and (5).
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4.6. Proof of Theorem 3

Proof Without loss of generality, we only consider W1, and the discussions for W2 are
similar. If dx ≥ d′1 + 2, since Π∗1 is spanned by d′1 ground-truth weight vectors, then the
dimension of Π∗1 is at most d′1. Therefore, Π∗1 is embedded in a dx-dimensional space, and
any W1 satisfying Eqns. (4) and (5) is outside Π∗1 .

We will first show that there exists a rotation matrix that is not an identity matrix but
keeps Π∗1 invariant. In fact, there always exist such matrices since for a (dx−d′1)-dimensional
subspace, (i) if dx−d′1 is an odd number, then we can always choose a rotation matrix whose
fixed axis is not aligned with all d′1 weights; (ii) if dx − d′1 is an even number, then there
exists a rotation matrix without a fixed point. Therefore, given ε > 0, such matrices will
form a Lie group SO(dx) that transforms a critical point W to a different yet infinitely close
critical point W′, s.t., W′ ∈ C(L,W, ε), ε > 0. Since C(L,W, ε) contains W and W′, then
the critical point W is non-isolated. In addition, such metrices yield continuous critical
points with an equal loss.

Now we introduce a small region B∞(r,W) ⊆ C(L,W, ε) with approximately constant
loss around by W with non-zero volume. Here, B∞(r,W) is an `∞ ball of radius r centered
W, r ≤ min(‖ vec(W1)‖∞, ‖ vec(W2)‖∞). The volume of the `∞ ball is v = (2r)n1+n2 ,
where n1 = dim(vec(W1)) and n2 = dim(vec(W2)).

We construct a subsetR(W) ⊆ SO(dx) withm rotation matrices, s.t., R(i) (B∞(r,W))∩
B∞(r,W) = ∅, where R(i) ∈ R(W), i ∈ [m], that is, R(i) (B∞(r,W)) is disjoint of
B∞(r,W).

We define a connected region

C′ =
{

R(i)W′ =
{

R
(i)
1 W′

1,R
(i)
2 W′

2

}∣∣∣W′ = {W′
1,W

′
2} ∈ B(r,W),R(i) ∈ R(W), i ∈ [n]

}
in which the loss is approximately equivalent.

Let the volume of B∞(r,W) be v0, and the volume of R(i) (B∞(r,W)) be vi. We sum
their volume to lower bound the volume of C′ by

∑m
i=0 vi. Therefore, C(L,W, ε) has a finite

volume, leading to the large volume ε-flatness.

4.7. Proof of Corollary 1

Proof Since dx is an odd number, there exists at least one eigenvalue equal to 1, and
at least one axis being unaffected by the rotation. Given a non-zero ground-truth weight
matrix W∗ = {W∗

1,W
∗
2}, it implies that there exist rotation matrices R1 and R2 satisfying

R1W
∗
1 = W∗

1 and W∗
2
TRT

2 = W∗
2
T if det(Ri − I) = 0, i ∈ [2]. That is to say, the rotations

R1 and R2 around the rotation axes W∗
1 and W∗

2 do not affect W∗
1 and W∗

2, respectively.
Note that R1 and R2 can be non-identity matrices.

The proof is similar to that of Theorem 2, W̄ = {R1W1,R2W2} is also a critical
point. Now, we will show the orthogonal matrix R2 remains the loss invariant. Since
RT

2 R2 = R2R
T
2 = I, we have
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L̃(W) =
1

2

∥∥∥σ(XW1)WT
2 − σ(XW∗

1)W∗
2
T
∥∥∥2

F

=
1

2

∥∥∥σ(XW1)W2
TRT

2 − σ(XW∗
1)W∗

2
TRT

2

∥∥∥2

F

=
1

2

∥∥∥σ(XW1)W̄T
2 − σ(XW∗

1)W∗
2
T
∥∥∥2

F
.

Therefore, the orthogonal matrix R2 does not change L̃(W) and its expectation. For an
orthogonal matrix R1, we expand the loss function L(W) and get

L(W) =
1

2
E
[
L̃(W)

]
=

1

2
tr
(
E
[
ETE

])
=

1

2
tr

∑
i

∑
j

w
(2)
i w

(1)
i

T
E
[
F
(
e

(1)
i ,w

(1)
j

)]
w

(2)
j

T
−w

(2)
i w

(1)
i

T
E
[
F
(
e

(1)
i ,w

(1)
j

∗)]
w

(2)
j

∗T

−w
(2)
i

∗
w

(1)
i

∗T
E
[
F
(
e

(1)
i

∗
,w

(1)
j

)]
w

(2)
j

T
+ w

(2)
i

∗
w

(1)
i

∗T
E
[
F
(
e

(1)
i

∗
,w

(1)
j

∗)]
w

(2)
j

∗T
)

