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Abstract

Trace-norm regularization plays an important role in
many areas such as computer vision and machine learn-
ing. When solving general large-scale trace-norm regular-
ized problems, existing methods may be computationally ex-
pensive due to many high-dimensional truncated singular
value decompositions (SVDs) or the unawareness of ma-
trix ranks. In this paper, we propose a proximal Rieman-
nian pursuit (PRP) paradigm which addresses a sequence
of trace-norm regularized subproblems defined on nonlin-
ear matrix varieties. To address the subproblem, we extend
the proximal gradient method on vector space to nonlin-
ear matrix varieties, in which the SVDs of intermediate so-
lutions are maintained by cheap low-rank QR decomposi-
tions, therefore making the proposed method more scalable.
Empirical studies on several tasks, such as matrix comple-
tion and low-rank representation based subspace cluster-
ing, demonstrate the competitive performance of the pro-
posed paradigms over existing methods.

1. Introduction
Trace-norm regularization has widely appeared in many

problems, such as matrix recovery (MR) [8, 43], robust

principal component analysis (RPCA) [7], low-rank repre-

sentation (LRR) [30, 55, 56], and robust multi-task learn-

ing [4]. Most of the trace-norm based problems can be for-

mulated into the following general form [29, 33]:

min
X,E

||X||∗ + λΥ(E), s.t. A(X) + B(E) = D, (1)

where λ is a regularization parameter, ||X||∗ is the trace-

norm (or the nuclear-norm) of a matrix X ∈ R
m×n, A

and B are linear operators depending on specific applica-

tions [29], D represents data or observations, and E rep-

resents the fitting error. The minimization of problem (1)

would encourage X to be low-rank [9, 12, 14]. In gener-

al, Υ(E) is a non-smooth regularizer on E, such as the �1-

norm regularization (i.e., ||E||1) or �2,1-norm regularization

(i.e., ||E||2,1) [7, 29, 30].

Problem (1) has been involved in many computer vi-

sion tasks recently, such as image restoration [19, 21, 34,

46], multi-label image classification problems [13, 10, 20],

video segmentation [25, 60], and so on. Note that by re-

moving the term Υ(E), problem (1) is reduced to a simple

form:

min
X

‖X‖∗ s.t. A(X) = D, (2)

or a slightly relaxed matrix lasso problem [18, 50]:

min
X

‖X‖∗ + γ

2
‖A(X)−D‖22, (3)

where γ is a regularization parameter.

In the last decade, many algorithms have been proposed

to solve problem (2) or (3) [17, 14, 24, 50, 58], for example,

the singular value thresholding (SVT) method [6], augment-

ed Lagrangian method (ALM) and alternating direction

method (ADM) [27, 45, 48], proximal gradient (PG) [18],

and accelerated proximal gradient (APG) [18, 50]. Due to

the non-smoothness of Υ(E), the optimization of problem

(1) is more challenging. Recently, aforementioned meth-

ods (e.g., ADM and APG) have been extended to solve

this problem by minimizing X and E in an alternative

way [54, 28, 29].

These methods have shown great success in practice.

However, their optimization usually requires many singular

value decompositions (SVDs), which can be very expensive

for large-scale problems. With continuation strategy and

rank prediction techniques, the convergence can be acceler-

ated by applying truncated SVDs [27, 29, 50]. However, the

truncated SVDs are often cold-started, that is, when updat-

ing X, one has to compute the SVD of a new intermediate

matrix in order to compute the thresholding operations in-

volved in the optimizations [35, 51, 33]. As a result, the

computation cost can be very high on large-scale problem-

s with large ranks [52]. Since variables between iterations

may be very close to each other, a warm-start SVD could
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be applied to accelerate the speed [52], but this is not very

stable and may incur convergence issues.

In this paper, we make the following contributions.

• We propose a proximal Riemannian gradient (PRG)

method to address trace-norm regularized problems

defined onM≤r = {X ∈ R
m×n : rank(X) ≤ r}, and

provide the convergence result of the algorithm. By

exploiting geometries on M≤r, the SVDs of interme-

diate solutions are maintained by cheap low-rank QR

decompositions, making the method very scalable.

• To address general trace-norm regularized problems in

(1), we present a simple proximal Riemannian pursuit

(PRP) scheme, which addresses a sequence of sub-

problems defined on M≤r, where r increases mono-

tonically with simple update rules. Therefore, unlike

existing fixed-rank methods [1, 5, 35, 26], this paradig-

m does not require the knowledge of matrix ranks.

2. Notations and Preliminaries
Let the superscript T denote the transpose of a vec-

tor/matrix, 0 be a vector/matrix with all zeros, diag(v)
be a diagonal matrix with diagonal elements equal to v,

〈A,B〉 = tr(ABT) be the inner product of A and B,

and ‖v‖p be the �p-norm of a vector v. Let A be a lin-

ear operator with A∗ being its adjoint operator. The op-

erator max(σ,v) operates on each dimension of σ. Let

X = Udiag(σ)VT be the SVD of X ∈ R
m×n. The nu-

clear norm of X is defined as ‖X‖∗ = ‖σ‖1 =
∑

i |σi|
and the Frobenius norm of X is defined as ‖X‖F = ‖σ‖2.