=
1

2
tr
(
w(2)w(1)TE

[
F
(
e(1),w(1)

)]
w(2)T −w(2)w(1)TE

[
F
(
e(1),w(1)∗

)]
w(2)∗T (12)

−w(2)∗w(1)∗TE
[
F
(
e(1)∗,w(1)

)]
w(2)T + w(2)∗w(1)∗TE

[
F
(
e(1)∗,w(1)∗

)]
w(2)∗T

)
,

where E = g(W,X)− g(W∗,X), Wi = w(i) and W∗
i = w(i)∗, i ∈ [2].

Now we discuss the first two terms on the right side of Eqn. (12),

w(2)w(1)TE
[
F
(
e(1),w(1)

)]
w(2)T

=
N

2π
w(2)w(1)T

[
(π − θ)w(1) +

∥∥∥w(1)
∥∥∥ sin θe(1)

]
w(2)T

=
N

2π
w(2)w(1)TRT

1 R1

[
(π − θ)w(1) +

∥∥∥w(1)
∥∥∥ sin θe(1)

]
w(2)T

=
N

2π
w(2)w̄(1)T

[
(π − θ)w̄(1) +

∥∥∥w̄(1)
∥∥∥ sin θē(1)

]
w(2)T.

Since the rotation R1 around the rotation axis W∗
1 keeps the weight vector W∗

1 invariant,

then R1 does not change θ∗ = ∠
(
w(1),w(1)∗

)
. As a result, we have the following property:

w(2)w(1)TE
[
F
(
e(1),w(1)∗

)]
w(2)∗T

=
N

2π
w(2)w(1)T

[
(π − θ∗)w(1)∗ +

∥∥∥w(1)∗
∥∥∥ sin θ∗e(1)

]
w(2)∗T

=
N

2π
w(2)w(1)TRT

1 R1

[
(π − θ∗)w(1)∗ +

∥∥∥w(1)∗
∥∥∥ sin θ∗e(1)

]
w(2)∗T

=
N

2π
w(2)w̄(1)T

[
(π − θ∗)w(1)∗ +

∥∥∥w(1)∗
∥∥∥ sin θ∗ē(1)

]
w(2)∗T

The remaining two items can be discussed in a similar way. Therefore, the expected loss

function E
[
L(W̃)

]
is invariant.
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4.8. Proof of Theorem 5

Proof Recall that Ωk only depends on the angles between the column vectors of W1, and
Λk only depends on the magnitudes of column vectors of W1 and the angles between them.
If we take a perturbation on the linear path W̃ = (1− µ)W + µW̄, µ > 0, such perturba-
tion cannot guarantee to keep Ωk and Λk invariant simultaneously, unless this perturbation
is occured at W or W̄. For such perturbation on W2, W̃T

2 W̃2 cannot satisfy Eqn. (4).
Therefore W̃ cannot be a critical point.

4.9. Proof of Theorem 4

Proof Let M =
∑

k PkW
T
1 (W1Ωk + BΛk) and Q =

∑
k PkW

T
1 (W∗

1Ω
∗
k + BΛ∗k) W∗

2
T.

Note that M may be not full rank, then we have

WT
2 = M−Q + (I−M−M)L, ∀ L ∈ Rd1×d1 , (13)

where M− is a generalized inverse of M. We can choose a W̄2 to satisfy Eqn. (13) for
different L. Given any fixed W1, and W = {W1,W2} is a critical point, then there exists
a perturbation on the straight line W̃2 = W2 + µ(W̄2 −W2), µ > 0 such that W̃2 also
satisfies Eqn. (5), hence W̃ is also a critical point.

Any critical point W̃ ∈ C(L,W, ε) can be obtained by perturbing to a different yet
infinitely close W1 when µ→ 0. Therefore, W̃ is a non-isolated critical point.

5. Conclusion and Future works

In this paper, we have theoretically analyzed the properties of a two-layered ReLU network
trained by minimizing the expected squared loss between its prediction function and a
target function with known optimal parameters. To characterize the behaviors of critical
points and loss surface, we propose a normal equation for critical points, and study the
invariances under three kinds of transformations, namely, scale transformation, rotation
transformation, and perturbation transformation. We find that these transformations keep
the loss of a critical point invariant, thus can form flat regions. Our results indicate that
the flat loss surfaces indeed exist, thus it is very important to deal with the flatness issue
when training neural networks.

There are many open questions to be further explored in the future. How to apply
similar analysis to general distributions and how to generalize the analysis of two-layered
network to multi-layered network are also open problems.
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