Lastly, for any convex function Ω(X), let ∂Ω(X) denote its

subdifferential at X.

We also need some basics of the Geometries of fixed-

rank matrices and matrix varieties. Due to page limitation,

more details are presented in the supplementary file.

Riemannian manifold fixed-rank matrices. The fixed

rank-s matrices lie on a smooth submanifold defined below

Ms = {X ∈ R
m×n : rank(X) = s} = {Udiag(σ)VT :

U ∈ Stms ,V ∈ Stns , ||σ||0 = s}, where Stms = {U ∈
R

m×s : UTU = I} denotes the Stiefel manifold of m × s
real and orthonormal matrices, and the entries in σ are in

descending order [51]. The tangent space TXMs at X is

given by TXMs = {UMVT + UpV
T + UVT

p : M ∈
R

s×s,Up ∈ R
m×s,UT

pU = 0,Vp ∈ R
n×s,VT

pV = 0}.
Given X ∈ Ms and A,B ∈ TXMs, by defining a met-

ric gX(A,B) = 〈A,B〉, Ms is a Riemannian manifold
by restricting 〈A,B〉 to the tangent bundle [2]. Here, the

tangent bundle is defined as the disjoint union of all tan-

gent spaces TMs =
⋃

X∈Ms
{X} × TXMs. The nor-

m of a tangent vector ζX ∈ TXMs at X is defined as

||ζX|| =
√〈ζX, ζX〉.

AsMs is embedded in R
m×n, the Riemannian gradient

of f at X = Udiag(σ)VT, denoted by gradf(X), is given

as the orthogonal projection of the gradient of∇f(X) onto
the tangent space TXMs.

PTXMs(Z) : Z �→ PUZPV + P⊥
U ZPV + PUZP

⊥
V . (4)

where PU = UUT and P⊥U = I − UUT. Letting G =
∇f(X) be the gradient of f(X), it follows that

gradf(X) = PTXMs(G). (5)

Moreover, define PT0Ms(Z) = 0 when X = 0.

Varieties of low-rank matrices [44]. Now we consider

the closure ofMr, which is defined by

M≤r = {X ∈ R
m×n : rank(X) ≤ r}, (6)

which is a real-algebraic variety. Let ran(X) be the column

space of X. In the singular points where rank(X) = s < r,

we will construct search directions in the tangent cone [44]

(instead of the tangent space)

TXM≤r = TXMs ⊕ {Ξr−s ∈ U⊥ ⊗ V⊥}, (7)

where U = ran(X) and V = ran(XT), and Ξr−s is a best

rank-(r−s) approximation of G − PTXMs
(G) which can

be cheaply computed with truncated SVD of rank (r − s).
This implies that a tangent vector on TXM≤r can be repre-

sented by

ξ=UMVT+UpV
T+UVT

p +Usdiag(σs)V
T
s , (8)

where Ξr−s = Usdiag(σs)V
T
s . Let gradf(X) ∈ TXM≤r

be the projection of G on TXM≤r. It can be computed by

gradf(X) = PTXMs(G) +Ξr−s. (9)

Retraction. Given a search direction ξ ∈ TXM≤r, the re-

traction finds the best approximation by a matrix with rank

at most r as measured in terms of the Frobenius norm,

R≤r
X (ξ) = argminY∈M≤r

||Y − (X+ ξ)||F . (10)

Algorithm 1: Computation of R≤r
X (ξ).

Require: X=Udiag(σ)VT ∈M≤r , the tangent vector

ξ=UMVT+UpV
T+UVT

p+Usdiag(σs)V
T
s .

1: Compute (Qu,Ru)=qr(Up, 0), (Qv,Rv)=qr(Vp,0).
2: Let Z = [diag(σ) +M RT

v ;Ru 0].
3: Compute (Uz,σz,Vz) = svd(Z).
4: Let σ̄=[σz;σs].
5: Let Ū=[[U Qu]Uz Us], V̄=[[V Qv]Vz Vs].
6: Arrange σ̄ in descending order, and Ū and V̄ accordingly.

7: Let U+ = Ū(:, 1 : r), V+ = V̄(:, 1 : r) and

σ+ = σ̄(1 : r).
8: Output R≤r

X (ξ) = U+diag(σ+)V
T
+.
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In general, problem (10) can be addressed by perform-

ing truncated SVD on X + ξ, which, however, can be very

expensive for high-dimensional matrices when r is large.

Fortunately, as summarized in the following, by exploiting

geometries overM≤r, R≤r
X (ξ) can be efficiently computed

by slightly modifying the retraction on fixed-rank manifold

Mr (see details in [51]).

Remark 1. R≤r
X (ξ) can be efficiently computed in Algo-

rithm 1 with efficient QR decompositions on low rank ma-
trices Up and Vp. The corresponding time complexity is
14(m+n)r2+CSV Dr3, where r 
 min(m,n) and CSV D

is a moderate constant (say less than 200) [51].

Most Riemannian-optimization based algorithms focus

on fixed-rank manifolds Mr [1, 5, 35, 26]. In the trace-

norm minimization, the rank degeneration (i.e. rank(X) <
r) may happen and even inevitable. Therefore, the introduc-

tion of M≤r is important and necessary in the trace-norm

minimization of our paper. Note that the fixed-rank mani-

foldMr is open, thus the manifold properties break down at

the boundary where rank(X) < r, making the convergence

analysis of the algorithm difficult accordingly [44].

3. Proximal Riemannian pursuit
In this paper, similar to [54, 28], we solve a slightly re-

laxed form of (1) with the equality constraint replaced with

a penalty term:

min
X,E

||X||∗ + λΥ(E) +
γ

2
||A(X) + B(E)−D||2F , (11)

where γ is often a large penalty parameter. For convenience,

let us define

Ψ(X,E) = ||X||∗ + λΥ(E) +
γ

2
||A(X) + B(E)−D||2F .

Problem (11) can be addressed by proximal gradient

(PG) method and accelerated proximal gradient (APG) [54,

28]. However, they are not computationally efficient due to

many truncated SVDs. To address this, in this work, we pro-

pose to address problem (11) by iteratively solving a series

of subproblems (indexed by t = 1, . . . , T ) with progres-
sively relaxed rank constraint on X. Specifically, each of

the subproblems is in the form of

minX,E Ψ(X,E), s.t. rank(X) ≤ r, (12)

where the rank constraint is progressively relaxed with r :=
tκ when t increases. The parameter κ is an integer that is

several times smaller than the true rank, and a simple and

reasonable setting of this parameter will be discussed later.

The proposed paradigm is referred to as the proximal

Riemannian pursuit (PRP) method and is illustrated in Al-

gorithm 2, where a continuation strategy is applied for γ
to accelerate the convergence as in [54]. The key step of

the proposed approach is to address the subproblem in (12)

which is defined on M≤r. In this paper, we solve problem

(12) by a proximal Riemannian gradient method.

Algorithm 2: General PRP scheme for solving prob-

lem (1).

Input: Parameters κ, λ, γ0, γtar, and χ ∈ (1,+∞).
1 Initialize X0 = 0 and E0 = 0;

2 for t = 1 : T do
3 Let r := r + κ and γt ← max(γt−1χ, γtar).
4 Update (Xt,Et) by addressing (12) with r and γt;

5 Terminate if the stopping condition is achieved.

Before continuing, we discuss the determination of κ and

stopping conditions.

Determination of κ. Let σ be the singular vector of

A∗(D) in descending order. We choose κ such that

σi ≥ η σ1, ∀i ≤ κ, (13)

where η ∈ (0.5, 1]. In other words, κ denotes the number

of sufficiently large singular values of A∗(D).
Besides the progressive update of r, one may choose a

large κ such that κ > rank(X∗), where X∗ is the optimal

solution of (1). However, this strategy has two drawback-

s. First, the X∗ is unknown, thus the setting of r is dif-

ficult. Second, if r is too large, it may incur severely ill-

conditioning issues [49] and the computational complexity

will increase dramatically.

Stopping condition: Since PRP increase the rank by κ
iteratively, anyway it will be stopped in limited steps due

to limited size of X, but we may stop it earlier in practice.

Basically, we can stop the algorithm if the objective value

cannot be decreased significantly at some iteration.

Remark 2. Let {Xt,Et} be the sequence generated by Al-
gorithm 2. Then we have

Ψ(Xt,Et) ≤ Ψ(Xt−1,Et−1)− β||Ξt−1
κ ||2F , (14)

where β is some number, Ξt−1
κ can be computed according

to equation (7).

The proof relies on some results from later sections, and

can be found in the supplementary file. According to Re-

mark 2, if ||Ξt−1
κ ||2F is very small, then there is no need

to proceed. We therefore set the convergence condition as

follows:
Ψ(Xt−1,Et−1)−Ψ(Xt,Et)

κΨ(Xt−1,Et−1) ≤ ε, (15)

where ε denotes a tolerance value. In practice, a large γ may

be required to prevent from the solution bias incurred by the

regularization. However, in this case, the optimal solution

X∗ may not be an exact low-rank matrix. In this case, the

early stopping will help to obtain a low-rank solution, thus

it is very important.
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4. Proximal Riemannian gradient methods
In this section, we present the proximal Riemannian gra-

dient (PRG) method to address problem (12),1 which ex-

tends the classical proximal method over vector space to

M≤r [39, 50]. For simplicity, we first consider a simpler

case where Υ(E) is not considered.

4.1. Case 1: λ = 0

When Υ(E) is not considered, problem (12) is equiva-

lent to the following problem

minX∈M≤r
||X||∗ + γ

2 ||A(X)−D||2F , (16)

which is known as the matrix lasso problem [50]. For con-

venience, let us define

f(X) :=
γ

2
||A(X)−D||2F .

To introduce the proximal method on M≤r, similarly as

in [27, 50], we introduce a local model of Ψ(X) on the tan-

gent cone TXM≤r around Y ∈ M≤r but keeping ||X||∗
intact as follows:

mL(Y;X, ξ) := ||X||∗ +Q(X), (17)

Q(X) := f(Y) + 〈gradf(Y), ξ〉+ L

2
〈ξ, ξ〉, (18)

where ξ ∈ TYM≤r and X := Y+ξ, and L is the Lipschitz

constant. Note that the above local model is very different

from that in classical proximal gradient methods (e.g., [39,

50]) in the sense that the operation X := Y+ξ is restricted

on the tangent cone TYM≤r. On the tangent cone, it is

valid for the operation Y + ξ for any ξ ∈ TYM≤r.

With the introduction of the local model, the proximal

Rimannian gradient method addresses problem (16) in an

iterative way (similar to [39, 50]), which updates Xk in the

kth iteration by minimizing mL(Xk−1;X, ξ) onM≤r, i.e.,

Xk = argminX∈M≤r
mL(Y;X, ξ), (19)

where Y is set to Xk−1 and L is set to Lk. Let

TL(Y) be the minimizer of problem (19), i.e. TL(Y) :=
argminX∈M≤r

mL(Y;X, ξ). Then it can be computed by

first computing the solution to argminX∈M≤r
Q(X), and

then performing a singular value thresholding operation on

the solution. Let RY(ξ) = argminX∈M≤r
Q(X). The

computation of RY(ξ) and TL(Y) is shown in the follow-

ing lemma whose proof is available in the supplementary

file.

Lemma 1. Given Y and the parameter L, RY(ξ) can be
computed by equation (10) with ξ = −gradf(Y)/L. De-
noting the SVD of RY(ξ) as RY(ξ)=U+diag(σ+)V

T
+, we

have TL(Y) = U+diag(max(σ+ − 1/L, 0))VT
+.

1In fact, M≤r is a closure of the Riemannian submanifold Mr . We

abuse “Riemannian” here for simplicity.

From Lemma 1, RY(ξ) is exactly the Retraction

R≤r
X (ξ), and it can be cheaply computed according to Al-

gorithm 1 whose complexity is 14(m + n)r2 + CSV Dr3,

where r 
 min(m,n). Since the decomposition RY(ξ) =
U+diag(σ+)V

T
+ can be maintained by QR decompositions

on low-rank matrices, we do not have to compute the trun-

cated SVDs as in the classical proximal gradient method-

s [39, 50]. After obtaining RY(ξ), TL(Y) can be easily

computed. The general scheme of PRG is shown in Algo-

rithm 3.

Algorithm 3: Proximal Riemannian gradient method

for solving problem (16).

Input: X0, parameter γ and r, stopping tolerance ε.
1 for k = 1, ...,K do
2 Compute gradf(Xk−1);
3 Let ξk = −gradf(Xk−1)/Lk where Lk is

determined by Armijo line search in (20);

4 Set Xk = TLk
(Xk−1);

5 Terminate if stopping conditions are achieved;

6 Return Xk.

Determining Lk: In practice, it is critical to find a good

parameter Lk to make a sufficient decrease of the objec-

tive. Let Ψ(X) = ||X||∗ + γ
2 ||A(X) −D||2F be the objec-

tive function. In the kth iteration, given a descent direction

ζk ∈ TXk
M≤r, and Lk can be determined using Armijo

line search to satisfy

Ψ(TLk
(Xk))≤Ψ(Xk) + β〈gradf(Xk), ζk〉/Lk, (20)

where β ∈ (0, 1). Here, 1/Lk can be considered as the step

size. The existence of Lk is guaranteed by the following

lemma, whose proof is available in the supplementary file.

Lemma 2. Let Xk ∈ M≤r, and ζk ∈ TXM≤r be a de-
scent direction. Then there exists an Lk that satisfies the
condition in (20).

In the following, we discuss the convergence and stop-

ping conditions of the algorithm.

Convergence and optimality: Optimization method-

s on Riemannian manifolds are often locally convergent.

Whereas, for PRG, the limit point X∗ will be a global solu-

tion if rank(X∗) < r, as shown in the following proposition

whose proof can be found in the supplementary file.

Proposition 1. Let {Xk} be an infinite sequence of iterates
generated by Algorithm 3. Then every accumulation point
of {Xk} is a critical point of f over M≤r. Furthermore,
limk→∞ ||gradf(Xk) + ζ||F = 0, where ζ is the subdiffer-
ential of ||X||∗ at X [18]. If rank(X∗) < r, then we have
∇f(X∗) + ζ = 0, i.e., X∗ is a global optimum to (16).
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Stopping conditions. A natural stopping condition

would be ||gradf(Xk) + ζ||F ≤ ε with some predefined

ε. In practice, we do not have to solve the subproblem ex-

actly. For simplicity, we stop PRG early if the following

condition is achieved:

(Ψ(Xk−1)−Ψ(Xk))
Ψ(Xk−1)

≤ ε, (21)

where ε denotes a tolerance value.

4.2. Case 2: λ �= 0

Now, we are ready to extend PRG to minimize problem

(12) in which λ �= 0. Following [29], we optimize the t-

wo variables X and E using an alternating approach. Let

the pair (Xk,Ek) denote the variables obtained from the k-

iteration. At the (k + 1)th iteration, we update X and E as

below.

To update X, we fix E = Ek and define a local model of

Ψ(X,E) on the tangent cone TXM≤r around Xk ∈M≤r:

mL(X;Xk,Ek, ξ) := ||X||∗ + f(Xk,Ek)

+ 〈gradf(Xk,Ek), ξ〉+ L/2〈ξ, ξ〉,
where ξ ∈ TXk

M≤r and L is the Lipschitz constant. S-

ince ξ ∈ TXk
M≤r, it is valid to have X = Xk + ξ. Let

TL(Xk,Ek) be the minimizer of mL(X;Xk,Ek, ξ) sub-

jected to rank(X) ≤ r. Similar to Lemma 1, TL(Xk,Ek)
can be computed with two steps, where L can be determined

by Armijo line search to make a sufficient decrease of the

objective.

To update E, we fix X = Xk+1 and solve a problem:

minE λΥ(E) + γ
2 ||A(Xk+1) + B(E)−D||2F . (22)

Solving problem (22) with general B may be difficult. For-

tunately, for MR and LRR, where B(E) = E and Υ(E)
is either ‖E‖1 or ‖E‖2,1, problem (22) has a closed-form

solution. Let us define Bk = D − A(Xk+1). Then Bk

is a vector for MR and a matrix in the form of Bk =
[bk

1 , . . . ,b
k
n] for LRR. The closed-form solution, denoted

by Sλ(Bk), can be found in supplementary file. In cases

where the problem (22) cannot be solved in closed-form,

one may adopt iterative procedures to solve it.

The detailed algorithm, which is referred to as robust

PRG (PRG(R)), is shown in Algorithm 4. Due to the

possible ill-conditioning issues,2 we again apply a homo-

topy continuation technique for λ to accelerate the con-

vergence speed. Starting from an initial guess λ0, we set

λk = min(λ0ρ
k−1, λ) and compute Ek = Sλk

(Xk,Ek−1),
where ρ is chosen from (0, 1). Clearly, λk is non-increasing

w.r.t. the iteration index k.

We discuss the convergence as follows.

2When λ is very small, ‖E‖1 can be very large at the beginning, mak-

ing the initial point far from the optimum.

Algorithm 4: Robust PRG for solving problem (12).

Input: Initial (X0,E0), parameter λ, γ and r, initial

λ0 > λ, ρ ∈ (0, 1), tolerance ε.
1 for k = 1, ...,K do
2 Let λk = max(λk−1ρ, λ);
3 Compute gradf(Xk−1,Ek−1) by (5) or (9);

4 Choose Lk by Armijo line search. Set

Xk = TLk
(Xk−1,Ek−1);

5 Compute Ek = Sλk
(Bk−1) with

Bk−1 = D−A(Xk);
6 Terminate if stopping conditions are achieved;

7 Return (Xk,Ek).

Proposition 2. Let Ψ(Xk,Ek) = ||Xk||∗ + λkΥ(Ek) +
f(Xk,Ek), and {(Xk,Ek)} be an infinite sequence
of iterates generated by Algorithm 4. It follows that
Ψ(Xk+1,Ek+1) ≤ Ψ(Xk,Ek), and {(Xk,Ek)} converges
to a limit point (X∗,E∗).

The proof of Proposition 2 can be found in the supple-

mentary file. The stopping condition in (21) can be extend-

ed to PRG(R) by replacing Ψ(X) with Ψ(X,E).

4.3. Complexity analysis

The complexity of PRP includes two main folds, i.e., the

computation of Ξt
κ which can be done by truncated SVD

of rank κ and the subproblem optimization by PRG or

PRG(R). Here, we focus on the complexity of PRP on M-

R. At the tth iteration of PRP, the complexity of PRG or

PRG(R) is O((m+ n)(κt)2 + lκt), where κt ≤ r + κ. For

sufficiently sparse matrices like in MR, the truncated SVD

of rank κ in PRP can be completed in O((m + n)κ) using

PROPACK [23]; while the truncated SVD in existing prox-

imal gradient based methods takes O((m + n)r), where κ
is several times smaller than r. The complexity comparison

on LRR and RPCA can be found in the supplementary file.

4.4. Parameter settings

For convenience of parameter setting, we suggest choos-

ing the penalty parameter γ in (12) according to γ =
1/(νσ1), where ν is a scaling factor and σ1 denotes the

largest singular value of A∗(D). Note that this setting

is consistent with the regularization parameter setting in

matrix lasso in [50]. For robust cases, the parameter λ
in (12) is chosen by λ = δdm, where dm denotes the

mean of |D|. Without loss of generality, we suggest set-

ting ν ∈ (0.0001, 0.01) and δ ∈ (0.01, 1]. One may also

apply the cross-validation to choose ν and δ, but it is not

considered in this paper.
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5. Related studies

The proposed PRG methods overM≤r is closely related

to fixed-rank methods defined on nonlinear fixed-rank man-

ifolds [1, 5, 35, 36, 26], which have shown great advantages

in computation for solving large-scale matrix completion

problem [1, 5, 35], such as the low-rank geometric conju-

gate gradient method (LRGeomCG) [51], the quotient geo-

metric matrix completion method (qGeomMC) [37], scaled

gradients on Grassmann manifolds for matrix completion

(ScGrassMC) method [40]. However, these methods can

only deal with smooth objectives, and cannot handle trace-

norm regularized problems. Some researchers proposed to

solve a variational form of trace-norm regularized prob-

lem [17, 41]: minG,H ‖G‖2F +‖H‖2F , s.t.A(GH�) = D,
where G ∈ R

m×r and H ∈ R
n×r. This problem can be

addressed by either gradient based methods [17, 41] or s-

tochastic gradient methods [42, 53]. However, these meth-

ods may suffer from slow convergence speeds [37, 51].

Recently, the authors in [38] exploited Riemannian struc-

tures and presented a trust-region algorithm to address

trace-norm minimizations. The proposed method, denoted

by MMBS, alternates between fixed-rank optimization and

rank-one updates. However, empirically this method shows

slower speed even than APG on large-scale problems [38].

The authors in [32] proposed a Grassmann manifold method

based on a fixed-rank manifold. In general, this method

has similar complexity to ScGrassMC that also operates on

Grassmann manifold [40]. More recently, a new Retraction

for accelerating the Riemannian three-factor low-rank ma-

trix completion problem [26].

Active subspace methods or greedy methods, which in-

crease the rank by one per iteration, have gained great at-

tention in recent years [14, 17, 47, 24]. However, these

methods usually involve expensive subproblems, and might

be very expensive when the true rank is high. For exam-

ple, Laue’s method [24] needs to solve nonlinear master

problems using the BFGS method, which is not scalable for

large-scale problems. More recently, [16] proposed a nov-

el active subspace selection method for solving trace-norm

regularized problems, but this method may suffer from slow

convergence speed due to the approximated SVDs and inef-

ficient solvers for the subproblem optimization. The authors

in [49, 57] proposed a Riemanian pursuit algorithm which

increases the rank more than one, but this method cannot

deal with trace-norm regularized problems. In [59], Zhou

et al. proposed an algorithm which also operated on M≤r

and adjusted the rank iteratively. However, our method is d-

ifferent from Zhou’s method. Specifically, we address trace-

norm regularized problems which are non-smooth; while

Zhou’s method focuses on smooth objectives. The trace-

norm regularizer naturally encourages low-rank solution;

while Zhou’s method resorts to heuristics to reduce ranks.

6. Experimental Results
For convenience, we refer PRP with PRG(R) and PRG

to as PRP(R) and PRP, respectively. We evaluate proposed

methods on two classical tasks, namely matrix completion

and LRR based clustering. All the experiments are conduct-

ed in Matlab (R2012b) on a PC installed a 64-bit operating

system with an Intel(R) Core(TM) i7 CPU (3.2GHz with

single-thread mode) and 64GB memory.

6.1. Experiments on Matrix Completion

We compare the proposed methods, i.e., PRG, PRG(R),

PRP and PRP(R), on several matrix completion tasks. Three

state-of-the-art trace-norm based methods, e.g. APG [50],

MMBS [38], and Active ALT [16], are adopted as base-

lines. We also compare with several efficient fixed-rank

methods operating on manifolds, such as LRGeomCG [51],

RP [49], LMaFit [53], ScGrassMC [40], A-R3MC1 [26],

and qGeomMC [37]. We do not report the results of some

methods (e.g., IALM [27] and the method in [32]), since

they are either slower than other compared methods or the

sources are not available. We adopt the root-mean-square

error (RMSE) as a major evaluation metric: RMSE =
‖PΩ(D − X∗)‖F /

√
(|Ω|), where X∗ denotes the recov-

ered matrix, and Ω denotes the index set for testing, and PΩ

denotes the orthogonal projection onto Ω [51].

6.1.1 Synthetic Experiments

Following [40, 49], we generate synthetic low-rank ma-

trices D = Udiag(σ)VT ∈ R
m×m of rank r, where

U ∈ Stmr ,V ∈ Stmr , m = 5000, r = 50 and σ is a 50-

dimensional vector with its entries sampled from a uniform

distribution [0, 1000]. We sample l = ωr(2m− r) entries

from D uniformly as the observations stored in d ∈ R
l,

where ω is an oversampling factor [27]. Here, we set

ω = 2.5. We study two toy data sets whose observation-

s are perturbed by two kind of noises: In the first toy data

set TOY1, each entry of d is perturbed by additive Gaus-

sian noise of magnitude 0.01‖d‖2/‖n‖2, where n ∈ R
l is a

Gaussian random vector sampled from N(0, 1); The second

toy data TOY2 is constructed based on TOY1, by further

perturbing 5% of the observations with outliers uniformly

sampled from [−10, 10]. In synthetic experiments, we set

ν = 0.005, δ = 0.1 and η = 0.65 (see equation (13)). The

trace-norm based methods APG, MMBS and Active ALT,

are adopted as the baselines. The Relative objective differ-

ence and Testing RMSE w.r.t. time on TOY1 and TOY2
are reported in Figure 1.

According to Figure 1(a), our proposed PRG, PRG(R),

PRP and PRP(R) converge much faster than the compara-

tors, and PRP and PRP(R) improve upon their counterparts

(i.e., PRG and PRG(R)) significantly. From Figure 1(d), the

testing RMSE shows similar trends to the objective values.
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(a) TOY1 with uniform noises.
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(b) TOY2 with outliers.
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(c) Movie-10M.
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(d) TOY1 with uniform noises.
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(e) TOY2 with outliers.
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(f) Movie-10M.

Figure 1. Performance of various methods on TOY1, TOY2 and Movie-10M, in terms of relative objective difference vs computational

time (see (a)(b)(c)) and testing RMSE values vs computational time (see (d)(e)(f)).

Note that, our methods thus achieve low RMSE values in

very short time. In general, the Active ALT method is slow-

er than others, which may be due to the approximated SVDs

and inefficient solvers for the subproblem optimization.

From Figure 1(b), on TOY2 which is disturbed by out-

liers, our proposed PRG(R) and PRP(R) converge faster

than the baselines. From Figure 1(e), only the proposed

PRG(R) and PRP(R) achieve promising testing RMSE val-

ues; while other methods over-fit the data after several itera-

tions due to outliers. Note that PRP(R) converges faster than

its counterpart PRG(R). These observations demonstrate the

effectiveness and efficiency of our proposed methods.

6.1.2 Experiments on Real-world Data

We study the performance of PRP and SR-PRG on

three collaborative filtering data sets: MovieLens with

10M ratings (denoted by Movie-10M) [15], Netflix Prize

dataset [22] and and Yahoo! Music Track 1 data set [11].

The statistics of these data sets are recorded in Table 1.

In the first experiment, we only compare with the three

trace-norm based methods, e.g. APG [50], MMBS [38] and

Active ALT [16] on Movie-10M. We report the change of

Relative objective difference and Testing RMSE w.r.t. time

in Figure 1. Here, we randomly choose 80% of the ratings

as the training set and the remainder as the testing set.

From Figures 1(c) and 1(f), our proposed methods show

Table 1. Statistics of datasets.
Data set m n |Ω|

Movie-10M 71,567 10,677 10,000,054

Netflix 48,089 17,770 100,480,507

Yahoo 1,000,990 624,961 252,800,275

much faster convergence speed as well as faster decreas-

ing of testing RMSE values. In the second experiment,

the baseline methods include APG [50],3 MMBS [38], L-

RGeomCG [51], qGeomMC [37], LMaFit [53], ScGrassM-

C [40],4 Active ALT [16],5 RP [49]6 and A-R3MC1 [26].7

Among them, A-R3MC1 is a recently developed method

which applies a new retraction technique for solving fixed-

rank problems. It is considered as the state-of-the-art

method.

For fixed-rank methods, the rank parameter must be pro-

vided. In this paper, the ranks returned by PRP are used

as the rank estimations for the fixed-rank methods, i.e., Sc-

GrassMC, qGeomMC, LMaFit and A-R3MC1. Specifical-

ly, the ranks returned by PRP for the three data sets are 14,

3APG method is from http://www.math.nus.edu.sg/

˜mattohkc/NNLS.html.
4MMBS, LRGeomCG, qGeomMC, LMaFit, and ScGrassMC are avail-

able from http://www.montefiore.ulg.ac.be/˜mishra/
fixedrank/fixedrank.html.

5http://www.cs.utexas.edu/˜cjhsieh/.
6http://www.tanmingkui.com/rp.html.
7https://github.com/innerlee/Publications.
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16, 28, respectively, and PRP(R) returns the same ranks.

Other parameters for the comparison methods are kept de-

fault. We set ν = 0.001 η = 0.65, and δ = 0.7 in our meth-

ods. Following [24, 47, 17], we report the testing RMSE

of different methods over 10 random 80/20 training/testing

partitions.

Comparison results are shown in Table 2. According to

the table, PRP and PRP(R) generally perform the best a-

mong all the compared methods in terms of testing RMSE

and time. The proposed PRP and PRP(R) methods also

achieve slightly better testing RMSE than RP with compa-

rable time. Note that RP relies on carefully designed stop-

ping conditions to induce low-rank solutions, and cannot

deal with outliers [49]. Maybe due to this reason, PRP and

PRP(R) achieve significant improvements in terms of test-

ing RMSE on the Yahoo data set.

Table 2. Experimental results on real-world datasets, where time

is recorded in seconds. Some results on Netflix and Yahoo are left

blank, since expensive computation cost makes them unavailable.

Method
Movie-10M Netflix Yahoo

RMSE Time RMSE Time RMSE Time

APG 1.094 810.01 1.038 2883.80 – –
LRGeomCG 0.823 57.67 0.860 2356.86 25.228 18319
QgeomMC 0.836 96.41 0.897 9794.75 24.167 82419

LMaFit 0.838 133.86 0.876 2683.73 24.368 24349
ALT 0.855 917.17 – – – –

MMBS 0.821 441.10 – – – –
ScGrassMC 0.845 216.07 0.892 4522.68 24.954 37705

RP 0.818 46.56 0.858 1143.02 23.451 12456
A-R3MC1(50) 0.8327 93.27 0.9003 3340.08 23.243 13157
A-R3MC1(100) 0.8276 175.87 0.8868 4999.45 22.497 21185

PRP 0.817 53.42 0.855 1057.35 22.644 15972
PRP(R) 0.815 67.73 0.857 1245.15 22.537 17263

6.2. Experiments on LRR Subspace Clustering

We compare our PRP(R) method with existing LRR

solvers in [29, 30]. In [55], the authors proposed a LRR

solver which is based on factorizing the data matrix with its

truncated SVD. However, the computation of skinny SVD

for large data matrix is usually too expensive. We thus ex-

clude it for the comparison.

We conduct experiments regarding the clustering task on

the Extended Yale Face Database B (ExtYaleB) and the

Human Activity Recognition Using Smartphones dataset

(HARUS) [3] We have D ∈ R
2016×640 for the ExtYaleB

data set and D ∈ R
561×10299 for the HARUS data set. The

ExtYaleB contains 2, 414 frontal face images of 38 subjects

with different lighting, poses and illumination conditions,

where each subject has round 64 faces. Following [31], we

use 640 faces from the first 10 subjects. Each face image

is resized to 48 × 42 pixels and then reshaped as a 2016-

dimensional gray-level intensity feature. The HARUS is a

large-scale data set (containing 10,299 signals w.r.t. 6 activ-

ities) with data collected using embedded sensors on the s-

martphones carried by volunteers on their waists, when they

are conducting daily activities (e.g., walking, sitting, lay-

ing). The captured sensor signals are pre-processed to filter

noise and post-processed.

Following [30], we measure the clustering performance

by clustering accuracy. The best clustering accuracies and

corresponding running times are reported in Figure 2. From

the figure, our PRP(R) method outperforms the two ex-

isting LRR solvers in terms of efficiency, since our algo-

rithm does not frequently involve SVDs w.r.t. large matri-

ces. Moreover, our algorithm achieves comparable cluster-

ing performance with [29]. In contrast, the LRR solver in

[30] achieves lower clustering accuracy on HARUS, pos-

sibly because that algorithm is not guaranteed to obtain a

globally optimal solution.
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Figure 2. Clustering accuracies and Running time of different

LRR solvers on two data sets.

7. Conclusion
Classical proximal gradient methods for addressing

trace-norm regularized problems may suffer from high

computational cost on large-scale problems [52]. To reduce

the computational complexity, we have proposed in this pa-

per a Proximal Riemannian Pursuit (PRP) strategy which

addresses general trace-norm regularized problems by pro-

gressively activating a number of active subspaces. More-

over, we have proposed a Proximal Riemannian Gradien-

t (PRG) method for addressing the trace-norm regularized

subproblems defined over a matrix variety M≤r, where r
is adjusted automatically by PRP. By exploiting geometries

on M≤r, PRG maintains the SVDs of the intermediate so-

lutions via cheaper low-rank QR decompositions, without

solving truncated SVDs of large-ranks explicitly at high

computational cost. Extensive experiments on multiple da-

ta sets have demonstrated the superior efficiency of the pro-

posed methods over other methods.
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